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Abstract

This paper deals with the problem of perfect sampling from a Gibbs measure with

infinite range interactions. We present some sufficient conditions for the extinction of

processes which are like supermartingales when large values are taken. This result has

profound consequences on perfect simulation, showing that local modifications on the

interactions of a model do not affect the simulability. We also pose the question to

optimize over a sequence of sets and we completely solve the question in the case of

finite range interactions.
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1 Introduction

In this paper we deal with the problem of perfect simulation of Gibbs measures. The

first algorithm of this kind was realized in [PW96]. Their paper opened a new field of

research which is evolving in different directions. In [MG98] they extended the results of

[PW96] to a continuous state space. In [HS00] the study of perfect sampling from a Gibbs
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measure started and in [DSP08] the authors showed the importance of percolation in perfect

simulation algorithms for Gibbs measures with finite range interactions. In [CFF02] they

dealt with long memory processes which means that the state of the process at time zero

depends on all its past history. In [GLO10] the authors consider the problem of perfect

sampling from a Gibbs measure with infinite range interactions.

We start from [GLO10] and we pose new questions. Their algorithm is based on a

probability mass function that we improve in several ways. Firstly we make the probability

mass function stochastically smaller and, as we shall see in Section 2, this will always be an

advantage. Furthermore the probability mass function depends on the choice of a sequence

of sets which was fixed in their paper. In Section 3, we pose the question to optimize

over some sets with appropriate properties. We provide a number of improvements and

we completely solve the problem in the case of finite range interactions. In Section 4, we

present some sufficient conditions such that a discrete process extinguishes almost surely.

Theorem 5 presents this result and it has applications in various areas. The assumptions of

Theorem 5 are weaker than the ones for the extinction of Galton-Watson process which is

solved as a particular case. This result has implications for the perfect simulation algorithm,

see Corollary 3, because it supplies a weaker sufficient condition, for the applicability of their

algorithm, than the one given in [GLO10]. Moreover, we establish an equivalence relation

among interactions in the sense that two interactions are equivalent if they only differ locally.

By Theorem 3, we prove that given two equivalent interactions, if one respects the sufficient

condition for the perfect sampling, then the other one satisfies it too.

2 Synopsis

We present some results of the work [GLO10] with few changes of notation that will be

useful in our paper.

Let S = {−1, 1}Z
d

be the set of spin configurations. We endow S with S, the σ-algebra

generated by cylinders. A point v ∈ Z
d is called a vertex. Let σ(v) ∈ {−1, 1} be the value

of the configuration σ at vertex v ∈ Z
d.

We write A ⋐ Z
d to denote that A is a finite subset of Zd. The cardinality of a set A

is denoted by |A|. An interaction J = {JB ∈ R : B⋐Z
d} is a collection of real numbers
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indexed by B⋐Z
d, with |B| ≥ 2 such that

sup
v∈Zd

∑

B:v∈B

|JB| <∞. (1)

We denote by J the collection of all the interactions.

A probability measure π on (S,S) is said to be a Gibbs measure relative to the interaction

J if for all v ∈ Z
d and for any ζ ∈ S

π(σ(v) = ζ(v)|σ(u) = ζ(u) ∀u 6= v) =
1

1 + exp[−2
∑

B:v∈B (JB
∏

w∈B σ(w))]
a.s.

Let us define the set Av = {B ⋐ Z
d : v ∈ B, JB 6= 0}, for v ∈ Z

d; the set Av is finite or

countable, therefore we write Av = {Ai,v : i < Nv +1} where Nv = |Av|. We now introduce

a sequence of sets with appropriate properties that will replace the balls used in [GLO10].

Let Bv = {Bv(k), k ∈ N}, for v ∈ Z
d, be a sequence of finite subsets in Z

d such that

1) Bv(0) = {v};

2) Bv(k) ⊂ Bv(k + 1) and Bv(k + 1) \Bv(k) 6= ∅, for k ∈ N;

3)
⋃

k∈NBv(k) ⊃
⋃

i<Nv+1Ai,v.

We denote by Bv the space of the sequences verifying 1), 2) and 3).

In this section we will use a fixed choice of Bv ∈ Bv that will not be mentioned later.

In [GLO10] they present a perfect simulation algorithm for a Gibbs measure π with long

range interaction. It can be divided into two steps: the backward sketch procedure and the

forward spin procedure. For the applicability of the algorithm they only have a condition

on its first part, i.e. on the backward sketch procedure. The algorithm is defined through a

Glauber dynamics having π as reversible measure. For any v ∈ Z
d and σ ∈ S, let cv(σ) be

the rate at which the spin in v flips when the system is in the configuration σ,

cv(σ) = exp

(
−

∑

B:v∈B

(
JB

∏
v∈B

σ(v)
))
.

The difficulty of dealing with a measure with long range interaction is overcome through a

decomposition of the rates cv(σ) as in (10). For l ≥ 1

c[l]v (σ) = exp

(
−

∑

B,v∈B,B 6⊂Bv(l)

|JB|

)
exp

(
−

∑

B:v∈B,B⊂Bv(l)

(
JB

∏
v∈B

σ(v)
))
, (2)
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which are the rates relative to a process having a reversible measure with the same interac-

tion truncated at range l. Notice that by condition (1),

lim
l→∞

c[l]v (σ) = cv(σ). (3)

To present the decomposition we define two probability mass functions of which the first

one selects a random region of dependence and the second one updates the value of the spin.

For v ∈ Z
d, J ∈ J , let

λv,J,Bv
(k) =

{
exp(−

∑
B:v∈B |JB|) if k = 0,

exp(−
∑

B:v∈B,B 6⊂Bv(k)
|JB|)− exp(−

∑
B:v∈B,B 6⊂Bv(k−1) |JB|) if k ≥ 1.

(4)

Note that, for v ∈ Z
d, (λv,J,Bv

(k), k ∈ N) is a probability mass function on N because of

properties 1), 2) and 3) of Bv. For brevity of notation we will omit the indices J, Bv, putting

λv = λv,J,Bv
when there is no ambiguity.

Moreover, for each σ ∈ S and v ∈ Z
d, let

p[0]v (1) = p[0]v (−1) =
1

2
,

and for k ≥ 1

p[k]v (−σ(v)|σ) =
exp(−

∑
B,v∈B,B⊂Bv(k−1) JBχB(σ))

2
·

·
exp(−

∑
B,v∈B,B⊂Bv(k),B 6⊂Bv(k−1) JBχB(σ))− exp(−

∑
B,v∈B,B⊂Bv(k),B 6⊂Bv(k−1) |JB|)

1− exp(−
∑

B,v∈B,B⊂Bv(k),B 6⊂Bv(k−1) |JB|)
, (5)

p[k]v (σ(v)|σ) = 1− p[k]v (−σ(v)|σ).

Notice that for each a ∈ {−1, 1}, p
[0]
v (a) does not depend on v and that, by construction,

for any k ≥ 1, p
[k]
v (a|σ) depends only on the restriction of the configuration σ to the set

Bv(k); it is an important property that links the backward sketch procedure to the forward

spin procedure.

Note that for each v ∈ Z
d, k ≥ 1 and σ ∈ S, the probability mass functions λv(·) on N

and p
[k]
v (·|σ) on {−1, 1} have been defined differently than in [GLO10]. These changes will

be clarified in Remark 1 and in Remark 2.

The first part of their algorithm constructs a process that we are going to define. LetMv

be the mass to be associated to each vertex v. Given v ∈ Z
d, let {Cn}n∈N = {Cv,Bv

n }n∈N be
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a process with homogeneous Markovian dynamics and which takes values in C = {A ⋐ Z
d}

for n ∈ N. Let C0 = Cv,Bv

0 = {v}.

If Cn = ∅ then Cn+1 = ∅.

If Cn 6= ∅, then the set Cn+1 is constructed as follows. A random vertex Wn is selected,

proportionally to its mass, with

P(Wn = w|Cn) =
Mw∑

z∈Cn
Mz

for w ∈ Cn. (6)

We will choose all the Mv’s equal to a positive constant, therefore the probability in (6) will

be equal to 1/|Cn|. Formula (6) will be used to define more general models in Section 5.

Then a random value Kw,n is drawn by using the probability mass function λw, so P(Kw,n =

k) = λw(k), for k ∈ N. If Kw,n = 0 then Cn+1 = Cn \ {w}; if Kw,n = k, for k ∈ N+, then

Cn+1 = Cn ∪ Bw(Kw,n) = Cn ∪ Bw(k). The following proposition is a summary of some

results in [GLO10] that we write in a more general form about Bv.

Proposition 1. The perfect simulation algorithm in [GLO10] generates a random field with

distribution π if and only if for any v ∈ Z
d

lim sup
n→∞

Cv,Bv

n = ∅ a.s. (7)

A sufficient condition, given in [GLO10], for (7) is

sup
v∈Zd

∞∑

k=1

|B∗
v(k)|λv(k) < 1, (8)

where B∗
v(k) is the ball, in norma L1, centered in v and radius k.

In Section 5 we will show that (8) can be replaced by the following weaker assumption,

for some choice of Bv ∈ Bv,

lim
Λ↑Zd

sup
v/∈Λ

∞∑

k=1

|Bv(k)|λv(k) < 1. (9)

Remark 1. According to the definition of λv, we have also set, differently than [GLO10],

Mv = 2 instead of Mv = 2 exp(
∑

B:v∈B |JB|) and, for k ∈ N, p
[k]
v as in (5). In Theorem 2 of

[GLO10] they prove the decomposition

cv(σ) =Mv

[
λv(0)

2
+

∞∑

k=1

λv(k)p
[k]
v (−σ(v)|σ)

]
, (10)
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by combining (3) with the decomposition

c[l]v (σ) =Mv

[
λv(0)

2
+

l∑

k=1

λv(k)p
[k]
v (−σ(v)|σ)

]
for all l ≥ 1. (11)

Now we have to show that our choices still satisfy the decomposition (11). To this end it

suffices to prove that for any k ≥ 1 and σ ∈ S,

c[k]v (σ)− c[k−1]
v (σ) =Mvλv(k)p

[k]
v (−σ(v)|σ), (12)

where the rates c
[k]
v (σ) for k ≥ 1 and c

[0]
v (σ) = 1

2
Mvλv(0) are defined as in [GLO10]. Since

for k ≥ 2 the right hand side of (12) does not depend on Mv and moreover there is no

difference between our measures λv, p
[k]
v and theirs, (12) is still valid. For k = 1 we have

c[1]v (σ)− c[0]v (σ) =

= exp

(
−
∑

B:v∈B,B 6⊂Bv(1)
|JB|

)
exp

(
−
∑

B:v∈B,B⊂Bv(1)
JBχB(σ)

)
−
Mv

2
exp

(
−

∑

B:v∈B

|JB|

)
=

= exp

(
−
∑

B:v∈B,B 6⊂Bv(1)
|JB|

)
exp

(
−
∑

B:v∈B,B⊂Bv(1)
JBχB(σ)

)

− exp

(
−
∑

B:v∈B,B 6⊂Bv(0)
|JB|

)
exp

(
−
∑

B:v∈B,B⊂Bv(0)
JBχB(σ)

)
=

=Mvλv(1)p
[1]
v (−σ(v)|σ),

where the second equality is valid since it is never verified that B ⋐ Z
d with |B| ≥ 2 and

B ⊂ Bv(0) = {v}.

3 An optimization problem for perfect simulation

In this section we deal with the optimal choice of Bv ∈ Bv, reaching concrete results. We

start with some definitions.

Definition 1. For v ∈ Z
d, the sequence Bv ∈ Bv is less refined than B′

v ∈ Bv, in symbols

Bv � B′
v, if Bv is a subsequence of B′

v.
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This relation between two sequences of Bv is a partial order. The set Bv has no

minimum, nor maximum, nor even minimal elements; nevertheless it has an uncountable

infinite number of maximal elements, corresponding to the sequences of sets which increase

by only one vertex at a time.

Let us define, for v ∈ Z
d, a new probability mass function obtained from λv as follows

λ̂v,J,Bv
(|Bv(l)| − 1) = λv,J,Bv

(l), for l ∈ N,

λ̂v,J,Bv
(i− 1) = 0, for i 6∈ {|Bv(l)|, l ∈ N}.

(13)

Theorem 1. Let v ∈ Z
d, J ∈ J , and Bv, B

′
v ∈ Bv such that Bv � B′

v. Then λ̂v,J,B′
v
�st

λ̂v,J,Bv
.

Proof. For brevity of notation we write λ̂v = λ̂v,J,Bv
and λ̂′v = λ̂v,J,B′

v
. To show the

stochastic ordering λ̂′v �st λ̂v we equivalently prove that for each n ∈ N,

F ′(n) =

n∑

l=0

λ̂′v(l) ≥
n∑

l=0

λ̂v(l) = F (n). (14)

The functions F (n) and F ′(n) are the probability distributions relative to λ̂v and λ̂′v re-

spectively. They are piecewise constant functions whose jumps occur only in the points of

the set {|Bv(l)| − 1, l ∈ N} and {|B′
v(l)| − 1, l ∈ N} respectively, i.e.

F (n) = λ̂v(0) + ...+ λ̂v(n) = λv(0) + ... + λv(j), where j = max{l ∈ N : |Bv(l)| − 1 ≤ n},

F ′(n) = λ̂′v(0)+ ...+ λ̂′v(n) = λ′v(0)+ ...+ λ′v(j
′), where j′ = max{l ∈ N : |B′

v(l)| − 1 ≤ n}.

Now we show that for each m ∈ {|Bv(l)| − 1, l ∈ N},

F (m) = F ′(m). (15)

Let m ∈ {|Bv(l)| − 1, l ∈ N}, then

F (m) = λv(0) + ...+ λv(j), where j is the unique index such that |Bv(j)| − 1 = m,

F ′(m) = λ′v(0) + ...+ λ′v(j
′), where j′ is the unique index such that |B′

v(j
′)| − 1 = m,

from which, by the hypothesis of the theorem,

Bv(j) = B′
v(j

′). (16)
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Note that the following sums are telescopic, hence

n∑

l=0

λv(l) = exp

(
−
∑

B:v∈B,B 6⊂Bv(n)
|JB|

)
and

n∑

l=0

λ′v(l) = exp

(
−
∑

B:v∈B,B 6⊂B′

v(n)
|JB|

)
,

(17)

for n ∈ N+.

From (16) and (17),
j∑

l=0

λv(l) =

j′∑

l=0

λ′v(l)

immediately follows and it implies (15). Since F and F ′ are nondecreasing, from (15) and

{|Bv(l)|, l ∈ N} ⊂ {|B′
v(l)|, l ∈ N}

we obtain (14).

Analogously to [GLO10], see (8), we introduce the following quantity that it will be used

later; we call it the birth-death expectation,

µv,J(Bv) =
∞∑

l=1

|Bv(l)|λv,J,Bv
(l)− 1, (18)

for J ∈ J , v ∈ Z
d, Bv ∈ Bv.

We are now in the position to present our result concerning the birth-death expectation,

it will be involved in their and our sufficient condition for the perfect sampling.

Corollary 1. Let J ∈ J , v ∈ Z
d, Bv, B

′
v ∈ Bv such that Bv � B′

v. Then µv,J(B
′
v) ≤

µv,J(Bv).

Proof. Let J ∈ J , v ∈ Z
d, Bv, B′

v ∈ Bv such that Bv � B′
v and let λ̂v = λ̂v,J,Bv

,

λ̂′v = λ̂v,J,B′
v
be the corresponding measures. Consider the random variables Xv ∼

L λ̂v and

X ′
v ∼L λ̂′v. From Theorem 1, it follows that E(f(Xv)) ≥ E(f(X ′

v)) for each nondecreasing

function f : N → R which has finite expected value E(f(Xv)). Note that

µv,J(Bv) =

∞∑

l=1

|Bv(l)|λv(l)− 1 =

∞∑

l=1

(|Bv(l)| − 1)λv(l)− λv(0) (19)
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=
∞∑

l=1

(|Bv(l)| − 1)λ̂v(|Bv(l)| − 1)− λ̂v(0) =
∞∑

i=1

(i− 1)λ̂v(i− 1)− λ̂v(0) =
∞∑

i=1

i λ̂v(i)− λ̂v(0),

therefore (19) is the expected value of the random variable g(Xv) where,

g(i) =

{
−1 if i = 0;

i if i ≥ 1.
(20)

The function in (20) is nondecreasing. Thus, by the stochastic ordering, µv,J(B
′
v) =

E(g(X ′
v)) ≤ E(g(Xv)) = µv,J(Bv).

Finally we show the utility of our choice of λv which is simpler than theirs.

Remark 2. For each v ∈ Z
d the sequence (λv(k))k≥0, defined in (4), is preferable than

the one given in [GLO10] which we indicate with (λ∗v(k))k≥0. Indeed, given an interaction

J = {JB ∈ R, B ⋐ Z
d}, since λv(0) > λ∗v(0), λv(1) < λ∗v(1) and λv(k) = λ∗v(k) for k ≥ 2,

then the two measures respect the stochastic ordering λv �st λ
∗
v for each v ∈ Z

d. Since

λ̂v(0) = λv(0) > λ∗v(0) = λ̂∗v(0) and λ̂v(0) + λ̂v(k) = λ̂∗v(0) + λ̂∗v(k) for k ≥ |Bv(1)| − 1,

then λ̂v �st λ̂
∗
v. From the latter stochastic ordering, the equalities in (19), and the fact that

the function in (20) is nondecreasing, (18) calculated by λv is smaller than (18) calculated

by λ∗v. Hence our choice of λv facilitates their sufficient condition (8) and our sufficient

condition (9) for the applicability of the algorithm.

By the next two theorems, we see that if an interaction J verifies (9), then all the

interactions obtained from J by changing them on a finite region and by lowing them in

absolute value elsewhere, still verify (9). By Corollary 3 all the associated Gibbs measures

are perfectly simulable.

Theorem 2. Let v ∈ Z
d, Bv ∈ Bv, J, J̃ ∈ J such that |J̃B| ≤ |JB| for each B ⋐ Z

d. Then

λv,J̃,Bv
�st λv,J,Bv

. Hence µv,J̃(Bv) ≤ µv,J(Bv).

Proof. For brevity of notation we write λv = λv,J,Bv
and λ̃v = λv,J̃,Bv

. To show the stochastic

ordering, we equivalently prove that for each v ∈ Z
d, n ∈ N

n∑

l=0

λ̃v(l) ≥
n∑

l=0

λv(l). (21)
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Since |J̃B| ≤ |JB| for each B ⋐ Z
d, then

λ̃v(0) = exp
(
−
∑

B:v∈B
|J̃B|

)
≥ exp

(
−
∑

B:v∈B
|JB|

)
= λv(0),

and for n ≥ 1

n∑

l=0

λ̃v(l) = exp

(
−
∑

B:v∈B,B 6⊂Bv(n)
|J̃B|

)
≥ exp

(
−
∑

B:v∈B,B 6⊂Bv(n)
|JB|

)
=

n∑

l=0

λv(l).

Theorem 3. Given the interactions J, J̃ ∈ J , if the cardinality of C = {B ⋐ Z
d : |JB| 6=

|J̃B|} is finite, then for v ∈ Z
d and Bv ∈ Bv,

lim
Λ↑Zd

sup
v/∈Λ

µv,J(Bv) = lim
Λ↑Zd

sup
v/∈Λ

µv,J̃(Bv). (22)

Proof. Note that the measures λv,J,Bv
, λv,J̃,Bv

are equal for each v such that all the finite

subsets B containing v do not belong to C. In fact if {B ⋐ Z
d : v ∈ B,B ∈ C} = ∅, then for

each B including v we have |JB| = |J̃B|, hence λv,J,Bv
= λv,J̃,Bv

for each k ≥ 0. Therefore

for Λ ⊃
⋃

B∈C B

sup
v/∈Λ

µv,J(Bv) + 1 = sup
v/∈Λ

∞∑

k=1

|Bv(k)|λv,J,Bv
(k) = sup

v/∈Λ

∞∑

k=1

|Bv(k)|λv,J̃,Bv
(k) = sup

v/∈Λ

µv,J̃(Bv) + 1.

(23)

Since the cardinality of C is finite, then
⋃

B∈C B is finite. Therefore passing to the limit in

(23) for Λ ↑ Z
d, we obtain (22).

Condition (9) is equivalent to limΛ↑Zd supv/∈Λ µv,J(Bv) < 0, therefore we are interested in

finding the infimum value

inf
x∈Bv

µv,J(x). (24)

We define Ev by distinguishing two cases Nv = ∞, Nv < ∞. In the first case let Ev be a

subset of Bv such that each element (Bv(l))l∈N ∈ Ev has the property that there exists a

sequence {ik}k∈N where Bv(l) =
⋃l

k=1Aik ,v for l ∈ N+. When Nv <∞, let Ev be a subset of

Bv such that each element (Bv(l))l∈N ∈ Ev has the property that

∃l̄ : Bv(l̄) =

Nv⋃

k=1

Ak,v, ∃(i1, . . . , il̄) : Bv(l) =

l⋃

k=1

Aik,v ∀l ≤ l̄. (25)
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We notice that, for each l > l̄, λv(l) = 0 for any choice of Bv(l) verifying 2).

In the next theorem we restrict the research of the infimum from Bv to Ev. This produces

a sensitive improvement in the case that Nv is finite for each vertex v ∈ Z
d , in this case

the infimum is a minimum because there is a finite number of choices in (25).

Theorem 4. Let J ∈ J , v ∈ Z
d, then

inf
x∈Bv

µv,J(x) = inf
x∈Ev

µv,J(x).

Proof. First we consider the case Nv = ∞. We endow Bv with the discrete topology. To

prove the theorem we will show that for each x ∈ Bv there exists y ∈ Ev such that µv,J(y) ≤

µv,J(x). By starting from x = (x(l))l∈N ∈ Bv, we will construct a sequence of points

{x(n) ∈ Bv}n∈N such that x(0) = x and limn→∞ x(n) = y ∈ Ev; we will prove that, for n ∈ N,

µv,J(x
(n+1)) ≤ µv,J(x

(n)) and then, by Fatou’s lemma, µv,J(y) ≤ lim infn→∞ µv,J(x
(n)), from

which µv,J(y) ≤ µv,J(x).

Let x(0) = x = {x(l)}l∈N ∈ Bv, we now give the rules to construct x(1). Define

k0 = 1 + sup{l ∈ N+ : ∃(i1, . . . , il) s.t. x(j) =

j⋃

k=1

Aik ,v for any j = 1, . . . , l},

if k0 = ∞, then x ∈ Ev and there is nothing to prove. If k0 <∞ then define

I = {i : Ai,v ⊂ x(k0)},

I− = {i : Ai,v ⊂ x(k0 − 1)}.

If I = I− then eliminate x(k0) from the sequence obtaining x(1)(l) = x(l), for l ≤ k0 − 1,

x(1)(l) = x(l + 1), for l ≥ k0. In this case µv,J(x
(0)) = µv,J(x

(1)).

If I 6= I−, consider j = min{i : i ∈ I \ I−}, define x(1)(l) = x(l), for l ≤ k0 − 1,

x(1)(k0) = x(k0 − 1) ∪ Aj,v, x
(1)(l) = x(l − 1), for l ≥ k0 + 1. It is easy to check that the

sequence x(1) verify the conditions 1), 2) and 3). In this case the sequence x(0) is less refined

than x(1), therefore µv,J(x
(0)) ≥ µv,J(x

(1)), by Corollary 1.

We repeat the procedure to construct x(n+1) from x(n), for any n ∈ N+. Obviously

there exists limn→∞ x(n) = y ∈ Ev. Since λ̂v,J,z(0) does not depend on z ∈ Bv we set

λ̂v,J(0) = λ̂v,J,z(0), therefore we can write

µv,J(y) = −λ̂v,J,y(0) +
∞∑

i=1

iλ̂v,J,y(i) = −λ̂v,J(0) +
∞∑

i=1

lim inf
n→∞

iλ̂v,J,x(n)(i)
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≤ −λ̂v,J(0) + lim inf
n→∞

∞∑

i=1

iλ̂v,J,x(n)(i) = lim inf
n→∞

µv,J(x
(n)) ≤ µv,J(x),

where the first inequality follows by Fatou’s lemma. The case Nv < ∞ is simpler and in a

finite number n0 of steps one obtains that x(n0) is in Ev.

Remark 3. If for any v ∈ Z
d the number Nv is small and if it can be proved that for some

(xv ∈ Bv)v∈Zd

lim
Λ↑Zd

sup
v/∈Λ

µv,J(xv) < 0, (26)

then one can write the algorithm. Proving (26) is a little easier than proving their sufficient

condition, and in both cases it should be done a priori. In the backward sketch procedure a

random vertex w is selected, now the algorithm calculates x̂w = argminx∈Ew µw,J(x) with a

finite number of elementary operations because, for any x ∈ Ew, λw,J,x(l) must be calculated

for l = 1, . . . , Nw and also all the sums involved in the definition of λw,J,x and of µw,J(x) are

finite. Moreover the x’s in Ew to be considered are at most (Nw!). By comparing the finite

list (having at most Nw! elements) of µw,J(x) with x ∈ Ew, the algorithm finds x̂w ∈ Ew such

that µw,J(x̂w) = minx∈Ew µw,J(x). This procedure is repeated for all the selected vertices,

which are almost surely finite. Hence the problem is computable and the previous procedure

is really an algorithm. The computability is guaranteed by the fact that Nv is finite, further

the algorithm runs in reasonable time if Nv is small.

If Nv is large or equal to infinity, if one succeed to calculate a (xv ∈ Bv)v∈Zd such that

condition (26) is satisfied, then the algorithm can use this particular choice.

4 A general result on the extinction of a population

The following theorem gives a generalization of the results on Galton-Watson’s process and

it applies to processes that behave like a supermartingale when they assume large values.

Sometimes we will write for brevity of notation ikh in place of the vector (ih, ..., ik), for

h < k.

Theorem 5. Let X = {Xn : n ∈ N} be a stochastic process over N. Suppose that there

exists N ∈ N such that the following relations hold:

1) P(Xn+1 = 0|Xn = 0) = 1, for n ∈ N;

12



2) for i ≤ N there exists ni ∈ N+ such that

qi = ess infm∈N,i0,...,im−1∈N+P(Xm+ni
= 0|X0 = i0, . . . , Xm = im) > 0, im = i;

3) E(Xn+1|X0 = i0, . . . , Xn = in) ≤ in a.s. for n ∈ N, i0, . . . , in−1 ∈ N, in > N ;

4) pi = ess infm∈N,i0,...,im−1∈N+P(Xm+1 6= i|X0 = i0, . . . , Xm = im) > 0, im = i > N .

Then

lim
n→∞

Xn = 0 a.s.

Proof. Let A = {0, 1, ..., N}, B = {N + 1, N + 2, ...} where N is given in the theorem. Let

us define

T
(1)
A→B = inf{n ≥ 0 : Xn ∈ B}, T

(1)
B→A = inf{n > T

(1)
A→B : Xn ∈ A}, (27)

T
(h)
A→B = inf{n > T

(h−1)
B→A : Xn ∈ B}, T

(h)
B→A = inf{n > T

(h)
A→B : Xn ∈ A}, (28)

for h ≥ 2.

The random variables {T
(h)
A→B, T

(h)
B→A : h ∈ N} are stopping time. We put T

(h)
A→B = ∞

if the set, on which the infimum is defined, is empty or if T
(h−1)
B→A = ∞. Similarly we write

T
(h)
B→A = ∞ if the set, on which the infimum is defined, is empty or if T

(h)
A→B = ∞. The

following inequalities are obtained directly by definitions (27) and (28)

T
(1)
A→B ≤ T

(1)
B→A ≤ T

(2)
A→B ≤ . . . ≤ T

(h)
A→B ≤ T

(h)
B→A ≤ . . .

The previous inequalities are strict until one of these stopping times becomes infinite.

Let us define the stopped process {Y
(m)
n = X

n∧T
(m)
B→A

: n ∈ N} on {T
(m)
A→B < ∞}, for

m ∈ N+. We do a partition of {T
(m)
A→B <∞} in the sets {{T

(m)
A→B = k} : k ∈ N+}. On every

set {T
(m)
A→B = k}, the elements of A are absorbing states for Y

(m)
n when n ≥ k, therefore

{Y
(m)
n }n≥k is a non-negative supermartingale on {T

(m)
A→B = k}, by hypothesis 3). Thus, see

[Wil91], there exists

lim
n→+∞

Y (m)
n <∞ on {T

(m)
A→B <∞} a.s. (29)

We will prove that the limit in (29) belongs to A almost surely.

13



Given k ∈ N+, we prove (29) on the set {T
(m)
A→B = k}. In fact if, by contradiction, i ∈ B

P( lim
n→+∞

Y (m)
n = i|T

(m)
A→B = k) = P

( ∞⋃

h=k+1

∞⋂

n=h

{Y (m)
n = i}

∣∣∣∣T
(m)
A→B = k

)
≤

≤
∞∑

h=k+1

P

( ∞⋂

n=h

{Y (m)
n = i}

∣∣∣∣T
(m)
A→B = k

)
≤

∞∑

h=k+1

∞∏

r=h+1

P(Y (m)
r = i|Y

(m)
h = . . . = Y

(m)
r−1 = i, T

(m)
A→B = k) =

=
∞∑

h=k+1

∞∏

r=h+1

P(Xr = i|Xh = . . . = Xr−1 = i, T
(m)
A→B = k) , (30)

the latter equality is a consequence of the fact that if the limit belongs to B then the process

{Xn}n≥k never visits A and so, in this case, the processes {Y (m)
n }n≥k and {Xn}n≥k coincide.

Now, by using hypothesis 4) and a standard argument on the partition of the trajectories,

we obtain the following upper bound for (30)

∞∑

h=k+1

∞∏

r=h

(1− pi) = 0. (31)

Hence we get that

lim
n→+∞

Y (m)
n ∈ A a.s.

or equivalently that

P

(
{T

(m)
A→B <∞} \ {T

(m)
B→A <∞}

)
= 0.

From which it follows that

P(·|T
(m−1)
A→B <∞) = P(·|T

(m−1)
B→A <∞). (32)

Notice that, if the numbers ni, for i = 0, . . . , N , verify hypothesis 2) of the theorem,

then, by taking a n ≥ max{ni : i ≤ N}, condition 2) is still verified. In fact if the process

visits the state zero, then it indefinitely remains in zero, which directly follows by hypothesis

1). Therefore let us define ñ = max{ni : i ≤ N} ∈ N+, then hypothesis 2) is satisfied by

using ñ instead of ni where the values of the qi’s can only increase by replacing all the ni’s

with ñ. Hence all the qi’s calculated setting ni = ñ are greater than some positive constant q

which can be chosen equal to inf{qi : i = 1, . . . , N}.
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Then we get, for k ∈ N+, almost surely

P(T
((k+1)ñ)
A→B = ∞|T

(kñ)
A→B <∞) = P(T

((k+1)ñ)
A→B = ∞|T

(kñ)
B→A <∞), (33)

by (32). By denoting the set of trajectories Mn,k = {in0 ∈ N
n : {Xn

0 = in0} ⊂ {T
(kñ)
B→A = n}},

from the previous relation we obtain almost surely

P(T
((k+1)ñ)
A→B = ∞|T

(kñ)
B→A <∞) =

=
∞∑

n=1

∑

in0∈Mn,k

P(T
((k+1)ñ)
A→B = ∞|T

(kñ)
B→A = n,Xn

0 = in0 )P(T
(kñ)
B→A = n,Xn

0 = in0 |T
(kñ)
B→A <∞) ≥

≥
∞∑

n=1

∑

in0∈Mn,k

P(Xn+ñ = 0|Xn
0 = in0 )P(T

(kñ)
B→A = n,Xn

0 = in0 |T
(kñ)
B→A <∞) ≥ q > 0.

Thus indicating m = ⌊n/ñ⌋ for a generic n ∈ N+, we obtain the following relation

P(T
(n)
A→B <∞) ≤

m∏

k=2

P(T
(kñ)
A→B <∞|T

((k−1)ñ)
A→B <∞) ≤ (1− q)m−1.

Since, for each n ∈ N+, {T
(n)
A→B < ∞} ⊃ {T

(n+1)
A→B < ∞}, by the monotone convergence

theorem

P

( ∞⋂

n=1

{T
(n)
A→B <∞}

)
= lim

n→+∞
P(T

(n)
A→B <∞) ≤ lim

n→+∞
(1− q)⌊n/ñ⌋−1 = 0.

Hence almost surely there exists a finite random index S = 2, 3, . . . such that T
(S−1)
A→B < ∞,

T
(S−1)
B→A <∞ and T

(S)
A→B = ∞, then Xn ∈ A for any n ≥ T

(S−1)
B→A . It remains to show that the

process can not stay indefinitely in {1, 2, . . . , N}.

Let us define

X̃k = Xkñ, for k ∈ N.

Note that for the process X̃ = {X̃n : n ∈ N} there exists a random time almost surely finite

T̃A = inf{n : X̃k ∈ A, for k ≥ n},

such that the process remains indefinitely in A after T̃A. Moreover observe that T̃A is not a

stopping time and it shall be taken into account the information provided by the value of

T̃A. Directly from hypothesis 2) it follows that

q̃ = ess infm∈N,i0,i1,...,im−1∈N,im∈AP(X̃m+1 = 0|X̃m
0 = im0 )
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is positive.

Now we will show that for each n ∈ N+,

ess infm≥n,in−2
0 ∈Nn−1,in−1∈B,in,...,im∈AP(X̃m+1 = 0|T̃A = n, X̃m

0 = im0 ) ≥ q̃ > 0. (34)

We notice that for in−2
0 ∈ N

n−1, in−1 ∈ B, in, . . . , im ∈ A,

{X̃m
0 = im0 , X̃m+1 = 0} ⊂ {T̃A = n},

from which

P(X̃m
0 = im0 , X̃m+1 = 0) ≤ P(T̃A = n).

Hence almost surely

P(X̃m+1 = 0|T̃A = n, X̃m
0 = im0 ) =

P(T̃A = n, X̃m
0 = im0 , X̃m+1 = 0)

P(T̃A = n, X̃m
0 = im0 )

=

=
P(X̃m

0 = im0 , X̃m+1 = 0)

P(T̃A = n, X̃m
0 = im0 )

≥
P(X̃m

0 = im0 , X̃m+1 = 0)

P(X̃m
0 = im0 )

= P(X̃m+1 = 0|X̃m
0 = im0 ).

From which by taking the essential infimum,

ess infm≥n,in−2
0 ∈Nn−1,in−1∈B,in,...,im∈AP(X̃m+1 = 0|T̃A = n, X̃m

0 = im0 ) ≥

≥ ess infm≥n,in−2
0 ∈Nn−1,in−1∈B,in,...,im∈AP(X̃m+1 = 0|X̃m

0 = im0 ) ≥

≥ ess infm∈N,i0,i1,...,im−1∈N,im∈AP(X̃m+1 = 0|X̃m
0 = im0 ) = q̃ > 0.

Analogously to (31), by the latter inequalities and standard arguments on the partition of

trajectories, one obtain that the process X̃ will be eventually equals to zero. Obviously the

same property is obtained for the original process X, i.e. limn→+∞Xn = 0 a.s.

Remark 4. We note that, in the previous theorem, the process {Xn}n∈N could be a non-

homogeneous Markov chain. In particular one can consider a culture of bacteria in which

the number of its population affects the ability of reproduction of the bacteria by changing

the probability that the cell dies before its mitosis. In some way we can think that a process

{Xn}n∈N, verifying the assumptions of Theorem 5, can be chosen as a model for these

biological cultures. Therefore the bacteria cultures will die in a finite time.
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5 Applications of Theorem 5 to perfect simulation

Let us consider a probability mass function ψv indexed by v ∈ Z
d and let

∑∞
l=0 ψv(l) = 1.

Moreover, for each v ∈ Z
d, let ψv(0) > 0.

Let us associate to each vertex v ∈ Z
d a sequence Sv = {Sv(l) ⋐ Z

d : l ∈ N+} and a

mass Mv such that infv∈Zd Mv ≥ 1.

Let v ∈ Z
d and {Dn}n∈N be a homogeneous Markov chain with countable state space

C = {A ⋐ Z
d}.

At time zero the Markov chain has a initial measure ν(0). The rules of the dynamics are

given in Section 2, it only needs to replace Cn, Bv, λv with Dn, Sv, ψv respectively.

Let us define, for each v ∈ Z
d,

ηv = −ψv(0) +
∞∑

l=1

|Sv(l)|ψv(l), (35)

which is similar a 18 and it plays the same role.

We are now in the position to present our result on the almost surely extinction of

processes above defined.

Corollary 2. Let ηv as in (35), if limΛ↑Zd supv/∈Λ ηv < 0, then lim supn→∞Dn = ∅ almost

surely.

Proof. Let Xn = |Dn|, we want to show that the process {Xn}n∈N verifies all the hypotheses

of Theorem 5. Hypothesis 1) is trivially verified since that if Dn = ∅, then Dn+1 = ∅ .

We verify now hypothesis 3). First of all note that from the assumption of the corollary it

follows the existence of a δ > 0 such that the set

Rδ = {v : ηv > −δ} (36)

has finite cardinality.

Let us fix δ > 0 such that |Rδ| <∞, we define a = max{0,Mvηv : v ∈ Rδ}.

Let us consider Dn 6= ∅, we easily see that

E(Xn+1|Dn) = E(|Dn+1| |Dn) ≤ |Dn|+
∑

v∈Dn

Mv∑
u∈Dn

Mu
ηv.

17



Under the assumption of the corollary and since Mv ≥ 1 for each v ∈ Z
d, we obtain

E(Xn+1|Dn) ≤ |Dn|+
1∑

u∈Dn
Mu

[a|Rδ| − δ(|Dn| − |Rδ|)] .

We get that if

|Dn| ≥

⌈
a|Rδ|

δ
+ |Rδ|

⌉
≡ N, (37)

then E(Xn+1|Dn) ≤ Xn. Since

E(Xn+1|X
n
0 = in0 ) =

∑

A⋐Zd:|A|=in

E(Xn+1|Dn = A)P(Dn = A|Xn
0 = in0 ), (38)

we have that (38) is lesser or equal to Xn = in when in ≥ N . Hence the property 3) is

obtained by choosing N as in (37), because all the summands in (38) are non-positive.

Now we show that

ξ = inf
v∈Zd

ψv(0) > 0.

Note that

ρ = inf{ψv(0) : v ∈ Rδ} > 0

because it is an infimum on a finite set of positive numbers. Moreover, from (35), it follows

ρ′ = inf{ψv(0) : v ∈ Rc
δ} ≥ δ > 0.

Hence

ξ = min{ρ, ρ′} > 0.

Therefore the hypothesis 2) is verified for ni = N and the qi’s are larger or equal than

ξN > 0, for i ≤ N .

We also obtain 4) by observing that pi ≥ ξ > 0 for each i ∈ N+.

Thus, from Theorem 5,

lim
n→+∞

Xn = 0 a.s.

There exists an almost surely finite random time Y such that CY = ∅.

Given J ∈ J , Bv ∈ Bv, we set

Sv(l) = Bv(l) \ {v} for l ∈ N+, v ∈ Z
d,

and ψv = λv,J,Bv
, then, by a simple calculation, ηv = µv,J(Bv). Putting Mu = const., for

each u ∈ Z
d, and ν(0) = δ{v} the process {Dn}n coincides with {Cn}n defined in Section 2.
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Corollary 3. Let J ∈ J , v ∈ Z
d, Bv ∈ Bv. If limΛ↑Zd supv/∈Λ µv,J(Bv) < 0, then

lim supn→∞Cn = ∅ almost surely. Moreover a sufficient condition for the perfect sampling

from a Gibbs measure is limΛ↑Zd supv/∈Λ µv,J(Bv) < 0.

The second part of the corollary is a direct consequence of the first part of the corollary

and Proposition 1.
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