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Abstract

Let the sequence Sm of nonnegative integers be generated by the following condi-
tions: Set the first term a0 = 0, and for all k ≥ 0, let ak+1 be the least integer
greater than ak such that no element of {a0, . . . , ak+1} is the average of m − 1
distinct other elements. Szekeres gave a closed-form description of S3 in 1936, and
Layman provided a similar description for S4 in 1999. We first find closed forms for
some similar greedy sequences that avoid averages in terms not all the same. Then,
we extend the closed-form description of Sm from the known cases when m = 3 and
m = 4 to any integer m ≥ 3. With the help of a computer, we also generalize this
to sequences that avoid solutions to specific weighted averages in distinct terms.
Finally, from the closed forms of these sequences, we find bounds for their growth
rates.

http://arxiv.org/abs/1107.1756v1
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1. Introduction

Often in combinatorial number theory, we wish to find the maximum number of

integers that can be chosen from {0, 1, . . . , n − 1} without creating a solution to

some linear equation in the chosen integers. Ruzsa initiated a systematic study

of this problem over all linear equations [7, 8], and the problem has also been

extended to systems of linear equations [4, 9]. A couple well-studied examples

include constructing sets of integers without three-term arithmetic progressions,

which corresponds to avoiding solutions to x1+x2−2x3 = 0, and constructing Sidon

sets, which are defined by having no nontrivial solutions to x1 + x2 − x3 − x4 = 0.

One way to approach this problem is through the use of a greedy algorithm.

Given an integer m ≥ 3, define the sequence Sm of nonnegative integers by the

following conditions:

(i) a0 = 0

(ii) Having chosen a0, a1, . . . , ak, let ak+1 be the least integer greater than ak
such that there are no distinct x1, x2, . . . , xm ∈ {a0, a1, . . . , ak+1} with

x1 + · · ·+ xm−1 = (m− 1)xm.

The sequence Sm constructs a sequence of integers that avoids solutions to x1 +

· · · + xm−1 = (m − 1)xm using a greedy algorithm. Generating S3, which avoids

three-term arithmetic progressions, we obtain

0, 1, 3, 4, 9, 10, 12, 13, 27, 28, 30, 31, 36, 37, 39, 40, 81 . . .

There is an alternative definition for S3. An integer is in S3 if and only if there

is no 2 in its representation in base 3. This follows from a more general result, as

Erdős and Turán [3] wrote that Szekeres showed the use of the greedy algorithm

to avoid m-term arithmetic progressions, for m prime, results in a sequence that

contains the integers that do not contain the digit m− 1 when expressed in base m.

The nice closed-form description suggests that we can extend this to more general

averages. The sequence S4 has a similar closed-form description as S3. The following

theorem is due to Layman [5].

Theorem 1. An integer is in S4 if and only if it can be written in the form M + r,

where the base 4 representation of M has only 3’s and 0’s and ends with a 0, and

r is any integer from 0 to 4 inclusive.

Extending this generalization will form the basis of the rest of our investigation.

In Section 2, we present the closed forms of some related sequences that avoid

solutions to weighted averages in terms not all the same. Then in Section 3, we

prove a result that can be used to find the closed forms of Sm for all m ≥ 3 and the

closed forms of sequences that avoid solutions to specific weighted averages. Finally

in Section 4, given the closed forms, we can derive bounds that allows us to show

how efficient the greedy algorithm is asymptotically.
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1.1. Definitions

We make some definitions to simplify the notation for the rest of the paper. Unless

otherwise stated, for an ordered tuple E = (d1, . . . , dm−1), we will assume through-

out the paper that 1 ≤ d1 ≤ d2 . . . ≤ dm−1, i.e. the components are arranged

in nondecreasing order. Let the ordered tuple Em = (1, 1, . . . , 1), where there are

m− 1 components in the tuple.

Definition 1. Given an ordered tuple E = (d1, . . . , dm−1), let d(E) = d1 + · · · +
dm−1. When the choice of E is obvious, we will simply denote d(E) as d.

Definition 2. Call an ordered tuple of positive integers E = (d1, . . . , dm−1) valid

if and only if the following conditions are satisfied:

(i) 1 = d1.

(ii) d2 ≤ d1, d3 ≤ d1 + d2, . . . , dm−1 ≤ d1 + . . .+ dm−2.

In particular, this implies that d1 = d2 = 1.

For example E3 = (1, 1). Also, Em, for all m ≥ 3, and (1, 1, 2, 4, 8) are valid

ordered tuples, while (1, 1, 3) is not a valid ordered tuple.

1.2. Definition of Sequences

In this paper, we will focus on finding closed forms for the following sequences.

Definition 3. Given an ordered tuple E = (d1, . . . , dm−1), define the sequence AE

of nonnegative integers by the following conditions:

(i) a0 = 0

(ii) Having chosen a0, a1, . . . , ak, let ak+1 be the least integer greater than ak
such that there are no terms x1, x2, . . . , xm ∈ {a0, . . . , ak+1}, not all the same, that

satisfy d1x1 + · · ·+ dm−1xm−1 = dxm.

Definition 4. Given an ordered tuple E = (d1, . . . , dm−1), define the sequence SE

of nonnegative integers by the following conditions:

(i) a0 = 0

(ii) Having chosen a0, a1, . . . , ak, let ak+1 be the least integer greater than ak
such that there are no distinct terms x1, x2, . . . , xm ∈ {a0, . . . , ak+1} that satisfy

d1x1 + · · ·+ dm−1xm−1 = dxm.

To simplify notation, we will refer to the sequences SEm
and AEm

for integer

m ≥ 3 as simply Sm and Am respectively.



4

2. Analysis of the Sequences AE

2.1. A Property of Valid Ordered Tuples

We will prove a property of valid ordered tuples that we will use throughout the

paper.

Proposition 1. An ordered tuple E = (d1, . . . , dm−1) is valid if and only if for

every integer 0 ≤ j ≤ d − 1, there exists a subset Hj of {2, . . . ,m − 1} such that
∑

k∈Hj

dk = j.

Proof. We will show that, given a valid ordered tuple E = (d1, . . . , dm−1), there

exists a subset Hj ⊂ {2, . . . ,m − 1} for every integer 0 ≤ j ≤ d − 1 by induction.

For the base case, H0 = {} and H1 = {2}. Now, assume that for some integer

3 ≤ l ≤ m− 1, we have found a subset Hj of {2, . . . , l − 1} for all 0 ≤ j ≤
l−1
∑

k=2

dk.

Let j be an integer with 1 +

l−1
∑

k=2

dk ≤ j ≤
l
∑

k=2

dk.

Then, let Hj = Hj−dl
∪ {l}. Since dl ≤

l−1
∑

k=1

dk ≤ j ≤
l
∑

k=2

dk, 0 ≤ j − dl ≤
l−1
∑

k=2

dk

and Hj−dl
must exist by induction. Our induction is complete.

Now to prove the other direction, let E = (d1, . . . , dm−1) be any ordered tuple

of positive integers such that for every 0 ≤ j ≤ d − 1, there exists a subset Hj

of {2, . . . ,m − 1} such that
∑

k∈Hj

dk = j. In order for H1 to exist, d2 = 1, which

means d1 = 1. Now, assume for the sake of contradiction that there is some integer

3 ≤ l ≤ m − 1 such that dl >
l−1
∑

k=1

dk. Then, we cannot create the subset Hdl−1,

because the subset Hdl−1 cannot contain any integers greater than l − 1, or else

∑

k∈Hdl−1

dk > dl − 1. Also, by assumption,
l−1
∑

k=2

dk < dl − 1, so the subset Hdl−1

cannot contain only integers less than or equal to l−1, which is a contradiction.

2.2. Closed Form of AE

Theorem 2. Given a valid ordered tuple E, an integer is in AE if and only if it

contains only 0’s and 1’s in its base d+ 1 representation.

Proof. Let the sequence BE be the nonnegative integers with only 0’s and 1’s in

their base d + 1 representation in increasing order. We show that BE is the same

as AE . Let E = (d1, . . . , dm−1).
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Lemma 2.1. It is impossible to choose m integers x1, x2, . . . , xm, not all the same,

that are terms of the sequence BE such that

d1x1 + · · ·+ dm−1xm−1 = dxm. (1)

Proof. Assume for the sake of contradiction that there are x1, . . . , xm, not all equal,

that satisfy equation (1). Let t0,k, t1,k, . . . be the digits of xk in base d + 1, i.e.

xk =

∞
∑

i=0

ti,k(d+ 1)i for all 1 ≤ k ≤ m. From equation (1),

m−1
∑

k=1

∞
∑

i=0

dkti,k(d+ 1)i = d

∞
∑

i=0

ti,m(d+ 1)i.

There is no carrying in base d+ 1 when we add

m−1
∑

k=1

dkxk because xk contains only

0’s and 1’s in its base d + 1 representation for all 1 ≤ k ≤ m and

m−1
∑

k=1

dk < d + 1.

Therefore, if ti,m = 0, then ti,k = 0 for all 1 ≤ k ≤ m− 1. If ti,m = 1, then ti,k = 1

for all 1 ≤ k ≤ m − 1. But then x1 = x2 = . . . = xm contradicting the condition

that x1, x2, . . . , xm cannot all be the same.

Now we show it is impossible to insert terms into BE , which means BE satisfies

the “greedy” condition of AE .

Lemma 2.2. Given any integer x1 that is not in BE, we can find terms x2, x3, . . . , xm

of BE, each less than x1 such that d1x1 + d2x2 + · · ·+ dm−1xm−1 = dxm.

Proof. Since E is a valid ordered tuple, by Proposition 1, for every 0 ≤ j ≤ d− 1,

there exists a set Hj ⊂ {2, . . . ,m − 1} such that
∑

k∈Hj

dk = j. Let t0,k, t1,k, . . . be

the digits of xk in base d+ 1, i.e. xk =

∞
∑

i=0

ti,k(d+ 1)i for all 1 ≤ k ≤ m. For every

i ≥ 0, if ti,1 = 0, then let ti,k = 0 for all 2 ≤ k ≤ m− 1. If ti,1 > 0, let ti,k = 1 for

all k ∈ Hd−ti,1 and ti,k = 0 for all k /∈ Hd−ti,1 so that

m−1
∑

k=1

dkti,k = d. Then, the

sum

m−1
∑

k=1

dkxk has only 0’s and d’s when written in base d+1. When we divide the

sum

m−1
∑

k=1

dkxk by d, we obtain an integer that has only 0’s and 1’s when written in

base d + 1, which is in BE . Note that ti,1 must be greater than 1 for some i = i0
as x1 is not a term of BE . Then, ti0,1 > ti0,k for all 2 ≤ k ≤ m. Since ti,1 ≥ ti,k for

all 2 ≤ k ≤ m and i ≥ 0, x1 > x2, . . . , xm as desired.
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Since we have proven no m terms in BE satisfy the equation d1x1 + · · · +
dm−1xm−1 = dxm and no terms can be inserted into BE without creating a so-

lution to the equation, BE is the same sequence as AE .

2.3. A Property of the Sequence AE

By Theorem 2, the term an of AE can be found by writing n in binary and reading

it in base d+ 1. Then, the following result quickly follows.

Proposition 2. The number of 1’s in the base 2 representation of n is congruent

modulo d to the nth term of AE .

Proof. Write n =
∞
∑

i=0

ti2
i, with t0, t1, . . . as its digits in base 2. Then, an =

∞
∑

i=0

ti(d+ 1)i ≡
∞
∑

i=0

ti (mod d).

Corollary 1. The terms of A3 modulo 2 is the Thue-Morse sequence, where the

nth term is a 0 if n has an even number of 1’s in its binary expansion and a 1

otherwise by Proposition 1 in [1].

3. Analysis of the Sequences SE

We first give an alternative way to represent the nonnegative integers.

Proposition 3. Given positive integers M ≥ 2 and c, every nonnegative integer

x can be expressed in the form x = c
∞
∑

i=0

tiM
i + r in exactly one way, with integer

0 ≤ r < c and sequence t0, t1, . . . such that ti ∈ {0, . . . ,M − 1} for all i ≥ 0.

Proof. Given a positive integer x, let r0 and m0 be the remainder and quotient

when x is divided by c. So x = r0 + cm0 and r0 and m0 are uniquely defined. Then

r = r0, and the digits of m0 in base M is the sequence t0, t1, . . ., which also must

be uniquely defined.

We now present our main result, which can be used to find closed forms of the

sequences SE for specific choices of E.

Theorem 3. For some positive integer z and some sequence SE for valid ordered

tuple E, let the set RE be {a0, . . . , az} and the constant cE = az+1.

Let max(RE) denote the maximum element az. Suppose the following conditions

(i) and (ii) are satisfied:
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(i) cE = 1 + dmax(RE)−
m−1
∑

k=2

dk(m− k − 1).

(ii) For every integer 0 ≤ r1 ≤ cE−1 and every integer 0 ≤ j ≤ d−2, there exists

a subset Hj of {2, . . . ,m − 1} and terms r2, . . . , rm ∈ RE such that
∑

k∈Hj

dk = j,

m−1
∑

k=1

dkrk = drm, all elements of {rk : k ∈ Hj}∪{rm} are distinct, and all elements

of {rk : k /∈ Hj ∪ {1,m}} are distinct.

Then all terms in the sequence SE can be expressed in the form

cE

∞
∑

i=0

ti(d+ 1)i + r, (2)

such that ti = 0 or 1 for all i and r ∈ RE.

We make a few notes before presenting the proof. First, in order to simply

notation, we will drop the subscripts on cE and RE when the choice of E is obvious.

Also, we will denote cEm
and REm

for all integer m ≥ 3 as simply cm and Rm.

Next, Theorem 1 is a special case of Theorem 3. As we will show in Section 3.1,

if E = (1, 1, 1), then we can have c4 = 12 and R4 = {0, 1, 2, 3, 4}. If N =

∞
∑

i=0

ti4
i is

a nonnegative integer with 0’s and 1’s as digits when expressed in base 4, then c4N

has 0’s and 3’s as digits and ends in a 0 in base 4. As N ranges over all nonnegative

integers with 0’s and 1’s as digits when expressed in base 4 and r ranges over all

elements of R4, c4N+r ranges over exactly the same values as described by Layman

in Theorem 1.

Also, given E, the choice of c and R is not unique. Using the example where E =

(1, 1, 1) above, we could also let c4 = 48 and R4 = {0, 1, 2, 3, 4, 12, 13, 14, 15, 16},
where Theorem 3 would still predict the same terms for the sequence S4. Therefore,

given E, we will use the minimum value of c that satisfies Theorem 3.

Proof. Let BE be the sequence of all integers that can be expressed in the form

c

∞
∑

i=0

ti(d+ 1)i + r, with ti = 0 or 1 for all i ≥ 0 and r ∈ R, arranged in increasing

order. We prove that BE is the same sequence as SE .

Lemma 3.1. There are not distinct terms x1, x2, . . . , xm in BE such that d1x1 +

· · ·+ dm−1xm−1 = dxm.

Proof. We prove this by contradiction. Assume there are m distinct numbers

x1, x2, . . . , xm in BE such that

d1x1 + · · ·+ dm−1xm−1 = dxm. (3)
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Because x1, x2, . . . , xm are in BE , we can express xk = c

∞
∑

i=0

ti,k(d+ 1)i + rk, with

ti = 0 or 1 for all i ≥ 0 and r ∈ R, for all 1 ≤ k ≤ m. Let X = dxm and express X

as c

∞
∑

i=0

Ti(d+ 1)i +R such that Ti = dti,m for all i ≥ 0 and R = drm. Because of

equation (3),

c

∞
∑

i=0

Ti(d+ 1)i +R = c

(

m−1
∑

k=1

∞
∑

i=0

dkti,k(d+ 1)i

)

+

m−1
∑

k=1

dkrk. (4)

If R 6=
m−1
∑

k=1

dkrk, then R−
m−1
∑

k=1

dkrk is a multiple of c or equation (4) cannot be

satisfied. Since both R and
m−1
∑

k=1

dkrk are bounded above and below by dmax(R)

and 0, the difference between R and
m−1
∑

k=1

dkrk is at most dmax(R).

We show that dmax(R) < 2c. By condition (i), 2c > 2dmax(R)−2

m−1
∑

k=2

dk(m− k − 1).

Then, since max(R) ≥ m − 2 and

(

m−1
∑

k=2

dk

)

(0+m−3
2 ) ≥

m−1
∑

k=2

dk(m− k − 1) by the

rearrangement inequality,

2c > 2dmax(RE)− 2
m−1
∑

k=2

dk(m− k − 1)

2c > dmax(RE) + d(m− 2)− 2

(

m−1
∑

k=2

dk

)

(

0 +m− 3

2

)

2c > dmax(RE).

Since dmax(R) < 2c, R and

m−1
∑

k=1

dkrk can differ only by c.

Therefore, we have 3 cases to consider.

Case 1: R =

m−1
∑

k=1

dkrk

If R =

m−1
∑

k=1

dkrk, then we have

∞
∑

i=0

Ti(d+ 1)i =

m−1
∑

k=1

∞
∑

i=0

dkti,k(d+ 1)i, which

means Ti =

m−1
∑

k=1

dkti,k for all i by the same argument we used in Lemma 2.1. If
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Ti = 0, then ti,k = 0 for all 1 ≤ k ≤ m − 1. If Ti = d, then ti,k = 1 for all

1 ≤ k ≤ m − 1. Then, for x1, x2, . . . , xm to be distinct, there must be m distinct

values r1, r2, . . . , rm that satisfy equation R = drm =

m−1
∑

k=1

dkrk. However, this is

impossible because r1, r2, . . . , rm are terms of SE .

Case 2: R =

m−1
∑

k=1

dkrk + c

Let i0 be the minimum nonnegative integer such that Ti0 = 0. Subtract c from

R, add 1 to Ti0 and set Ti = 0 for all i < i0 so that R =

m−1
∑

k=1

dkrk and the value

of X is unchanged. This process is similar to the process of carrying digits upon

addition. Therefore, Ti0 = 1 and Ti is 0 or d for all i 6= i0. Since R =

m−1
∑

k=1

dkrk,

Ti =

m−1
∑

k=1

dkti,k for all i. For all i 6= i0, if Ti is 0, then ti,k = 0 for all 1 ≤ k ≤ m− 1.

If Ti = d, then ti,k = 1 for all 1 ≤ k ≤ m−1. Finally, ti0,k = 0 for all 1 ≤ k ≤ m−1

except when k = k0 for some k0, where dk0 = 1 and ti0,k0 = 1.

Since dk0 = 1, without loss of generality, we can let k0 = 1. Then, r2, . . . , rm−1

must be distinct for x2, . . . , xm−1 to be distinct. So by the rearrangement inequality,

the minimum value of

m−1
∑

k=1

dkrk is 0 · d1 +

m−1
∑

k=2

dk(m− k − 1). Also, since R ≤

dmax(R) and we subtracted c from R, R ≤ dmax(R) − c. Since R =

m−1
∑

k=1

dkrk,

that means dmax(R)− c ≥
m−1
∑

k=2

dk(m− k − 1). However, this contradicts condition

(i).

Case 3: R =

m−1
∑

k=1

dkrk − c

Let Ti0 be the minimum nonnegative integer such that Ti0 = d. Add c to R,

subtract 1 from Ti0 and set Ti = d for all i < i0 so that RE =

m−1
∑

k=1

dkrk and the

value of X is unchanged. This process is similar to carrying digits upon subtraction.

So Ti0 = d − 1 and Ti is 0 or d for all i 6= i0. Since R =

m−1
∑

k=1

dkrk, Ti =

m−1
∑

k=1

dkti,k

for all i. For all i 6= i0, if Ti is 0, then ti,k = 0 for all k. If Ti = d, then ti,k = 1 for

all k. Also ti0,k = 1 for all 1 ≤ k ≤ m − 1 except when k = k0 for some k0 where

dk0 = 1 and ti0,k0 = 0.
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Since dk0 = 1, without loss of generality, we can let k0 = 1. Then, r2, . . . , xm−1

must be distinct so that x2, . . . , rm−1 are distinct. So by the rearrangement inequal-

ity, the value of

m−1
∑

k=1

dkrk is less than or equal to d1 max(R)+

m−1
∑

k=2

dk(max(R)−m+ 1 + k).

Also, since R ≥ 0 and we added c to R, R ≥ c. Since R =

m−1
∑

k=1

dkrk, that means

c ≤ d1 max(R) +

m−1
∑

k=2

dk(max(R)−m+ 1 + k)

c ≤ dmax(R)−
m−1
∑

k=2

dk(m− k − 1),

which contradicts condition (i).

To finish the proof of Theorem 3, we need to show that no additional elements

can be inserted into BE.

Lemma 3.2. Given any value y1 not a term of BE, there are distinct terms

y2, y3, . . . , ym of BE, each less than y1, such that there is a permutation x1, . . . , xm

of y1, . . . , ym such that d1x1 + · · ·+ dm−1xm−1 = dxm.

Proof. By Proposition 3, we can express y1 in the form y1 = c

∞
∑

i=0

ti,1(d+ 1)i + r1,

where ti,1 is an integer between 0 and d inclusive for all i ≥ 0 and r1 is an integer

between 0 and c− 1 inclusive.

Express yk, for all 2 ≤ k ≤ m, as c
∞
∑

i=0

ti,k(d+ 1)i + rk, where ti,k is 0 or 1 and

rk ∈ R for all i.

If ti,1 is 0 or 1 for all i ≥ 0, let ti,1 = · · · = ti,m for all i ≥ 0. Then, r1 /∈ R

or else y1 is a term of BE . Therefore, we can find distinct r2, . . . , rm, all less

than r1, such that there exists a permutation s1, . . . , sm of r1, . . . , rm that satisfies

d1s1 + · · · + dm−1sm−1 = dsm. Finally, we can let yk = rk + c

∞
∑

i=0

ti,1(d+ 1)i and

xk = sk + c

∞
∑

i=0

ti,1(d+ 1)i for all 1 ≤ k ≤ m.

Now we consider the case when ti,1 > 1 for some i ≥ 0. Let xk = yk for all

1 ≤ k ≤ m. For all i ≥ 0, let ti,k = 0 for all 2 ≤ k ≤ m if ti,1 = 0. If ti,1 ≥ 1,

then let ti,k = 1 for all k ∈ Hd−ti,1 ∪ {m} and ti,k = 0 otherwise, where Hd−ti,1 is a

subset of {2, . . . ,m− 1} such that
∑

k∈Hd−ti,1
dk = d− ti,1. Pick any i0 for which

ti0,1 > 1.
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Let j = d−ti0,1. By condition (ii), we can find a set Hj and terms r2, . . . , rm ∈ R

such that
∑

k∈Hj

dk = j,
m−1
∑

k=1

dkrk = drm, all elements of {rk : k ∈ Hj} ∪ {rm} are

distinct, and all elements of {rk : k /∈ Hj ∪ {1,m}} are distinct.

Then, xp 6= xq if p ∈ Hj ∪ {m} and q /∈ Hj ∪ {1,m} because ti0,j 6= ti0,k. Also,

all elements of {xk : k ∈ Hj} ∪ {xm} are distinct, and all elements of {xk : k /∈
Hj ∪ {1,m}} are distinct. Therefore, x2, . . . , xm are distinct.

Finally, since for all i, ti,1 ≥ ti,k and ti0,1 > ti0,k for all 2 ≤ k ≤ m, x1 > xk for

all 2 ≤ k ≤ m.

Then, since

m−1
∑

k=1

dkti,k = dti,m for all i and

m−1
∑

k=1

dkrk = drm, d1x1 + · · · +

dm−1xm−1 = dxm.

Since no m terms in BE satisfy the equation d1x1 + · · ·+ dm−1xm−1 = dxm and

no additional terms can be inserted without creating a solution to the equation, BE

is the same as SE and our proof of Theorem 3 is complete.

This suggests a connection between the sequences AE and SE .

Corollary 2. Given a valid ordered tuple E, let AE be the set of the integers in

the sequence AE. Then, if the sequence SE of terms a0, a1, . . . satisfies conditions

(i) and (ii) of Theorem 3 for some z, the set {ca+ r : a ∈ AE , r ∈ R} contains the

integers in SE, where c = az+1 and R = {ak : 0 ≤ k ≤ z}.

3.1. Closed form for Sm

Definition 5. Let N = {0, 1, . . . , 2n − 1} ∪ {2n + 1}. For every integer m ≥ 3,

Table 1 gives the set of integers Rm and the integer cm.

Rm cm m
{0} 1 3

{0, 1, 2, 3, 5, 7, 13, 26, 27, 28, 29, 31} 122 5
{0, 1, 2, 3, 4, 5, 7, 10, 33, 34, 35, 36, 37, 38} 219 7

{0, 1, . . . , 2n} 2n2 + 3n− 2 2n, n > 1
N ∪ {3n+ 1} ∪ {c+ 2n2 + 5n : c ∈ N} 4n3 + 12n2 + 5n 2n+ 1, n > 3

Table 1: Definition of Rm and cm

Theorem 4. An integer is in the sequence Sm if and only if it can be expressed in

the form

cm

∞
∑

i=0

tim
i + r, (5)
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where ti can be either 0 or 1 for all i ≥ 0 and r ∈ Rm.

Proof. We need to show that conditions (i) and (ii) of Theorem 3 are satisfied.

Lemma 4.1. The set Sm ∩ [0, cm − 1] is the same as Rm.

Proof. In the appendix, we prove the case m = 2n in Lemma 4.3 and the case

m = 2n+ 1, with integer n > 3, in Lemma 4.5. The cases for when m = 3, 5, 7 are

brute forced with a computer.

Since Sm ∩ [0, cm − 1] = Rm, we can easily check that condition (i) is satisfied.

Now, we show that condition (ii) is satisfied. We want to show that for every

integer 0 ≤ r1 ≤ cm−1 and every integer 0 ≤ j ≤ m−3, there exists a subset Hj of

{2, . . . ,m− 1} and terms r2, . . . , rm ∈ Rm such that |Hj | = j,

m−1
∑

k=1

rk = (m− 1)rm,

all elements of {rk : k ∈ Hj ∪ {m}} are distinct, and all elements of {rk : k /∈
Hj ∪ {1,m}} are distinct.

Let j be any integer between 0 and m− 3 inclusive. First, we consider the case

when r1 /∈ RM . Since Em is a valid ordered tuple, we can find a subset Hj of

{2, . . . ,m − 1} such that |Hj | = j. Also, by the definition of the sequence Sm, for

every r1 /∈ Rm, we can find distinct r2, . . . , rm < r1 such that

m−1
∑

k=1

rk = (m− 1)rm,

so that condition (ii) is satisfied. Now we consider the case for when r1 ∈ Rm.

Lemma 4.2. Given any r1 ∈ Rm, we can find r2, r3, . . . , rm ∈ Rm such that

r2, . . . , rm−1 are distinct and

m−1
∑

k=1

rk = (m− 1)rm.

Proof. The result follows immediately from Lemmas 4.6 and 4.8 in the Appendix,

where we prove the cases when m is even and m is odd separately.

Let r1 be an element of Rm. By Lemma 4.2, let r2, . . . , rm ∈ Rm be chosen

such that

m−1
∑

k=1

rk = (m− 1)rm and r2, . . . , rm−1 are distinct. If there is some value

2 ≤ k0 ≤ m− 1 for which rk0 = rm, then let k0 /∈ Hj . Otherwise, we can let any j

integers between 2 and m− 1 to be in Hj .

Since both conditions (i) and (ii) are satisfied, the proof is complete.

3.2. Closed forms for particular SE

With a computer program, we tested the valid ordered tuples E = (d1, . . . , dm−1)

for when 4 ≤ m ≤ 7 until the terms exceeded 80,000 to identify closed forms for SE
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E Closed Form RE

(1, 1, 1) 12
∑∞

i=0 ti4
i + r r ∈ {0, 1, 2, 3, 4}

(1, 1, 2) 16
∑∞

i=0 ti5
i + r r ∈ {0, 1, 2, 3, 4}

(1, 1, 1, 1) 122
∑∞

i=0 ti5
i + r r ∈ {0, 1, 2, 3, 5, 7, 13, 26, 27, 28, 29, 31}

(1, 1, 1, 2) 103
∑∞

i=0 ti6
i + r r ∈ {0, 1, 2, 3, 4, 14, 18, 19, 20, 21}

(1, 1, 2, 3) 81
∑∞

i=0 ti8
i + r r ∈ {0, 1, 2, 3, 4, 14, 17, 31, 130, 131, 132,

133, 134, 144, 147}
(1, 1, 2, 4) 29

∑∞
i=0 ti9

i + r r ∈ {0, 1, 2, 3, 4}
(1, 1, 1, 1, 1) 25

∑∞
i=0 ti6

i + r r ∈ {0, 1, 2, 3, 4, 5, 6}
(1, 1, 1, 1, 2) 31

∑∞
i=0 ti7

i + r r ∈ {0, 1, 2, 3, 4, 5, 6}
(1, 1, 1, 1, 3) 30

∑∞
i=0 ti8

i + r r ∈ {0, 1, 2, 3, 4, 5}
(1, 1, 1, 1, 4) 51

∑∞
i=0 ti9

i + r r ∈ {0, 1, 2, 3, 4, 6, 7}
(1, 1, 1, 2, 2) 106

∑∞
i=0 ti8

i + r r ∈ {0, 1, 2, 3, 4, 14, 15, 16}
(1, 1, 1, 2, 3) 1170

∑∞
i=0 ti9

i + r r ∈ {0, 1, 2, 3, 4, 14, 17, 31, 130, 131, 132,
133, 134, 144, 147}

(1, 1, 1, 3, 3) 38
∑∞

i=0 ti10
i + r r ∈ {0, 1, 2, 3, 4, 5}

(1, 1, 1, 3, 4) 43
∑∞

i=0 ti11
i + r r ∈ {0, 1, 2, 3, 4, 5}

(1, 1, 1, 3, 5) 48
∑∞

i=0 ti12
i + r r ∈ {0, 1, 2, 3, 4, 5}

(1, 1, 1, 3, 6) 653
∑∞

i=0 ti13
i + r r ∈ {0, 1, 2, 3, 4, 12, 34, 42, 48, 55}

(1, 1, 2, 2, 2) 32
∑∞

i=0 ti9
i + r r ∈ {0, 1, 2, 3, 4, 5}

(1, 1, 2, 2, 3) 208
∑∞

i=0 ti10
i + r r ∈ {0, 1, 2, 3, 4, 18, 19, 20, 24}

(1, 1, 2, 2, 5) 3622
∑∞

i=0 ti12
i + r r ∈ {0, 1, 2, 3, 4, 19, 22, 28, 50, 300, 301,

302, 303, 304, 319, 322, 330}
(1, 1, 2, 2, 6) 52

∑∞
i=0 ti13

i + r r ∈ {0, 1, 2, 3, 4, 5}
(1, 1, 2, 3, 3) 401

∑∞
i=0 ti11

i + r r ∈ {0, 1, 2, 3, 4, 8, 37, 38, 39, 40, 41}
(1, 1, 2, 3, 4) 420

∑∞
i=0 ti12

i + r r ∈ {0, 1, 2, 3, 4, 23, 35, 37, 39}
(1, 1, 2, 3, 7) 61

∑∞
i=0 ti15

i + r r ∈ {0, 1, 2, 3, 4, 5}
(1, 1, 2, 4, 4) 50

∑∞
i=0 ti13

i + r r ∈ {0, 1, 2, 3, 4, 5}
(1, 1, 2, 4, 7) 80

∑∞
i=0 ti16

i + r r ∈ {0, 1, 2, 3, 4, 5, 6}

Table 2: Closed Forms for SE
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for 129 choices of E. The 25 tuples the computer found when 4 ≤ m ≤ 6 are given

in Table 2, where ti = 0 or 1 for i ≥ 0 for each of the closed forms.

4. Asymptotics

Let g(n) be the number of terms of AE that are less than n, for some positive real

n and valid ordered tuple E. Similarly, let h(n) be the number of terms of SE that

are less than n. We will derive bounds for g(n) and h(n) and growth rates of AE

and SE .

For any valid ordered tuple E and nonnegative integer i0, g((d + 1)i0) = 2i0

because there are 2i0 numbers that, when expressed in base d+ 1, have at most i0
digits and only 0’s and 1’s as digits. Therefore for a nonnegative integer n, we have

2⌊logd+1(n)⌋ ≤ g(n) ≤ 2⌈logd+1(n)⌉,
1

2
· 2logd+1(n) ≤ g(n) ≤ 2 · 2logd+1(n),

1

2
nlogd+1(2) ≤ g(n) ≤ 2nlogd+1(2).

From these bounds, g(n) = Θ(nlogd+1(2)). Also, from these bounds, we can derive

bounds for the growth rate of AE . Let the terms of AE be a0, a1, . . .. Since g(an) =

n,

1

2
a
logd+1(2)
n ≤ n ≤ 2a

logd+1(2)
n ,

2log2(d+1)nlog2(d+1) ≥ an ≥ 2− log2(d+1)nlog2(d+1).

Therefore, an = Θ(nlog2(d+1)).

Now, we bound h(n). Suppose that all terms of SE can be expressed in the form

r + c

∞
∑

i=0

ti(d+ 1)i, (6)

where ti is 0 or 1 for all i ≥ 0, c is a constant, and r ∈ R for a set R that contains

nonnegative integers that are all less than c. Then, for any positive integer multiple

k0c of c, we have h(k0c) = |R| g(k0) because there are g(k0) ways to choose the

sequence t0, t1, . . . and |R| ways to choose r. Therefore, for a nonnegative integer
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n, we have

|R| g(
⌊n

c

⌋

) ≤ h(n) ≤ |R| g(
⌈n

c

⌉

),

|R| g(n
c
− 1) ≤ h(n) ≤ |R| g(n

c
+ 1),

|R| 1
2
(
n

c
− 1)logd+1(2) ≤ h(n) ≤ |R| 2(n

c
+ 1)log(d+1)(2),

1

2
|R| c− logd+1(2)(n− c)logd+1(2) ≤ h(n) ≤ 2 |R| c− logd+1(2)(n+ c)logd+1(2).

From these bounds, we get h(n) = Θ(nlogd+1(2)). Also, from these bounds, we can

derive a bound for the growth rate of SE . Let the terms of SE be a0, a1, . . .. Since

h(an) = n,

|R| 1
2
(
an
c

− 1)logd+1(2) ≤ n ≤ |R| 2(an
c

+ 1)logd+1(2),

c(
2

|R| )
log2(d+1)nlog2(d+1) + c ≥ an ≥ c(

1

2 |R| )
log2(d+1)nlog2(d+1) − c.

Therefore, an = Θ(nlog2(d+1)).

Given a valid ordered tuple E = (d1, . . . , dm−1), let f(n) be the maximum

cardinality over all subsets of {0, . . . , n − 1} that do not contain a solution to

d1x1 + · · ·+ dm−1xm−1 = dxm in elements not all the same. Milenkovic, Kashyap,

and Leyba [6] showed that Behrend’s construction [2] can be modified to show that

f(n) ≥ γ1ne
−γ2

√
ln(n)− 1

2 ln(ln(n))(1 + o(1)) for n > d2, where γ1 = d2
√

1
2 ln(d),

γ2 = 2
√

2 ln(d), and o(1) vanishes as n → ∞. Since f(n) is asymptotically greater

than g(n), for all valid ordered tuples E, and h(n), for all tuples E for which we

have a closed form of SE , we have shown that the greedy algorithm is not optimal

in these cases.

However, it should be noted that Behrend’s construction, while much stronger

asymptotically, is less efficient for small values of n. For example, if we let E = E4

and n = 1010, the bound obtained by Milenkovic, Kashyap, and Leyba shows that

f(1010) ≥ 3187. The bounds obtained by the greedy algorithm show h(1010) ≥
⌈

|R| 12 (10
10

c
− 1)logd+1(2)

⌉

= 15360 and f(1010) ≥ g(1010) ≥
⌈

1
2 (10

10)logd+1(2)
⌉

=

10133.

5. Conclusion

We have found the closed forms of all sequences AE , given any valid ordered tuple

E. Also, we have found the closed forms of SE for specific choices of E, including

Em for all m ≥ 3. Possible future work include simplifying the condition needed to
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be satisfied in Theorem 3 or extending Theorem 3 to cover more tuples E for when

SE has a closed form. Also, generating the sequences and plotting them suggests

that, in general, there are sequences that cannot be described in a similar way to

our closed forms. Further research can also be done include in bounding the rates of

growth of these sequences. For example, given an ordered tuple of positive integers

E = (d1, . . . , dm−1), it appears that SE grows at least as fast asymptotically as Sm.
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A. Appendix

We present proofs of the Lemmas that were omitted in the main paper.

Definition 6. Let the set Sm(k) contain the terms of Sm that are less than or

equal to k.

A.1. Method

We present a method that will be used repeatedly in the proofs following Lemmas.

Given integers α and z, we need to determine whether there exist x2, x3, . . . , xm ∈

Sm(z) such that α+

m−1
∑

k=2

xk = (m− 1)xm.

Let the set W = {w1, w2 . . . , ws} be the set Sm(z)\{x2, x3, . . . , xm−1}. Then,

α+
m−1
∑

k=2

xk = (m− 1)xm is equivalent to

α+

|Sm(z)|−1
∑

k=0

ak −
s
∑

k=1

wk = (m− 1)xm (7)

A.2. Proofs

Lemma 4.3. If m = 2n for any integer n > 1, the the only terms of Sm less than

2n2 + 3n− 2 is in {0, 1, . . . , 2n}.

Proof. To prove Lemma 4.3, we prove two claims.

Claim 1: The first 2n+ 1 terms of S2n are the integers from 0 to 2n inclusive.

The first 2n− 1 terms of S2n are the integers from 0 to 2n− 2 inclusive because

there are not enough distinct terms less than 2n−1 to satisfy the equation
2n−1
∑

k=1

xk =

(2n− 1)x2n.

If we substitute α = 2n− 1, m = 2n, z = 2n− 2, and W = {x2n} into equation

(7), we obtain x2n = 2n−1
2 , which is not an integer.

If we substitute α = 2n, m = 2n, z = 2n − 1, and W = {x2n, x} into equation

(7), we obtain n(2n + 1 − 2x2n) = x. The value of x is between 0 and 2n only if

0 ≤ 2n + 1 − 2x2n ≤ 2. But since 2n + 1 − 2x2n is odd, x = n = x2n which is a

contradiction.

Claim 2: For every value of 2n + 1 ≤ α ≤ 2n2 + 3n − 3, there are distinct

x2, x3, . . . , x2n ∈ S2n(2n) such that α+

2n−1
∑

k=2

xk = (2n− 1)x2n.
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We find an explicit construction for all 2n+ 1 ≤ α ≤ 2n2 + 3n− 3. If 2n+ 1 ≤
α ≤ 2n2+n−1, we let α = pn+q, where 0 ≤ q ≤ n−1. Plug in m = 2n, z = α−1,

W = {a, b, x2n}, and x2n = n+c in equation (7), we obtain (p+1)n+q = 2nc+a+b.

Let a = 0 if p is odd and a = n if p is even. Let b = q and c = ⌊(p + 1)/2⌋ so that

(p+ 1)n = 2nc+ a and q = b, which satisfies (p+ 1)n+ q = 2nc+ a+ b.

Now we make sure that x2n, a and b are distinct.

If p is even, then a = n > q = b and x2n = n = a only if c = 0. But p ≥ 2 so

c = ⌊(p+ 1)/2⌋ > 0.

If p is odd, then x2n = n+ c > q = b. Also a = b = 0 only if q = 0, in which case

we need to redefine our values of x2n, a and b to ensure their distinctness. If p is

odd and q = 0, let a = 2n, b = 0 and c = ⌊(p+ 1)/2⌋ − 1. Then, a > x2n > b.

If 2n2+n ≤ α ≤ 2n2+3n−3, let x2n = 2n, b = 2n−1 and a = α− (2n2+n−1).

Since a < b < x2n, a, b and x2n are distinct.

From Claim 1 and Claim 2, we have proven that the integers from 0 to 2n

inclusive are in S2n and that the integers between 2n+1 and 2n2+3n− 3 inclusive

are not, finishing the proof for Lemma 4.3.

To help prove Lemma 4.5, we prove Lemma 4.4.

Lemma 4.4. Given the 2 ≤ k ≤ 2n − 2 consecutive integers y1 < y2 < · · · < yk
between 2n − k − 1 and 2n − 2 and an integer p, we can find a set of k integers

that does not contain p and is a subset of S2n+1(2n + 1) such that the sum of its

elements equal to the sum of the original k consecutive integers.

Proof. If p is not one of the integers y1, . . . , yk, we are done. If not, let yi0 be the

median of {y1, . . . , yk}. If p < yi0 , decrement the p − y1 + 1 smallest integers and

increment the p− y1 + 1 largest integers in {y1, . . . , yk}.
If p > yi0 , increment the yk − p+1 largest integers and decrement the yk − p+1

smallest integers in {y1, . . . , yk}.
If p = yi0 , then k must be odd, which means k < 2n−2 and y1 ≥ 2. Then, decre-

ment the i0−1 smallest integers and increment the i0 largest integers in {y1, . . . , yk}.
Then decrement the smallest integer y1 again so {y1, . . . , yk} ⊂ S2n+1(2n+ 1).

Lemma 4.5. If n > 3, then S2n+1(4n
3+12n2+5n−1) = N∪{3n+1}∪{c+2n2+5n :

c ∈ N}, where N = {0, 1, . . . , 2n− 1} ∪ {2n+ 1}.

Proof. We start with a0 = 0 and generate the terms to show they are the terms

listed in Lemma 4.5.

The integers 0, 1, . . . , 2n − 1 must be in the S2n+1 because there are not 2n +

1 distinct terms in the sequence, which means there cannot be distinct terms

x1, x2, . . . , x2n+1 that satisfy

2n
∑

k=1

xk = 2nx2n+1. (8)
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Now we show 2n cannot be a term of S2n+1. If 2n were a term of S2n+1, we can

find a solution for equation (8) by letting x2n+1 = n and xk = k − 1 if k ≤ n and

xk = k if k ≥ n+ 1.

We use contradiction to prove that 2n+1 is the next term. If we let α = 2n+1,

m = 2n + 1, z = 2n and W = {x2n+1} in equation (7), we obtain x2n+1 =

n+ 1/(2n+ 1), which is not an integer.

We show 3n+1 is the next term in S2n+1. In (7), let α = 2n+x where 2 ≤ x ≤ n,

m = 2n+1, z = α− 1 and W = {x, x2n+1}. Then, we obtain x2n+1 = n+1, which

is in S2n+1(α− 1).

To prove that 3n+ 1 is the next term, we again use contradiction. In equation

(7), let α = 3n + 1, m = 2n + 1, z = 3n and W{x, x2n+1}. Then, we obtain

n+ 1 + (n+ 1− x)/(2n+ 1) = x2n+1.

Since 0 ≤ x < 2n + 1, the only way n + 1 − x can be a multiple of 2n+ 1 is if

x = n+ 1. But then x2n+1 = n+ 1 = x, which is a contradiction.

Now, we show that given any 3n + 2 ≤ α < 2n2 + 5n − 1, we can find distinct

x2, x3, . . . , x2n+1 ∈ S2n+1(3n+ 1) such that α+

2n
∑

k=2

xk = (2n)x2n+1.

In equation (7), let m = 2n + 1, z = α − 1, and W = {x, y, x2n+1}. Then we

obtain n + 1 + n+1+α−x−y
2n+1 = x2n+1. For every 3n + 2 ≤ α ≤ 2n2 − 2n − 2, let

α = (2n+1)A+B, where 2 ≤ A ≤ n−2 and −n ≤ B ≤ n. We present the solutions

for x2n+1, x and y given α in Table 3. For every 2n2 − 2n+ 1 ≤ α ≤ 2n2 + 5n− 1,

α x2n+1 x y
A(2n+ 1) +B n+ 1 +A 0 n+ 1 +B B ≤ n− 2, B 6= A
A(2n+ 1) +B n+ 1 +A 1 n+B B = A, B ≤ n− 2
A(2n+ 1) +B n+ 1 +A B − n+ 2 2n− 1 n− 1 ≤ B ≤ n, A < n− 2
A(2n+ 1) +B n+ 1 +A B − n+ 3 2n− 2 n− 1 ≤ B ≤ n, A = n− 2

Table 3: If 3n+ 2 ≤ α ≤ 2n2 − 2n− 2

let α = 2n2 + C, where −2n+ 1 ≤ C ≤ 5n− 1. We present the solutions in Table

4.

We show that 2n2+5n, 2n2+5n+1, . . . , 2n2+7n−1, 2n2+7n+1 are the next terms

in S2n+1 by contradiction. Let α ∈ {2n2+5n+ c : 0 ≤ c ≤ 2n−1}∪{2n2+7n+1}.
Assume that there are terms x2, x3, . . . , x2n+1 in the sequence, each less than α

such that

α+

2n
∑

k=2

xk = (2n)x2n+1. (9)

We prove that x2n+1 ≥ 2n2 + 5n, also by contradiction. Assume that x2n+1 <

2n2 + 5n. If α is the only integer among α, x2, x3, . . . , x2n that is greater than or
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α x2n+1 x y
2n2 + C 2n− 1 C + 2n+ 5 2n− 2 −2n− 1 ≤ C ≤ −8
2n2 + C 2n− 1 2n− 5 2n+ 1 C = −7
2n2 + C 2n− 1 C + n+ 2 3n+ 1 −6 ≤ C ≤ n− 4
2n2 + C 2n+ 1 0 C + 1 n− 3 ≤ C ≤ 2n− 2
2n2 + C 2n+ 1 C − 2n+ 2 2n− 1 2n− 1 ≤ C ≤ 4n− 4
2n2 + C 2n+ 1 C − 3n 3n+ 1 4n− 3 ≤ C ≤ 5n− 1

Table 4: If 2n2 − 2n− 1 ≤ α ≤ 2n2 + 5n− 1

equal to 2n2 +5n, then the minimum value for x2n+1 is x2n+1 ≥ 2n2+5n+
∑2n−2

k=0
k

2n =

2n+ 1 + 1
2n , which is greater than 2n+ 1. So x2n+1 can only be 3n+ 1. But since

x2, x3, . . . , x2n cannot be 3n+1, by equation (9), 3n+1 ≤ (2n2+7n+1)+(2n+1)+
∑2n−1

k=2 k

2n =

2n + 4 + 1
2n , which is a contradiction because n > 3. If at least one of the inte-

gers x2, x3, . . . , x2n are greater than or equal to 2n2 + 5n, then by equation (9)

x2n+1 ≥ (2n2+5n)+(2n2+5n+1)+
∑2n−3

k=0 k

2n = 3n + 2 + n+4
2n , which cannot occur be-

cause there are no terms between 3n + 2 and 2n2 + 5n − 1 inclusive. Therefore

x2n+1 ≥ 2n2 + 5n.

Let α = M + r such M is 2n2 + 5n and r ∈ S2n+1(2n + 1) and xi = Mi + ri,

where Mi is 0 or 2n2 + 5n and ri ∈ S2n+1(3n+ 1). Also, ri can be 3n+ 1 only if

Mi = 0. Then,

M + r +
2n
∑

k=2

Mk +
2n
∑

k=2

rk = (2n)M2n+1 + (2n)r2n+1.

Since x2n+1 ≥ 2n2 + 5n, M2n+1 = 2n2 + 5n. The maximum value of r +
2n
∑

k=2

rk −

2nr2n+1 is less or equal to than twice the sum of the n largest elements of S2n+1(3n+

1), since the minimum value of 2nr2n+1 is 0 and no three elements of {r, r2, . . . , r2n}
can be pairwise equal. Otherwise, two elements of {α, x2, . . . , x2n} must be equal.

So the maximum value of the difference is 2

(

(3n+ 1) + (2n+ 1) +

2n−1
∑

k=n+2

k

)

−

2n · 0 = 3n2 + 5n+ 2.

Since 3n2+5n+2 < 2(2n2+5n), at most one of elements of {Mk : 2 ≤ k ≤ 2n} can

be 0, or else the difference r+
2n
∑

k=2

rk − 2nr2n+1 is less than 2nM2n+1−M −
2n
∑

k=2

Mk.

If α < 2n2 + 7n − 1, there are not 2n − 1 distinct integers between 2n2 + 5n and

α − 1 inclusive, which means α is in S2n+1. If α = 2n2 + 7n − 1, and not all

{Mk : 2 ≤ k ≤ 2n} are equal to 2n2+5n, then the maximum value for x2n+1 would
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be x2n+1 ≤
∑2n−1

k=1
2n2+5n+k+(3n+1)

2n = 2n2 +5n− 3n−1
2n , which is less than 2n2 +5n,

contradicting the assumption that x2n+1 ≥ 2n2 + 5n.

The integer 2n2 + 7n is not in S2n+1 because equation (8) is satisfied if we let

x2n+1 = 2n2 + 6n and xk = 2n2 + 5n + k − 1 if k ≤ n and xk = 2n2 + 5n + k if

k ≥ n+ 1.

If α = 2n2+7n+1 and not all elements of {Mk : 2 ≤ k ≤ 2n} are 2n2+5n, then

the maximum value for x2n+1 is x2n+1 ≤ (2n2+7n+1)+(
∑2n−1

k=2 2n2+5n+k)+(3n+1)

2n =

2n2 +5n− n−1
2n , which is less than 2n2 +5n, contradicting x2n+1 ≥ 2n2 +5n. If all

M2,M3, . . . ,M2n ∈ {2n2 + 5n}, then by assumption (9),

M + r +

2n
∑

k=2

Mk +

2n
∑

k=2

rk = (2n)M2n+1 + (2n)r2n+1

r +

2n
∑

k=2

rk = (2n)r2n+1. (10)

But r, r2, r3, . . . , r2n+1 are distinct elements of S2n+1(2n+1), so equation (10) has

no solutions and 2n2 + 7n+ 1 is in the sequence.

We now show that {c : 2n2+7n+2 ≤ c ≤ 4n3+12n2+5n−1}∩S2n+1(4n
3+12n2+

5n−1) = ∅. So given any 2n2+7n+2 ≤ α ≤ 4n3+12n2+5n−1, we show that there

are distinct x2, x3, . . . , x2n+1 in the sequence such that α+

2n
∑

k=2

xk = (2n)x2n+1.

For ease of notation, we represent the integers x2, x3, . . . , x2n with the two sets

U = {u1, u2, . . . , up} and V = {v1, v2, . . . , vq}. The set U contains the elements of

{x2, x3, . . . , x2n} that are greater than or equal to 2n2+5n, with 2n2+5n subtracted

from each those integers. The set V contains the elements of {x2, x3, . . . , x2n} that

are less than 2n2 + 5n. All elements in set U must be in S2n+1(2n + 1) and all

elements in set V must be in S2n+1(3n+ 1). We can express

α+

2n
∑

k=2

xk = α+

p
∑

k=1

uk +

q
∑

k=1

vk + |U |(2n2 + 5n), (11)

which implies that

x2n+1 =
α+

∑p

k=1 uk +
∑q

k=1 vk + |U |(2n2 + 5n)

2n
.

The solutions for {xk : 2 ≤ k ≤ 2n+1} for all 2n2 +7n+2 ≤ α ≤ 2n2 +11n− 1

are displayed in Table 5. By Lemma 4.4, we can define G(k, p) as a subset of k

elements of S2n+1(2n+1) that has the same sum as the consecutive integers between

2n−k−1 and 2n−2 inclusive and does not contain the integer p. Since Lemma 4.4

only applies to when 2 ≤ k ≤ 2n− 2, we need to define G(k, p) for when k = 0 or 1.

Let G(0, p) = {}, G(1, p) = 2n− 2 for all p 6= 2n− 2, and G(1, 2n− 2) be undefined.
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α U V x2n+1

2n2 + 7n+ 2 S2n+1(2n+ 1)\{0, 1, 3} {2n+ 1} 2n2 + 5n
2n2 + 7n+ 3 S2n+1(2n+ 1)\{0, 1, 2} {2n− 1} 2n2 + 5n
2n2 + 7n+ 4 S2n+1(2n+ 1)\{0, 1, 3} {2n− 1} 2n2 + 5n

2n2 + C
S2n+1(2n+ 1)\

{0, 2, C − 7n− 2} {2n− 1} 2n2 + 5n
7n+ 5 ≤ C
≤ 9n+ 1

2n2 + C
S2n+1(2n+ 1)\

{0, C − 9n− 1, 2n+ 1} {2n− 1} 2n2 + 5n
9n+ 2 ≤ C
≤ 11n− 1

Table 5: If 2n2 + 7n+ 2 ≤ α ≤ 2n2 + 11n− 1

Also, if T = {ti : 0 ≤ i ≤ j} is a set of distinct nonnegative integers arranged in

increasing order, we define H(T ) to take the smallest value of ti > i and decrement

it. Let H(k)(T ) denote applying the function H to T k times and [n] be the set

containing the integers from 1 to n inclusive.

The solutions for {xk : 2 ≤ k ≤ 2n + 1} for all 2n2 + 11n ≤ α ≤ 4n3 +

12n2 + n − 1 are displayed in Table 6. There may be multiple ways to express α

as 2n2 + 11n+ (2n2 + 5n)A+ 2nB + C, in which case there are multiple solutions

shown. Notice that we cannot have A = 2n− 3 and B = 2n− 2 at the same time,

as G(1, 2n− 2) is undefined. To correct this, we let A = 2n− 2, B = n− 4, and let

V = H(C+n)({2, . . . , 2n− 1} ∪ {2n+ 1}).

α U V x2n+1

2n2 + 11n
+(2n2 + 5n)A
+2nB + C

G(2n− 2−A
,B)

H(C)([A]∪
{2n− 1})

2n2 + 5n
+B

0 ≤ B ≤ 2n− 1,
0 ≤ C ≤ 2n− 1,
0 ≤ A ≤ 2n− 2

Table 6: If 2n2 + 11n ≤ α ≤ 4n3 + 12n2 + n − 1 and A = 2n− 3 and B = 2n− 2
are not true at the same time

We now present Table 7 giving a solution for every 4n3 + 12n2 + n ≤ α ≤
4n3 + 12n2 + 5n− 1.

α U V x2n+1

4n3 + 12n2 + n+ C ∅ S2n+1(2n+ 1)\{0, C + 1} 2n2 + 7n+ 1 0 ≤ C ≤ 2n− 2
4n3 + 12n2 + n+ C ∅ S2n+1(2n+ 1)\{1, 2n− 1} 2n2 + 7n+ 1 C = 2n− 1
4n3 + 12n2 + n+ C ∅ S2n+1(2n+ 1)\{C − 2n, 2n+ 1} 2n2 + 7n+ 1 2n ≤ C ≤ 4n− 1

Table 7: If 4n3 + 12n2 + n ≤ α ≤ 4n3 + 12n2 + 5n− 1

Since we have worked from 0 to 4n3 +12n2+5n− 1 and tested if each integer in
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that range is in S2n+1 and found that the results match the statement in Lemma 4.5,

our proof is complete.

To prove Lemma 4.2, we need to prove Lemma 4.6 and Lemma 4.8.

Lemma 4.6. If m = 2n, given any α ∈ {0, 1, . . . , 2n}, we can find distinct

x2, x3, . . . , x2n ∈ S2n(2n) such that α+

2n−1
∑

k=2

xk = (2n− 1)x2n.

Proof. In equation (7), let m = 2n, z = 2n, and W = {a, b}. Then, we obtain

α = n(2x2n − 2n− 1) + a+ b.

We display the solutions for 0 ≤ α ≤ 2n in Table 8.

a b x2n

n 2n n− 1 α = 0
0 n+ α n 1 ≤ α ≤ n
0 α− n n+ 1 n+ 1 ≤ α ≤ 2n

Table 8: If 0 ≤ α ≤ 2n

Since we have covered all the values for α from 0 to 2n inclusive, we are done

with the proof of Lemma 4.6.

To prove Lemma 4.8, we use of the following result.

Lemma 4.7. Given any α ∈ S2n+1(2n + 1), we can find x2, x3, . . . , x2n+1 ∈

S2n+1(2n+ 1) such that x2, x3, . . . , x2n are distinct and α+

2n
∑

k=2

xk = 2nx2n+1.

Proof. In equation (7), let m = 2n+1, z = 2n+1 and W = {a, b}. Then, we obtain
α = 2nx2n+1 + a+ b− 2n2 − n− 1.

Notice that x2n+1 does not necessarily have to be distinct from a and b. We

display the solutions for 0 ≤ α ≤ n − 2 in Table 9. Since we have covered all the

a b x2n+1

0 n+ 1 + α n 0 ≤ α ≤ n− 2
1 2n− 1 n α = n− 1

α− n 2n+ 1 n n ≤ α ≤ 2n− 1
n+ 1 2n+ 1 n α = 2n+ 1

Table 9: If α ∈ S2n+1(2n+ 1)

cases when r ∈ {0, 1, . . . , 2n−1}∪{2n+1}, the proof for Lemma 4.7 is complete.
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Now we prove Lemma 4.2 for the case when m is odd.

Lemma 4.8. Given any α ∈ R2n+1, we can find x2, x3, . . . , x2n+1 ∈ R2n+1 such

that x2, x3, . . . , x2n are distinct and α+
2n
∑

k=2

xk = 2nx2n+1.

Proof. First we prove this for when n > 3 and then deal with the special cases when

n ≤ 3.

If n > 3 and α ∈ S2n+1(2n+1), by Lemma 4.7, we can select x2, x3, . . . , x2n+1 ∈
S2n+1(2n+ 1) to satisfy the lemma.

Similarly, if α ∈ {2n2 + 5n + c : 0 ≤ c ≤ 2n− 1} ∪ {2n2 + 7n+ 1}, we see this

is the same set as S2n+1(2n+ 1) with 2n2 + 5n added to each element. Therefore,

also by Lemma 4.7,we can select x2, x3, . . . , x2n+1 from the set α ∈ {2n2 + 5n+ c :

0 ≤ c ≤ 2n− 1} ∪ {2n2 + 7n+ 1} to satisfy the lemma.

If α = 3n+ 1, then let x2 = 0, xk = k − 1 for all 3 ≤ k ≤ 2n and x2n+1 = n+ 1.

Then, α+

2n
∑

k=3

xk = 2nx2n+1.

If n = 1, set x2 = x3 = 0.

If n = 2, then the cases for when α ∈ {0, 1, 2, 3, 5} and α ∈ {26, 27, 28, 29, 31}
are covered in Lemma 4.7. If α = 3n + 1 = 7, 7 + 0 + 2 + 3 = 4 · 3. If α = 13,

13 + 3 + 5 + 7 = 4 · 7.
If n = 3, then the only difference between R7 and the general definition for

R2n+1 when n > 3 is the the missing 40, so we only need to consider if α ∈
{33, 34, 35, 36, 37, 38}. The case for when α ∈ {0, 1, 2, 3, 4, 5, 7} is covered in Lemma

4.7 and if α = 10, 10 + 0 + 2 + 3 + 4 + 5 = 6 · 4.
The solutions for when 33 ≤ α ≤ 38 are presented in table 10 below.

α {x2, x3, x4, x5, x6} x7

33 {10, 7, 5, 4, 1} 10
34 {10, 7, 5, 4, 0} 10
35 {10, 7, 5, 3, 0} 10
36 {10, 7, 5, 2, 0} 10
37 {10, 7, 5, 1, 0} 10
38 {10, 7, 4, 1, 0} 10

Table 10: If 33 ≤ α ≤ 38 and n = 3

Since we have covered all the cases when m = 2n+1 is odd, the proof for Lemma

4.8 is complete.
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