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Abstract

Dependence coefficients have been widely studied for Markov processes de-
fined by a set of transition probabilities and an initial distribution. This work
clarifies some aspects of the theory of dependence structure of Markov chains
generated by copulas that are useful in time series econometrics and other ap-
plied fields. The main aim of this paper is to clarify the relationship between
the notions of geometric ergodicity and geometric ρ-mixing; namely, to point
out that for a large number of well known copulas, such as Clayton, Gumbel
or Student, these notions are equivalent. Some of the results published in the
last years appear to be redundant if one takes into account this fact. We ap-
ply this equivalence to show that any mixture of Clayton, Gumbel or Student
copulas generate both geometrically ergodic and geometric ρ−mixing station-
ary Markov chains, answering in this way an open question in the literature.
We shall also point out that a sufficient condition for ρ−mixing, used in the
literature, actually implies Doeblin recurrence.
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1 Introduction

In recent years copula-based methods became a popular tool for analyzing tem-
poral dependence of time series. A 2-copula is a bivariate distribution function
C(x, y) with uniform marginal distributions. Given a stationary Markov chain
(Xn)n∈Z with marginal distribution function F (x), the process is character-
ized by the bivariate distribution function of (X1, X2) denoted by H(x1, x2) =
P (X1 ≤ x1, X2 ≤ x2). Then, by Sklar’s theorem (see for instance Nelsen [16]),
one can express H(x1, x2) in terms of a copula C(x1, x2) and F (x) via

H(x1, x2) = C(F (x1), F (x2)) .
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rial Fund grant
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The copula is uniquely defined on the product of the range of F (x) by itself. So,
it is unique if F (x) is continuous, and otherwise can be uniqely constructed by
using a bilinear interpolation. Therefore one can specify a stationary Markov
process by providing an invariant distribution function and a copula. The cop-
ula approach is flexible, since the marginal behavior characterized by F (x) can
be separated from the temporal dependence described by C(x, y). In their recent
paper, de Vries, C. G. and Zhou, C. [11] point out two examples from economics
where this separation is useful. Many interesting patterns of temporal depen-
dence in various applied fields of research can be generated by using certain
copula functions. Various procedures for estimating these models have been
proposed, ranging from parametric to nonparametric models (see for instance
Chen and Fan [7], Chen et al. [8], and the references therein). To establish the
asymptotic properties of any of these estimators, one needs to know the tempo-
ral dependence properties of the Markov chains, usually described in terms of
mixing coefficients. There are a large number of papers in the literature that
address this problem. Among them we mention Chen and Fan [7], Gagliardini
and Gouriéroux [12], Chen et al. [8], Ibragimov and Lentzas [13], Beare [2].

This work is motivated in fact by the paper by Chen et al. [8]. In their
Proposition 2.1, it was shown that Markov processes generated by the Clayton,
Gumbel or Student copulas are geometrically ergodic. Their method of proof is
based on a sophisticated quantile transformations and construction of small sets
for each individual copula. However it is not obvious how to construct small
sets to handle for instance the mixture of these copulas. Wei Biao Wu raised the
question whether convex combinations of these copulas generate geometrically
ergodic Markov chains. We shall positively answer this question. The derivation
of this result is based on the theory of the geometric ergodicity of reversible
Markov chains developed by Roberts and Rosenthal [18], Roberts and Tweedie
[17] and Kontoyiannis and Meyn [14]. This theory stresses the importance
of estimating the maximal coefficient of correlation between two consecutive
random variables in the Markov chain.

We shall also comment on a class of stationary Markov chains for which
Beare [1, Theorem 4.2] showed that is ρ−mixing. We shall actually show that
this class satisfies a more restrictive condition, namely φ−mixing, and so, the
estimators will enjoy richer asymptotic properties. Precisely, we shall show that
if the density of the absolutely continuous part of a copula is bounded away
from 0 on a set of Lebesgue measure 1, then it generates φ−mixing Markov
chains.

Our paper is organized as follows. First we give a brief survey of 3-mixing
coefficients that are closely related and formulate them in the specific copula
terms. In Section 3 we discuss the equivalence between geometric ergodicity
and geometric ρ−mixing for Markov chains with symmetric copulas. Section 4
treats Doeblin recurrence property. The mathematical arguments are included
in Section 5.

Throughout the paper we denote by I = [0, 1], by R we denote the Bore-
lian sets on R and λ(.) denotes the Lebesgue measure. By ||g||p,λ we de-
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note
(∫

I |g(x)|pdλ
)1/p

. For a random variable X defined on a probability space

(Ω,K,P) we denote by ||X ||p = E(|X |p)1/p. The notation a.s. stays for almost
sure. By dx, dy, ... we denote the integral with respect to Lebesgue measure
on I. For a function f(x, y) we denote by f,1(x, y), f,2(x, y) and f,12(x, y) the
partial derivative with respect to x, y, and second mixed derivative respectively.
For a set B we denote by B′ the complement of B.

2 Three mixing coefficients

In this paper we shall discuss the following 3 mixing coefficients. Let (Ω,K,P)
be a probability space and let A,B be two σ-algebras included in K. Define the
absolutely regular coefficient between A,B by

β(A,B) = 1

2
sup

{Ai},{Bj}

n
∑

i=1

m
∑

j=1

|P(Ai ∩Bj)− P(Ai)P(Bj)| ,

where the supremum is taken over all positive integers n and m, and all finite
partitions {Ai}, {Bj} of Ω with Ai ∈ A and Bj ∈ B.

The maximal coefficient of correlation is defined by

ρ(A,B) = sup{corr(f, g), f ∈ L2(A), g ∈ L2(B)} .

where L2(A) is the space of random variables that are A measurable and square
integrable.

The uniform mixing coefficient is

φ(A,B) = sup
B∈B,A∈A,P(A)>0

|P(B|A) − P (B)| .

For a stationary sequence (Xn)n∈Z let P = σ(Xk, k ≤ 0) be the information
provided by the past of the process and Fn = σ(Xk, k ≥ n) describes the
future after n steps. Then define βn = β(P ,Fn), ρn = ρ(P ,Fn), and φn =
φ(P ,Fn). It is well known that βn ≤ φn and ρn ≤ 2

√
φn. If in addition the

sequence is Markov the coefficients simplify and we have βn = β(σ(X0), σ(Xn)),
ρn = ρ(σ(X0), σ(Xn)), and φn = φ(σ(X0), σ(Xn)). Moreover ρn ≤ (ρ1)

n and
(2φn) ≤ (2φ1)

n. There are examples of Markov chains such that ρn → 0 but
φn 9 0, and also ρn → 0 but βn 9 0 or βn → 0 but ρn 9 0. A convenient
reference to all these results are the books by Bradley [3].

In terms of conditional probabilities, denoted by Pn(x,B) = P(Xn ∈ B|X0 =
x), and marginal distribution function F (x), which generates the invariant mea-
sure π(A) = P (X0 ∈ A), by using the equivalent definitions of the mixing
coefficients ( see [3, Theorem 3.32 and Lemma 4.3]) we have

βn =

∫

R

sup
B∈R

|Pn(x,B) − π(B)|dF ,
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ρn = sup{
(

∫

R

(
∫

R

g(y)Pn(x, dy)

)2

dF

)1/2

,

∫

R

g2(y)dF (y) = 1, Eg = 0},

and
φn = sup

B∈B
ess sup

x∈R
|Pn(x,B) − π(B)|.

Remark 1 We should mention that, all these mixing coefficients for stationary
Markov chains are invariant under strictly increasing and continuous transfor-
mations of the variables. Then, without restricting the generality, we can replace
in their computations Xn by Un = F (Xn), where F (x), the distribution func-
tion of X0, is assumed continuous and strictly increasing. Since U0 and Un are
both uniformly distributed on [0, 1] these coefficients are characterized only by
copulas.

We shall express next the mixing coefficients of a Markov chain in the spe-
cific terms of copula characteristics. One of the most important notions that
facilitates the link is the fold product of copulas, defined by Relation (2.10) in
Darsow et al. [10] as follows:

Definition 2 Let C1(x, y) and C2(x, y) be two copulas. Their fold product is

A(x, y) = C1 ∗ C2(x, y) =

∫

I

∂C1

∂y
(x, t)

∂C2

∂x
(t, y)dt .

This operation is associative, distributive over convex combinations of copu-
las and the set of copulas is closed under it. For more details about the product
of copulas, see Darsow et al. [10] and also Nelsen [16], where it is also proven that
copulas are almost everywhere differentiable. Furthermore, for all n ≥ 1 and
y ∈ [0, 1] the transition probabilities of the stationary Markov chain, (Ui)i∈Z,
with uniform marginal distributions and copula C(x, y) is given by

P(Un ≤ y|U0 = x) = Cn
,1(x, y) a.s. , (1)

where Cn(x, y) is the n-th fold product of C(x, y) = C1(x, y) with itself. Then,
we can construct a set Ω of Lesbegue measure 1, such that for all x ∈ Ω we have
P(Un ≤ y|U0 = x) = Cn

,1(x, y) for all y rational, and we deduce that for any x
in Ω and any Borelian A

Pn(x,A) = P(Un ∈ A|U0 = x) = Cn
,1(x,A) , (2)

where by Cn
,1(x,A) we denote the measure induced by Cn

,1(x, y) = Cn
,1(x, [0, y]).

By using these notations we have the following reformulation of the mix-
ing coefficients for (Un)n∈Z, a stationary Markov chain with uniform marginal
distributions, in terms of copula Cn(x, y) associated to variables (U0, Un):

βn =

∫ 1

0

sup
B∈R∩I

|Cn
,1(x,B) − λ(B)|dx,
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ρn = sup{
(

∫ 1

0

(
∫ 1

0

g(y)Cn
,1(x, dy)

)2

dx)

)1/2

, ||g||2,λ = 1, Eg = 0}

and
φn = sup

B∈B
ess sup

x∈I
|Cn

,1(x,B) − λ(B)| .

If in addition the copula Cn(x, y) is absolutely continuous with respect to λ2,
and denoting its density by cn(x, y) then, these coefficients become

βn =

∫ 1

0

sup
B∈R∩I

|
∫

B

(cn(x, y)− 1)dy|dx .

ρn = sup{
∫ 1

0

∫ 1

0

cn(x, y)f(x)g(y)dxdy : ||g||2,λ = ||f ||2,λ = 1, Ef = Eg = 0} ,

φn = sup
B⊂R∩I

ess sup
x∈I

|
∫

B

(cn(x, y)− 1)dy| . (3)

It is easy to see that the coefficients for (Ui)i∈Z are robust in the following
sense:

Remark 3 The mixing coefficients of a Markov chain generated by a given
copula C(x, y) and marginal distribution uniform on [0, 1], are larger than or
equal to those of a Markov chain generated by the same copula and another
marginal distribution F (x). As a matter of fact they are the supremum over all
F (x), of the mixing coefficients of stationary Markov chains generated by the
copula.

To see this we consider the generalized inverse,

F−1(u) = inf{x, u ≤ F (x)} .

Notice that x ≥ F−1(u) if and only if F (x) ≥ u. Given the stationary Markov
chain (Ui)i∈Z generated by copula C(x, y) and uniform on [0, 1] marginal dis-
tribution, then, the stationary Markov chain (F−1(Ui))i∈Z has the marginal
distribution function F (x) and the same copula. It remains to notice that
σ(F−1(Ui)) ⊂ σ(Ui).

We shall make the following convention:

Convention: Given a copula C(x, y) we shall refer to the Markov chain
it generates, without specifying its marginal distribution, if this distribution is
uniform on [0, 1].
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3 Geometric ergodicity

An important notion for the Markov chains is the notion of absolute regularity.
A stationary sequence is said to be absolutely regular if βn → 0 as n → ∞.
It is well known (see for instance Corollary 21.7 in Bradley vol. 2 [3]) that a
strictly stationary Markov chain is absolutely regular (i.e. βn → 0) if and only
if it is irreducible, (i.e. Harris recurrent) and aperiodic. A Markov chain is
irreducible if there exists a set B, such that π(B) = 1 and the following holds:
for all x ∈ B and every set A ∈ R such that π(A) > 0, there is a positive integer
n = n(x,A) for which Pn(x,A) > 0. An irreducible stationary Markov chain is
aperiodic if and only if there is A with π(A) > 0 and a positive integer n such
that Pn(x,A) > 0 and Pn+1(x,A) > 0 for all x ∈ A (see Chan and Tong [6,
Theorem 3.3.1] ).

By using these definitions along with measure theoretical arguments we shall
prove the following general result, where we impose a less restrictive condition
than Assumption 1 in Chen and Fan [7].

Proposition 4 If the absolutely continuous part of a copula has a strictly posi-
tive density on a set of measure 1, then it generates an absolutely regular Markov
chain.

It is well known that any convex combination of copulas is still a copula.
We shall comment next on the absolute regularity of such a mixture of copulas
and point out that it will inherit this property from one of the copulas in the
combination. We present this fact as a lemma that is needed for our proofs.

Lemma 5 Let (Ck(x, y); 1 ≤ k ≤ n) be n copulas such that C1(x, y) generates
an absolutely regular Markov chain. Any stationary Markov chain generated by
a convex combination,

∑n
k=1 akCk(x, y) with

∑n
k=1 ak = 1, 0 ≤ ak ≤ 1, a1 6= 0,

is absolutely regular.

3.1 Speed of convergence

The speed of convergence to 0 of the mixing coefficients is a very important
question for establishing limit theorems for estimators and their speed of con-
vergence.

We shall say that a sequence is geometric β−mixing (or geometric absolutely
regular) if there is 0 < γ < 1 such that βn < γn.

We say that the sequence is geometric ρ−mixing if there is 0 < δ < 1 such
that ρn ≤ δn. For a stationary Markov chain, because ρn ≤ ρn1 , we have that
ρ1 < 1 implies ρn ≤ δn with δ = ρ1.

In this section we are going to use an equivalent definition for ρ−mixing
coefficients in terms of the operator associated to the Markov chain. As before,
denote the marginal distribution by π(A) = P(X0 ∈ A) and assume there is a
regular conditional distribution for X1 given X0 denoted by P (x,A) = P(X1 ∈
A|X0 = x). In addition P denotes the Markov operator acting via (Pf)(x) =
∫

S
f(s)P (x, ds). Next let L

0
2(π) be the set of measurable functions such that

6



∫

f2dπ < ∞ and
∫

fdπ = 0. With these notations, the coefficient ρ1 is simply
the norm operator of P : L0

2(π) → L
0
2(π),

ρ1 = ||P ||L0

2
(π) = sup

g∈L
0

2
(π)

||P (g)||2
||g||2

. (4)

Still in this Markov setting, geometric β−mixing is equivalent to the notion
of geometric ergodicity that means there exists a measurable function A(x) such
that for some 0 < γ < 1 and for all n ≥ 1

||Pn(x, .) − π(.)||tot var ≤ A(x)γn a.s.

A convenient reference to these results is Theorem 21.19 in Bradley [3], or Meyn
and Tweedie [15].

We say that the stationaryMarkov chain is reversible if (X0, X1) and (X1, X0)
are identically distributed. Equivalently P is self-adjoint. In the context of re-
versible irreducible and aperiodic Markov chains 1 − ρ1 equals the so called
spectral gap, and if ρ1 < 1 we say that the operator P has a spectral gap in L2.
For a convenient reference to spectral theory we mention the book by Conway
[9]. See also the remarks above and after Theorem 2.1 in Roberts and Rosenthal
[18] and Lemma 2.2 in Kontoyannis and Meyn [14].

Based partially on results of Roberts and Rosenthal [18], Roberts and Tweedie
[17], Kontoyannis and Meyn [14], in their Proposition 1.2, state that any irre-
ducible and aperiodic reversible Markov chain is geometrically ergodic if and
only if has a spectral gap in L2(π). In view of previous comments we formulate
their result in the following language which is familiar to researchers in applied
areas:

Theorem 6 Any irreducible and aperiodic reversible Markov chain is geomet-
rically ergodic if and only if ρ1 < 1.

This important result is the key for obtaining the following statement.

Theorem 7 Let (Ck(x, y); 1 ≤ k ≤ n) be n symmetric copulas that generate
geometrically ergodic Markov chains. Any stationary Markov chain generated
by a convex combination of these copulas is geometrically ergodic and geometric
ρ−mixing.

These results have rich implications. We shall give two corollaries that are
useful in applications. Combining Proposition 4 and Theorem 6 leads to:

Corollary 8 A symmetric copula with the density of its absolutely continuous
part strictly positive on a set of Lebesgue measure 1 generates a geometrically
ergodic stationary Markov chain if and only if ρ1 < 1.

By combining now Lemma 5 with Theorem 6 one obtains:

7



Corollary 9 Assume (Ck(x, y); 1 ≤ k ≤ n) are n symmetric copulas and
C1(x, y) has the density of its absolute continuous part strictly positive on a set
of Lebesgue measure 1. Assume each one generates a ρ−mixing Markov chain.
Then, any convex combination,

∑n
k=1 akCk(x, y) with

∑n
k=1 ak = 1, 0 ≤ ai ≤ 1,

a1 6= 0 generates a geometrically ergodic Markov chain.

Based on these results we can give the following examples:

3.2 Examples

1. The Student t-copula, Clayton and Gumbel copulas generate geometric ρ-
mixing Markov chains. It was shown by Chen et al. [8] that these copulas
generate geometrically ergodic stationary Markov chains, and then, an appli-
cation of Corollary 8 proves our statement. It should be noticed that Beare
[1], also states that the t copula generates geometric ρ-mixing, but his proof
has a gap. It is based on a theorem that does not apply to the t-copula, since
its density is not bounded away from 0. He also made a numerical study that
confirms our statement that Clayton and Gumbel copulas generate geometric
ρ-mixing Markov chains.

Student t-copula is given by

Cρ,ν(u, v) = tρ,ν(t
−1
ν (u), t−1

ν (v)), |ρ| < 1, ν ∈ (1,∞) ,

where tρ,ν(., .) is the distribution function of the bivariate Student-t distribution
with mean zero, the correlation matrix having off-diagonal element ρ, and ν
degrees of freedom, and tν(.) is the distribution function of a univariate Student-
t distribution with mean zero, and ν degrees of freedom.

2. Any convex combination of Clayton, Gumbel and t-copulas generates a
geometrically ergodic stationary Markov chain (and thus, geometric ρ-mixing).
This is due to the fact that all these copulas are symmetric in their variables
and we apply then Theorem 7. This statement positively answers the question
posed by Wei Biao Wu on this topic. The Clayton and Gumbel copulas are
respectively

Cθ(u, v) = (u−θ + v−θ − 1)−1/θ, θ ∈ (0,∞) ,

Cβ(u, v) = exp(−[(− lnu)β + (− ln v)β ]1/β), β ∈ [1,∞) .

3. All Archimedian copulas that were shown to be geometrically ergodic by
Beare [2] and their convex combinations also generate geometric ρ-mixing by
Theorem 7.

4 Doeblin recurrence

Beare , in [1, Theorem 4.2], based on arguments related to results in Breiman
and Friedman [4] and Bryc [5], showed that if the density of the absolutely
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continuous part of a copula is bounded away from 0 a.s., then ρ1 < 1. Actually
we shall prove that more can be said under this condition, namely this condition
implies φ-mixing and therefore geometric ergodicity for the generated Markov
chain.

Theorem 10 Assume the density of the absolutely continuous part of the copula
C(x, y) exists and is bounded away from 0 on a set of Lebesgue measure 1, (that
is c(x, y) ≥ c > 0 a.s.). Then the stationary Markov chain generated by the
copula is φ−mixing. This is equivalent to saying there are constants D and
0 < r < 1 such that for every n ≥ 1, and B ∈ R ∩ I

|P (Un ∈ B|U0 = x)− λ(B)| ≤ Dr−n a.s.

Remark 11 This result also implies that the sequence is geometrically ergodic
since βn ≤ φn ≤ Dr−n.

Example Marshall-Olkin copula is given by formula

Cα,β(u, v) = min (uv1−α, vu1−β), 0 ≤ α, β ≤ 1 ,

is geometric φ−mixing for 0 ≤ α, β < 1.

5 Proofs

Proof of Proposition 4

Because for almost all x we know that C,1(x, y) exists and is increasing in
y, we have that C,12(x, y) exists a.s. It follows that for all y there is a set Ωy

with λ(Ωy) = 1 such that for all x ∈ Ωy

P(U1 ≤ y|U0 = x) = C,1(x, y) =

∫ y

0

C,12(x, v)dv + S1(x, y) ,

where C,12(x, v) is the density of the absolute continuous part of the copula and
S1(x, y) = C,1(x, y)−

∫ y

0
C,12(x, v)dv is the singular part of C,1(x, y). Since, by

Lebesgue Theorem,
∫ y

0
C,12(x, v)dv ≤ C,1(x, y)−C,1(x, 0), we have S1(x, y) ≥ 0.

In the same way we argued the relation (2), we find a set Ω of measure 1 such
that for all x ∈ Ω and all Borelians A,

P(U1 ∈ A|U0 = x) = C,1(x,A) =

∫

A

C,12(x, v)dv+S1(x,A) ≥
∫

A

C,12(x, v)dv > 0 ,

(5)
and irreducibility follows.

To prove aperiodicity, by Theorem 3.2 in Darsow et al. [10], we know that

C2(x, y) = P(U0 ≤ x, U2 ≤ y) =

∫

I

C,2(x, t)C,1(t, y)dt .

9



By Fatou lemma we obtain,

C2
,12(x, y) ≥

∫

I

C,21(x, t)C,12(t, y)dt .

Then, by Proposition 3.5 in Šremr [19], (see also Lemma 1 of Walczak [20]), we
have C,21(x, y) = C,12(x, y) a.s. and by our assumption they are strictly positive
a.s. Furthermore, by Fubini Theorem, for almost all x, λ{(t : C,21(x, t) > 0)′} =
0. Then we easily find a set of Lebesque measure 1 such that, on that set, we
have C2

,12(x, y) > 0. By repeating the arguments above we find a set Ω′ of
measure 1 such that for all x ∈ Ω′ and all Borelians A

P(U2 ∈ A|U0 = x) > 0 , (6)

The aperiodicity follows from (5) and (6), by taking A = Ω ∩ Ω′. ♦

Proof of Lemma 5

For simplicity, we shall argue the conclusion of the lemma only for two
copulas. Define C(x, y) = aC1(x, y) + (1 − a)C2(x, y), with 0 < a < 1. Their

n-steps transition kernels are
∂Cn

1

∂x (x,A) a.s. and
∂Cn

2

∂x (x,A) a.s., as mentioned
in relation (2). The n-steps transition kernel of the Markov chain generated by
C(x, y) is

Pn(x,A) =
∂

∂x
Cn(x,A) =

∂

∂x
(aC1 + (1 − a)C2)

n(x,A) ,

for x ∈ B with λ(B) = 1 and all A ∈ R ∩ I. Due to distributivity and
associativity of the fold product from Definition 2, we easily obtain

Pn(x,A) ≥ an
∂Cn

1

∂x
(x,A) + (1− a)n

∂Cn
2

∂x
(x,A) ≥ an

∂Cn
1

∂x
(x,A).

for all n ≥ 1, x ∈ B with λ(B) = 1 and all A ∈ R∩ I. Therefore the conclusion
of this lemma follows by the definitions of irreducibility and aperiodicity given
at the beginning of Section 3. ♦

Proof of Theorem 7

The convex combination generates an absolutely regular Markov chain by
Lemma 5. Because this combination is still a symmetric copula, it generates
a stationary and reversible Markov chain. By Theorem 6, in order to proof
that it is geometrically ergodic, we have to show that its first ρ−mixing coef-
ficient is strictly less than 1. We shall argue that this holds and for simplicity
we shall consider the case n = 2. Denote by ρ′1, ρ

′′
1 and ρ1 the correspond-

ing first ρ−mixing coefficients for the stationary Markov chains generated by
C1(x, y), C2(x, y) and by C(x, y) = aC1(x, y) + (1− a)C2(x, y) with 0 ≤ a ≤ 1,
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respectively. According to Theorem 6, we have ρ′1 < 1 and ρ′′1 < 1. Then, by
definition (4) we easily derive that

ρ1 ≤ aρ′1 + (1− a)ρ′′1 < 1

and the result follows. ♦

Proof of Theorem 10

The proof is based on Doeblin theory. We mention first that Doeblin’s
condition, in the basic form (see Bradley, vol. 2 page 330 [3]), is implied by

Condition 12 There exists A ⊂ I with λ(A) = 1 and ε ∈ (0, 1) such that for
all x in A and all B ∈ R ∩ I, the relation λ(B) ≤ ε implies C,1(x,B) ≤ 1− ε.

This condition implies that ϕ1 < 1− ε. Here is a short argument in terms of
copula. Since C,1(x,B)− λ(B) = λ(B′)−C,1(x,B

′), we notice we do not need
the absolute value in the definition of φ1. By Condition 12,

sup
B

|C,1(x,B)− λ(B)| = sup
B

(C,1(x,B)− λ(B)) ≤

max{ sup
B,λ(B)≤ε

(C,1(x,B)− λ(B)), sup
B,λ(B)>ε

C,1(x,B) − λ(B))}

≤ max( sup
B,λ(B)≤ε

C,1(x,B), sup
B,λ(B′)≤1−ε

λ(B′)) ≤ 1− ε a.s.

This gives
ϕ1 = ess sup

x
sup
B

|C,1(x,B)− λ(B)| ≤ 1− ε .

On the other hand, by Proposition 4, we already know that the process is
absolutely regular and thus is ergodic and aperiodic. Then, according to Doeblin
theorem (see Comment 6 in Bradley, vol. 2, page 331 [3]) we have only to verify
Condition 12.

Let ε = c/(1+c). Let A ∈ R∩I with λ(A) ≤ ε or equivalently λ(A′) > 1−ε.
Then, by the definition of ε, for all x in a set of measure 1,

1− C,1(x,A) = C,1(x,A
′) ≥

∫

A′

c(x, y)dy ≥ cλ(A′) ≥ c(1− ε) = c/(1 + c) = ε .

So, for almost all x
C,1(x,A) ≤ 1− ε .

The conclusion of Doeblin’s theorem is that the Markov chain is φ−mixing. (see
Bradley, vol. 2 page 331, Comments 4 and 5 and 6 [3]). ♦
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