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Increasing the number of inner replications
of multifactor portfolio credit risk simulation

in the t-copula model

Halis Sak

Abstract. We consider the problem of simulating tail loss probabilities and expected losses
conditioned on exceeding a large threshold (expected shortfall) for credit portfolios. In-
stead of the commonly used normal copula framework for the dependence structure be-
tween obligors, we use the t -copula model. We increase the number of inner replications
using the so-called geometric shortcut idea to increase the efficiency of the simulations.
The paper contains all details for simulating the risk of the t -copula credit risk model by
combining outer importance sampling (IS) with the geometric shortcut. Numerical results
show that the applied method is efficient in assessing tail loss probabilities and expected
shortfalls for credit risk portfolios. We also compare the tail loss probabilities and ex-
pected shortfalls under the normal and t -copula model.
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1 Introduction

The most widely used model for credit risk is the normal copula model of Credit-
Metrics [13], which is a Merton [21] type model; if a latent variable of an obligor
crosses a level (determined by the marginal default probability of the obligor), the
obligor is assumed to default. Latent variables for obligors have some common
risk factors to introduce dependence across obligors and one idiosyncratic risk
factor.

In recent papers the dependence structure of multivariate variables had been
shown to be better represented by the t -copula. Among others [6] and [7] stress
the necessity of using copulas to model the dependence structure of multivari-
ate variables in finance. Furthermore, [20] conclude that the t -copula fits empir-
ically better than the normal copula without assuming specific marginal distribu-
tions for asset and equity returns. In a more recent work, [17] apply goodness-
of-fit tests to the t , normal and Gumbel copula for the risk management of lin-
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ear asset portfolios. The t -copula is preferred to the normal and Gumbel copu-
las because of capturing the dependence better in the non-extremes and extremes
(tails).

Although there are some approximations (see e.g., [18,19]) for the tail behaviors
of loss distributions for credit portfolios under the normal and t -copula framework,
there are no closed-form solutions. Monte Carlo simulation is a better alternative
than these approximations, since it gives a confidence interval for the computed
point estimate for credit risk. To reach sufficient precision in acceptable compu-
tation time variance reduction techniques for simulating tail loss probabilities and
expected shortfalls in the normal or in the t -copula framework are of greatest prac-
tical importance and attracted attention in recent years. Although, there are lots of
papers in the normal copula framework (see e.g., [4,11,15,23]), to our knowledge
there are only three t -copula papers [2, 3, 16].

The validity of routinely applied quantitative methods like the normal copula
model in risk management are questioned by the current credit crisis (see [5]).
This also underlies the practical importance of efficient simulations for the t -
copula model. If we look at the proposed variance reduction techniques closer
in the t -copula papers; [3] consider conditional Monte Carlo approach [1] in con-
trast to [16] and [2] who use importance sampling (IS). The main computational
burden of conditional Monte Carlo approach is the computation of threshold val-
ues of each common risk factor for each obligor and sorting these threshold values
for each replication. We follow [16] and [2] by proposing an IS strategy as part
of our simulation method in this paper. [16] and [2] use the classical generation
for the multivariate t distribution; a multivariate normal vector is divided by the
square root of a univariate chi-square random variable. These papers primarily use
asymptotics for portfolio credit risk to propose an IS on the chi-square random
variable. These two ingenious methods have problems in implementation because
of being computationally intensive for multidimensional risk factors. Searching
for a q-minimal index set and finding the mean shift and exponential twisting pa-
rameter for conditional default probabilities for every generated chi-square random
variable is computationally intensive as pointed out in [16]. Getting a random vari-
ate from exponentially twisted probability distribution function of the chi-square
distribution which changes for every generated chi-square random variable and
applying numerical integration afterwards to compute the likelihood ratio is com-
putationally exhausting in [2]. This motivated us to look for an easily applicable
simulation method to reduce the variance of the simulations for tail loss proba-
bility and expected shortfall computation. [23] consider increasing the number of
inner replications by using a geometric-shortcut in the normal copula framework.
The proposed idea allows a very efficient simulation for the case of independent
obligors. The asymptotic efficiency rate of the new idea is higher than that of the
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naive algorithm when the average default probability tends to zero. They use this
method to replace inner IS (see e.g. [11]) in the simulation of tail loss probabil-
ity and expected shortfall. In this paper we apply the same idea in the t -copula
framework. One additional contribution of our paper is to compare the tail loss
probabilities and expected shortfalls under the normal and t -copula model for a
variety of multidimensional credit portfolio examples so that one can have a rough
estimate of the difference between the computed risks under the normal and t -
copula model.

We follow [16] and [2] in the construction of multivariate t distribution. In this
paper we use an IS density that shifts the mean of the multivariate normal distri-
bution and a gamma distribution with shape parameter �=2 and scale parameter
smaller than two. A similar IS strategy is applied for market risk in [24].

We shortly define the normal and t -copula model in Section 2. In Section 3,
we summarize the geometric shortcut idea for dependent obligors in the t -copula
model. In Section 4, we add outer-IS to the inner replications of the geometric
shortcut for a portfolio having dependent obligors. While Sections 3–4 concen-
trate on the efficient simulation of tail loss probabilities, Section 5 consider the
simulation of expected shortfall. We report our numerical results in Section 6.

2 The normal and t-copula model

We first describe the details of the normal copula model of CreditMetrics [13] for
the dependence structure across obligors. The notation used throughout the paper
follows [11]:

m: number of obligors in the portfolio

Yj : default indicator for the j th obligor (equal to 1 if
default occurs, 0 otherwise)

cj : loss resulting from the default of the j th obligor

pj : marginal default probability of the j th obligor

L D
Pm
jD1 cjYj : total loss of the portfolio

n: number of replications in a simulation

We only consider a fixed horizon, over which we are interested in the distribution
of tail loss probability and ES. The exposure values cj and the marginal default
probabilities pj are assumed to be constant and known.

The normal copula model introduces a multivariate normal vector (X1; : : : ; Xm)
of latent variables to obtain dependence across obligors. The relationship between
the default indicators and the latent variables is described by

Yj D 1¹Xj > xj º; j D 1; : : : ; m;
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where Xj has standard normal distribution and xj D ˆ�1.1 � pj /, with ˆ�1

inverse of the cumulative normal distribution. Obviously, the threshold value xj is
chosen such that P.Yj D 1/ D pj .

The correlations among the Xj are modeled by defining

Xj D bj �j C aj1Z1 C � � � C ajdZd ; j D 1; : : : ; m; (2.1)

where �j and Z1; : : : ; Zd are independent standard normal random variables with
b2j C a

2
j1C � � � C a

2
jd
D 1: While, (Z1; : : : ; Zd ) are systematic risk factors affect-

ing all of the obligors, �j is the idiosyncratic risk factor affecting only obligor j .
Furthermore, aj D .aj1; : : : ; ajd / are constant and nonnegative factor loadings,
assumed to be known. Thus, given the vector Z D .Z1; : : : ; Zd /

T , we have the
conditionally independent default probabilities

pj .Z/ D P.Yj D 1jZ/ D ˆ

�
ajZ Cˆ

�1.pj /

bj

�

; j D 1; : : : ; m: (2.2)

In the t -copula model latent variables have multivariate t -distribution instead
of multivariate normal distribution. The model that has been widely used (see,
e.g., [2, 16]) is

X 0j D
.bj �j C aj1Z1 C � � � C ajdZd /

p
V=�

; j D 1; : : : ; m; (2.3)

where the definitions of Z; �j ; aj and bj are the same as in (2.1), and V denotes
a chi-square random variable with � degrees of freedom that is independent of Z
and �j . Since X 0j is t -distributed random variable, the threshold value for the indi-

cator function Yj D 1¹X 0j > x
0
j º should be x0j D F

�1
� .1�pj / (F� is the cdf of the

t distribution with � degrees of freedom) to preserve the marginal default proba-
bilities. Finally, given the vector Z and V , we have the conditionally independent
default probabilities

pj .Z; V / D P.Yj D 1jZ; V / D ˆ

 
ajZ �

p
V=�F�1� .1 � pj /

bj

!

;

j D 1; : : : ; m: (2.4)
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3 Inner replications using geometric shortcut: dependent obligors

The geometric shortcut idea was introduced in Section 3 of [23] to simulate tail
loss probability (P.L > x/) and expected shortfall for independent obligors. The
idea is simply to generate instead of many Bernoulli random variates with small
probabilities a geometric random variate that is used as index of the next default. It
is no problem to apply the same idea to dependent obligors under the normal cop-
ula framework, as, conditional on Z D z, obligors default independently. Chang-
ing the model to the t -copula does not change the structure of the problem. This
time conditional on Z D z and V D v, obligors default independently. We start
with Algorithm 1 that describes the naive simulation algorithm for the full model.

Algorithm 1 Tail loss probability computation using naive simulation for depen-
dent obligors.

1: for replications k D 1; : : : ; n do
2: generate zl � N.0; 1/; l D 1; : : : ; d and v from �2� distribution indepen-

dently
3: calculate pj .z; v/; j D 1; : : : ; m, as in (2.4) where z D .z1; : : : ; zd /
4: for obligors j D 1; : : : ; m do
5: generate a U.0; 1/ variate U
6: if .U < pj .z; v// set L.k/ D L.k/ C cj
7: end for
8: end for
9: return 1

n

Pn
kD1 1¹L.k/ > xº

The naive algorithm consists of an outer part with n independent generations
of the z-vector and V and an inner part where, depending on the values of the
z-vector and V , the default probabilities are calculated and the defaults are sim-
ulated. [23] consider increasing the number of repetitions of the simulation of
the defaults from 1 to nin > 1. They argue that the optimum number of nin de-
pends on the contribution of the inner and the outer repetitions on the variance.
Although, they give approximate analytical results on nin, their conclusion is to
use nin D min.b1= Npzc; m/ where Npz denotes the average value of the default
probabilities pj .z/ for the current z vector under the normal copula model. The
intuition behind this selection is not to increase the computation time of the new
algorithm much more than the naive algorithm (nin D 1). Thus, in this paper we
use nin D min.b1= Npz;vc; m/ where Npz;v denotes the average value of the default
probabilities pj .z; v/ for the current z and v vector. Algorithm 2 shows how to im-
plement the geometric shortcut for the dependent obligor case under the t -copula
model.
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Algorithm 2 Tail loss probability simulation using inner replications and the geo-
metric shortcut for dependent obligors.

1: for replications k D 1; : : : ; n do
2: generate zl � N.0; 1/; l D 1; : : : ; d and v from �2� distribution indepen-

dently
3: calculate pj .z; v/; j D 1; : : : ; m, as in (2.4) where z D .z1; : : : ; zd /
4: construct a loss vector L.in/ of size nin D min.b1= Npz;vc; m/
5: for obligors j D 1; : : : ; m do
6: initialize i to zero and cont fo false
7: repeat
8: generate the U.0; 1/ random variate U
9: set i D i C ceiling.log.1 � U /= log.1 � pj //

10: if (i > nin) then set cont to true
11: else set L.i/

.in/ D L
.i/

.in/ C cj
12: until cont D true
13: end for
14: compute Np.k/in D 1

nin

Pnin
iD1 1¹L.i/

.in/ > xº where Np.k/in denotes the average
loss probability of the kth outer replication

15: end for
16: return 1

n

Pn
kD1 Np

.k/
in

4 Integrating IS with inner replications using the geometric
shortcut: dependent obligors

Implementing inner replications using the geometric shortcut alone is not sufficient
to decrease the variance for highly dependent obligors. Thus, we make use of
IS for further decreasing the variance of the simulations. A vector Z of i.i.d.
normal variates and an independent chi square random variate V are generated
in the beginning of the loop of Algorithm 1. An importance sampling strategy
is best applied directly to these variates. We change their distribution in order to
increase the frequency of very high loss values L. To obtain easy IS-densities and
simple likelihood ratios we only change the mean values of the normal variates
by adding a mean shift vector with positive entries to the normal vector Z. As
the chi-square distribution is a special case of the gamma distribution with shape
parameter �

2
and scale parameter 2, a natural choice for the IS density for V is the

gamma distribution. As X 0j is inversely proportional to V in (2.3), a decrease of
V will result in an increase in the dependence of default of obligors. Thus as IS
density we use a gamma distribution with the same shape parameter but a smaller
scale parameter as this increases the probability of very high losses.
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It is well known that a main practical problem in the application of importance
sampling is the choice of the parameters of the IS-distribution. We utilize the
general idea (see e.g., [10]) to select the parameters such that the mode of the
resulting IS density is equal to the mode of the zero-variance IS function which is
for our problem defined by

f0.z; v/ D P.L > xjZ D z; V D v/ fN .z/ fV .v/; (4.1)

where fN .z/ denotes the density of i.i.d. standard normal variates and fV .v/ is
the density of the chi-square distribution with � degrees of freedom.

Finding the mode � of f0.z; v/ requires the solution of the multidimensional
optimization problem;

max
z;v

.P.L > xjZ D z; V D v/e�z
T z=2fV .v// : (4.2)

Finding the exact solution for (4.2) is usually difficult. Thus, we need an ap-
proximate method. [11] lists some of the possible approximations for comput-
ing P.L > xjZ D z/ for the normal copula framework. These could be di-
rectly applied to compute P.L > xjZ D z; V D v/, since obligors default
independently conditional on the random variables in both models. For informa-
tion on the advantages and disadvantages of the different strategies to select the
mean shift for IS see Chapter 5 of [22]. There it is concluded from an empirical
comparison that the reached variance reductions are very similar for all meth-
ods. We therefore describe and use the normal approximation of P.L > xjZ; V /.
Since, EŒLjZ D z; V D v� D

Pm
jD1 cjpj .z; v/ and V ŒLjZ D z; V D v� D

Pm
jD1 c

2
j

�
pj .z; v/ � pj .z; v/

2
�

we have:

P .L > xjZ D z; V D v/ � 1 �ˆ

 
x �EŒLjZ D z; V D v�
p

VarŒLjZ D z; V D v�

!

:

Thus, to obtain the mode � for the IS distribution we solve the optimization
problem

max
�

"

1 �ˆ

 
x �EŒLj.Z; V / D ��
p

VarŒLj.Z; V / D ��

!#

e��
T
z �z=2fV .�v/ (4.3)

where �z and �v are z and v component of the mode vector �.
We use the multidimensional optimization function, nmsimplex2, of GSL [8]

to solve (4.3). This function is a very efficient implementation of Nead–Melder
method which does not require gradients in contrast to quasi-Newton methods. In
our numerical experiments, we could find the optimal mode at most in 5 seconds
even for a 21-factor model by just using the same starting value of 1:0 for all
dimensions.
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After solving � using (4.3), we can directly use the �z as the optimal mean
shift for Z since it has a multinormal distribution. To calculate the optimal scale
parameter � of the gamma IS-density for V , we use

� D
�v

�=2 � 1
; (4.4)

as this scale parameter implies that the mode is equal to �v. Then the likelihood
ratio is

w�z ;� .Z; V / D exp.��Tz Z C �
T
z �z=2 � V=2C V=� C log.�=2/�=2/; (4.5)

where exp.��Tz Z C �
T
z �z=2/ accounts for the mean shift we have added to the

normal vector and the term exp.�V=2C V=� C log.�=2/�=2/ relates the density
of the �2� distribution to that of the gamma distribution with shape parameter �=2
and scale parameter � . The full algorithm is given in Algorithm 3 for the sake of
completeness.

Algorithm 3 Tail loss probability simulation using integration of IS with inner
replications using the geometric shortcut for dependent obligors.

1: compute � using (4.3), compute � using (4.4).
2: for replications k D 1; : : : ; n do
3: generate zl � N.�z;l ; 1/; l D 1; : : : ; d , independently
4: generate v from the gamma distribution with shape parameter �=2 and scale

parameter � ;
5: calculate w.k/

�z ;�
as in (4.5)

6: calculate pj .z; v/; j D 1; : : : ; m, as in (2.4) where z D .z1; : : : ; zd /
7: initialize a loss vector L.in/ of length nin D min.b1= Npz;vc; m/ to zero.
8: for obligors j D 1; : : : ; m do
9: initialize i to zero and cont fo false

10: repeat
11: generate the U.0; 1/ random variate U
12: set i D i C ceiling.log.1 � U /= log.1 � pj //
13: if (i > nin) then set cont to true
14: else set L.i/

.in/ D L
.i/

.in/ C cj
15: until cont D true
16: end for
17: compute Np.k/in D

1
nin

Pnin
iD1 1¹L.i/

.in/ > xº where Np.k/in stands for the average
loss probability of the kth outer replication

18: end for
19: return 1

n

Pn
kD1w

.k/

�z ;�
Np
.k/
in
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5 ES simulation for dependent obligors

We described our new methodology for tail loss probability computation. It is time
to explain how the same methodology can be used for the computation of ES. We
define ES as the expected losses conditioned on exceeding a large threshold x:

ES.x/ D EŒLjL > x� :

If we assume that P.L � x/ > 0, ES can be written as

r D EŒLjL � x� D
E ŒL 1¹L � xº�
P.L � x/

:

The naive simulation estimate for this ratio is

Ornaive D

Pn
kD1L

.k/1¹L.k/ � xº
Pn
kD1 1¹L.k/ � xº

: (5.1)

Algorithm 4 gives all the details of how to use that estimate.

Algorithm 4 Naive simulation for computing ES for dependent obligors.

1: for replications k D 1; : : : ; n do
2: generate zl � N.0; 1/; l D 1; : : : ; d and v from �2� distribution indepen-

dently
3: calculate pj .z; v/; j D 1; : : : ; m, as in (2.4) where z D .z1; : : : ; zd /
4: for obligors j D 1; : : : ; m do
5: generate a U.0; 1/ variate U
6: if .U < pj .z; v// set L.k/ D L.k/ C cj
7: end for
8: end for
9: return Ornaive using (5.1)

If we use outer IS and the geometric shortcut our new estimate of expected
shortfall is

Ornew D

Pn
kD1

w.k/

nk

Pnk
iD1L

.k;i/1¹L.k;i/ � xº
Pn
kD1

w.k/

nk

Pnk
iD1 1¹L

.k;i/ � xº
D

Pn
kD1w

.k/ NL
.k/
in

Pn
kD1w

.k/ Np
.k/
in

(5.2)

where NL.k/in stands for the average of the loss values that are greater than x and

Np
.k/
in stands for the average loss probability of the kth outer replication.
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To estimate the accuracy of (5.2) we use a general result for ratio estimates given
on page 234 of [9]. It is applicable as the values ( NL.k/in ; Np

.k/
in / for k D 1; : : : ; n are

i.i.d. Thus we use the confidence interval

Ornew ˙ zı=2
O�new

p
n

(5.3)

where

O�new D

 
n
Pn
kD1.w

.k/ NL
.k/
in � Or

neww.k/ Np
.k/
in /2

.
Pn
kD1w

.k/ Np
.k/
in /2

!1=2

: (5.4)

The full algorithm is given in Algorithm 5.

Algorithm 5 ES simulation using integration of IS with inner replications using
the geometric shortcut for dependent obligors.

1: compute � using (4.3). Then, compute � using (4.4).
2: for replications k D 1; : : : ; n do
3: generate zl � N.�z;l ; 1/; l D 1; : : : ; d , independently
4: generate v from the gamma distribution with shape parameter �=2 and scale

parameter � ;
5: calculate w.k/

�z ;�
as in (4.5)

6: calculate pj .z; v/; j D 1; : : : ; m, as in (2.4) where z D .z1; : : : ; zd /
7: construct a loss vector L.in/ of size nin D min.b1= Npz;vc; m/
8: for obligors j D 1; : : : ; m do
9: initialize i to zero and cont fo false

10: repeat
11: generate the U.0; 1/ random variate U
12: set i D i C ceiling.log.1 � U /= log.1 � pj //
13: if (i > nin) then set cont to true
14: else set L.i/

.in/ D L
.i/

.in/ C cj
15: until cont D true
16: end for
17: compute Np.k/in D

1
nin

Pnin
iD1 1¹L.i/

.in/ > xº where Np.k/in stands for the average
loss probability of the kth outer replication

18: compute NL.k/in D
1
nin

Pnin
iD1L

.i/

.in/1¹L
.i/

.in/ > xº where NL.k/in stands for the av-
erage of the loss values that are greater than x for the kth outer replication

19: end for
20: return Ornew using (5.2)



Portfolio credit risk simulation in the t -copula model 371

6 Numerical results

In this section we compare the performance of our new approach for the t -copula
model with naive Monte Carlo simulation. The efficiency of a simulation method
is inversely proportional to the product of the sampling variance and the required
simulation time (see e.g., [14] and [12]). This classical definition of simulation
efficiency is valid for our problem as for fixed credit portfolios the sampling vari-
ance is O.1=n/ and the simulation time is O.n/ (the canonical case of [12]). We
therefore report as a main result of our comparison the efficiency ratio (E.R.), sim-
ply the ratio of the product of the sampling variance and the execution time of the
naive algorithm and our new algorithm.

To assess the efficiency of the proposed method, [23] make use of two credit
portfolio examples of [11] and add a third example that has somewhat smaller
dependence between obligors. We use the same numerical examples to measure
the efficiency of our method.

The first numerical example of [11] is a portfolio of m D 1000 obligors in a
10-factor model. The marginal default probabilities pj D 0:01.1Csin.16…j=m//
thus vary between 0 and 2%; the exposures cj D .d5j=me/2 take the values
1; 4; 9; 16, and 25, with 200 obligors at each level. These parameters represent
a significant departure from a homogeneous model. The factor loadings ajl are
generated independently and uniformly from the interval .0; 1=

p
10/; the upper

limit of this interval ensures that the sum of squared entries for each obligor does
not exceed 1. Note that this upper limit also implies that for some of the obligors
the sum of the squares of the aj i values are close to 1 indicating that this credit
portfolio contains strongly correlated obligors. We report the point estimates and
the half length of the 95% confidence intervals in percent (95% C.I.) for tail loss
probability and ES for three different x-values for the t -copula (� D 10) model in
Table 1. We also report the observed execution times and the efficiency ratio (E.R.)
of the new algorithm and the naive method; E.R. values larger than one indicate
that the new algorithm has a higher efficiency than naive method. Table 2 shows
how the degrees of freedom for the t -copula affects the computed results given in
Table 1. Note that we use the simulation strategy proposed in [23] for � D 1,
since this is the normal copula case.

The second numerical example of [11] is a 21-factor model with 1000 oblig-
ors. The marginal default probabilities fluctuate as in the first example, and the
exposures cj increases from 1 to 100 linearly as j increases from 1 to 1000. The
matrix of the factor loadings, A D .ajl ; j D 1; : : : ; 1000; l D 1; : : : ; 21/, has the
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following block structure:

A D

0

B
B
@R

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

F

: : :

F

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

G
:::

G

1

C
C
A ; G D

0

B
B
@

g

: : :

g

1

C
C
A ;

with R a column vector of 1000 entries all equal to 0:8; F, a column vector of 100
entries all equal to 0:4; G a 100� 10 matrix, and g, a column vector of 10 entries,
all equal to 0:4. Note that now each obligor only has three non zero aj i values,
0.8, 0.4 and 0.4. Considering that the sum of the squares of these values is 0.96
and also that the entry of 0.8 is constant for the first column, we can see that in this
example the dependence between obligors is strong. The performance results for
this example are summarized in Tables 3 and 4.

x prob./ES (naive) 95% C.I. prob./ES (new) 95% C.I. E.R.

500 5.02e�02.30/ ˙2:7% 5.09e�02.52/ ˙0:72% 7:98

2000 4.15e�03.30/ ˙9:6% 4.20e�03.51/ ˙0:94% 60:5

5000 1.30e�04.30/ ˙54% 1.02e�04.47/ ˙1:2% 2210

500 1048:0.30/ ˙1:7% 1050:9.52/ ˙0:39% 11:2

2000 2803:8.30/ ˙2:5% 2790:5.51/ ˙0:22% 77:6

5000 5686:6.31/ ˙7:3% 5732:0.47/ ˙0:12% 2586

Table 1. Tail loss probabilities or expected shortfalls and 95% confidence intervals
as percentage of the point estimates for the t -copula (� D 10) model for the 10-
factor model. n D 100;000. Execution times (in seconds) are in parentheses.

� prob./ES (naive) 95% C.I. prob./ES (new) 95% C.I. E.R.

5 8.22e�03.31/ ˙6:8% 7.47e�03.50/ ˙0:91% 42:3

15 2.81e�03.30/ ˙11:7% 2.99e�03.50/ ˙0:95% 79:8

1 7.70e�04.26/ ˙22% 8.48e�04.45/ ˙1:0% 236

5 2972:8.31/ ˙2:2% 3011:3.50/ ˙0:27% 42:3

15 2663:0.31/ ˙2:7% 2704:1.50/ ˙0:20% 109

1 2404:0.26/ ˙4:0% 2474:4.44/ ˙0:15% 421

Table 2. Tail loss probabilities or expected shortfalls and 95% confidence intervals as
percentage of the point estimates for the t -copula model with � degrees of freedom
for the 10-factor model. x D 2000 and n D 100;000. Execution times (in seconds)
are in parentheses.
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x prob./ES (naive) 95% C.I. prob./ES (new) 95% C.I. E.R.

2500 4.65e�02.38/ ˙2:8% 4.67e�02.57/ ˙0:93% 6:04

20;000 3.96e�03.37/ ˙9:9% 3.94e�03.59/ ˙1:1% 52:4

40;000 1.60e�04.37/ ˙49% 2.02e�04.59/ ˙1:5% 446

2500 8684:5.38/ ˙2:4% 8626:6.56/ ˙0:63% 9:96

20;000 27;712:4.37/ ˙2:2% 27;486:2.60/ ˙0:23% 56:9

40;000 42;432:4.38/ ˙2:3% 43;117:4.59/ ˙0:073% 612

Table 3. Tail loss probabilities or expected shortfalls and 95% confidence intervals
as percentage of the point estimates for the t -copula (� D 10) model for the 21-
factor model. n D 100;000. Execution times (in seconds) are in parentheses.

� prob./ES (naive) 95% C.I. prob./ES (new) 95% C.I. E.R.

5 5.03e�03.36/ ˙8:7% 4.92e�03.58/ ˙1:1% 40:8

15 3.68e�03.38/ ˙10:2% 3.52e�03.59/ ˙1:2% 49:8

1 2.49e�03.32/ ˙12% 2.71e�03.50/ ˙1:1% 65:5

5 27;818:4.36/ ˙1:9% 28;215:1.57/ ˙0:25% 33:0

15 27;598:2.37/ ˙2:6% 27;138:3.58/ ˙0:25% 71:7

1 26;485:9.33/ ˙2:6% 26;405:1.49/ ˙0:21% 103

Table 4. Tail loss probabilities or expected shortfalls and 95% confidence intervals
as percentage of the point estimates for the t -copula model with � degrees of free-
dom for the 10-factor model. x D 20;000 and n D 100;000. Execution times (in
seconds) are in parentheses.

The third numerical example is a 5-factor model with 1200 obligors. Default
probabilities are generated independently and uniformly from the interval Œ0; 0:02�
and exposure levels are defined by cj D .d20j=me/2. To define the factor loadings
the obligors are separated into 6 segments of size 200. For each segment the factors
are generated uniformly from the interval .0;max/. For the structure of the matrix
and the max values see Table 5. Note that the maximal sum of the squares of
the aj i are 0.51, 0.26 and 0.5 for segments 1, 2 and 3 respectively. Thus the
dependence of the obligors is clearly smaller than for examples 1 and 2. The
results of the numerical experiments are reported in Tables 6 and 7.

When we look at Tables 1, 3 and 6, we first observe that the new method is
always more efficient than naive (efficiency ratios are greater than one). At the
extremes the efficiency ratios increase which is attributed to IS. The performance
of the new method can also be assessed by solely looking at the 95% confidence
intervals.
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Segment Obligor j aj;1 aj;2 aj;3 aj;4 aj;5

1A 1–200 U.0; 0:5/ U.0; 0:5/ U.0; 0:1/

1B 201–400 U.0; 0:5/ U.0; 0:1/ U.0; 0:5/

2A 401–600 U.0; 0:4/ U.0; 0:3/ U.0; 0:1/

2B 601–800 U.0; 0:4/ U.0; 0:1/ U.0; 0:3/

3A 801–1000 U.0; 0:5/ U.0; 0:4/ U.0; 0:3/

3B 1001–1200 U.0; 0:5/ U.0; 0:3/ U.0; 0:4/

Table 5. Distributions used to generate the factor loadings for the 5-factor model.

x prob./ES (naive) 95% C.I. prob./ES (new) 95% C.I. E.R.

5000 8.70e�02.33/ ˙2:0% 8.72e�02.61/ ˙0:61% 5:93

15;000 1.27e�02.33/ ˙5:5% 1.28e�02.61/ ˙0:76% 27:3

30;000 1.87e�03.33/ ˙14% 1.64e�03.60/ ˙0:89% 184

5000 10;256:7.33/ ˙1:3% 10;207:6.61/ ˙0:36% 6:79

15;000 22;120:1.33/ ˙1:8% 22;181:8.62/ ˙0:22% 35:3

30;000 38;904:0.33/ ˙3:3% 38;181:2.60/ ˙0:15% 263

Table 6. Tail loss probabilities or expected shortfalls and 95% confidence intervals
as percentage of the point estimates for the t -copula (� D 10) model for the 5-factor
model. n D 100;000. Execution times (in seconds) are in parentheses.

� prob./ES (naive) 95% C.I. prob./ES (new) 95% C.I. E.R.

5 2.37e�02.33/ ˙4:0% 2.30e�02.61/ ˙0:76% 15:7

15 7.77e�03.33/ ˙7:0% 8.40e�03.61/ ˙0:79% 36:8

1 9.80e�04.28/ ˙20% 8.72e�04.53/ ˙0:86% 358

5 25;308:5.34/ ˙1:8% 25;576:2.61/ ˙0:32% 16:8

15 20;844:0.33/ ˙2:0% 20;966:5.61/ ˙0:19% 55:5

1 17;941:7.28/ ˙4:1% 18;119:1.54/ ˙0:10% 788

Table 7. Tail loss probabilities or expected shortfalls and 95% confidence intervals
as percentage of the point estimates for the t -copula model with � degrees of free-
dom for the 10-factor model. x D 15;000 and n D 100;000. Execution times (in
seconds) are in parentheses.
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In Tables 2, 4 and 7, we increase the degrees of freedom of the t -copula. Com-
puted tail loss probabilities and expected shortfalls decrease for an increase in the
degrees of freedom of the t -copula. This is a quite expected result since the t -
copula approaches to the normal copula (� D 1) as we increase the degrees of
freedom. This results in an increase in the efficiency ratios as smaller tail loss
probabilities imply higher variance reduction. However, the increase of the effi-
ciency ratios is different for each of the examples. While, we have a very large
increase for the 5-factor model, the increase is moderate for the 21-factor model.
Here we see the effect of the magnitude of correlation of defaults between oblig-
ors. Note that the correlation is weakest in the 5-factor model and strongest in the
21-factor model. Thus, if we have highly correlated obligors in our model then we
expect less difference between the normal and t -copula model.

We also tried the approach of using only outer importance sampling and a single
naive inner repetition. Due to the higher extremal dependence in the t -copula
model and faster execution time, the efficiency of that approach was not much
worse than the combination of IS with inner replications of the geometric shortcut.

7 Conclusions

We presented an efficient method for simulating tail loss probabilities and expected
shortfalls under the t -copula model. We use the geometric shortcut idea presented
for the normal copula framework in [23]. We also combined this idea with an ef-
ficient and easy-to-apply IS. We tested the performance of the proposed method
on various numerical examples. Our numerical results showed that the proposed
method is much more efficient than the naive method for small tail loss proba-
bilities. Its efficiency decreases for increasing tail loss probabilities, but it is still
greater than 7 for a tail loss probability of 0:05. Our numerical results also show
that the differences between tail loss probabilities and expected shortfalls under
the normal and t -copula model increase when the correlation between obligors
becomes weaker.
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