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Abstract

We develop a fast numerical algorithm for large scale zero-sum stochas-
tic games with perfect information, which combines policy iteration and
algebraic multigrid methods. This algorithm can be applied either to a
true finite state space zero-sum two player game or to the discretization of
an Isaacs equation. We present numerical tests on discretizations of Isaacs
equations or variational inequalities. We also develop a full multi-level pol-
icy iteration, similar to FMG, which allows one to improve substantially
the computation time for solving some variational inequalities.

1 Introduction

Consider a game on a finite state space X with discounted infinite horizon payoff.
Each pair of strategies of the two players determines a Markov chain on X . The
value v of the game satisfies the following dynamic programing equation [42]:

v(x) = max
a∈A(x)

 min
b∈B(x,a)

∑
y∈X

µ p(y |x, a, b) v(y) + r(x, a, b)

 ∀x ∈ X .

(1)
where v(x) is the value of the game starting from the state x ∈ X , r(x, a, b)
is the paiment made by the second player to the first player when the Markov
chain is in state x, if the players choose the actions a and b respectively at the
current time, p(y |x, a, b) is the transition probability of the Markov Chain from
state x to state y, given the actions a and b at the current time, and µ < 1 is
the discount factor.

Equation (1) may also be obtained after a suitable discretization of Hamilton-
Jacobi-Bellman or Isaacs partial differential equations :

max
a∈A

min
b∈B

∑
ij

aij(a, b, x)
∂2v(x)

∂xi∂xj
+
∑
j

bj(a, b, x)
∂v(x)

∂xj
− λv(x) + r(x, a, b)

 = 0 for x in X

(2)
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which are dynamic programing equations of zero-sum stochastic differential
games. This is the case for instance of Markov chain discretizations [30, 31],
monotone discretizations [7]. Other possible discretizations include full dis-
cretizations of semi-Lagrangian type [5], and max-plus finite element method [3]
for deterministic games or control roblems.

One can solve classically (1) by applying the fixed point method which is
known as the value iteration algorithm [8]. The iterations are cheap but their
convergence slows considerably as µ approaches one, which holds when the dis-
cretization step h for (2) is small, since then µ = 1 − O(λh2). Another ap-
proach consists in the so called policy iteration algorithm, initially introduced
by Howard [29] for one player games. For two players games, Hoffman and
Karp [26] were the first to give the algorithm in the special mean-payoff case
when the Markov chains associated to any policies of the two players are all
irreductible. In 1967, Dernado, in his study of contracting maps [17], pro-
posed a generalization of Howard’s algorithm with an approximate solution and
convergence results. He applied his method to Shapley’s zero-sum two player
stochastic terminating games. In the nighties (95), the policy iteration method
was clearly established for two player zero-sum discounted stochastic games in
Puri thesis [39]. In 2006, Cochet-Terrasson and Gaubert [14] gave an algorithm
for the general ergodic case.

Recall that a (pure feedback) policy ᾱ for the first player maps any x ∈ X
to an action ᾱ(x) ∈ A(x). Then, the policy algorithm consists in improving
at each step a policy for the first player, by computing the value of the game
for this current policy, then finding the optimal policy for the corresponding
value function, that is the policy optimizing the expression inside the “max”
in (1). Computing the above value functions is performed itself using the policy
iteration algorithm for a one-player game. It is well known that, by monotonic-
ity of dynamic programming operators, the sequence of value functions of the
(internal) policy iteration for a one-player “min” game is non increasing (see for
instance [40, 32, 9]). From the same property, the sequence of value functions
of the policy iteration for two-player game (1) is non decreasing (see [39, 14]).
In both cases, the iteration stops after a finite time when the sets of actions are
finite (see again [9, 32, 39]).

However, basic policy iteration can be exponential in time. Recall that the
number of iterations is bounded by the number of possible strategies, which is
exponential in |X |. Friedmann has shown [25] that a strategy improvement al-
gorithm requires an exponential number of iterations for some particular parity
games, this result can be extended to other types of games, and to undiscounted
or ergodic (mean-payoff) stochastic control problems (one-player games) as
shown by Fearnley [20, 21]. However, in all cases, policy algorithm converges
faster than the value iteration algorithm and in practice it ends in few steps (see
for instance large scale random examples for deterministic games shown in [18]).
In addition, under regularity assumptions, the policy iteration algorithm for a
one player game with infinite action spaces is equivalent to Newton’s method,
thus can have a super-linear convergence in the neighborhood of the solution,
see [40, 2, 4] for order p > 0 superlinear convergence under some regularity and
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strong convexity assumptions, and [10] for superlinear convergence under more
general regularity assumptions.

In each internal iteration of the policy iterations, one needs to solve a linear
system of equations, the dimension of which is equal to the cardinality |X | of the
state space X . When (1) is coming from the discretization of the Isaacs partial
differential equation (2), these linear systems correspond to discretizations of
linear elliptic equations, hence may be solved in the best case in a time in the
order of |X |, by using multigrid methods. In general, using the nice monotonicity
properties of the underlying linear systems, one may expect the same complexity
when solving them by an algebraic multigrid method.

In the present paper, we introduce an algorithm, named AMGπ, which
is the combination of policy iterations with the algebraic multigrid method
(AMG) introduced by Brandt, McCormick and Ruge [12, 13], see also Ruge and
Stüben [41]. This algorithm can be applied either to a true finite state space
zero-sum two player game or to the discretization of an Isaacs equation.

Such an association of multigrid methods with policy iteration has already
been used and studied in the case of one player games, that is discounted stochas-
tic control problems (see Hoppe [27, 28] and Akian [1, 2] for Hamilton-Jacobi-
Bellman equations or variational inequalities, Ziv and Shimkin [38] for AMG
with learning methods). However, it is new in the case of two player games.

We have implemented this algorithm (in C) and shall present numerical tests
on discretizations of Isaacs or Hamilton-Jacobi-Bellman equations or variational
inequalities, while comparing AMGπ with policy iteration with direct solvers.

In some reachability (or pursuit-evasion) games, the number of policy iter-
ations is typically in the order of the diameter of the graph of the controlled
Markov chain, which is in the order of 1/h, where h is the discretization step.
However, as for Newton’s algorithm, convergence can be improved by starting
the policy iteration with a good initial guess, close to the solution. In this way,
we developed a full multi-level policy iteration, similar to FMG. It consists in
solving the problem at each grid level by performing policy iterations (combined
with algebraic multigrid method) until a convergence criterion is verified, then
to interpolate the strategies and value to the next level, in order to initialize
the policy iterations of the next level, until the finest level is attained. For one-
player discounted games with infinite number of actions and under regularity
assumptions, one can show [2, 1] that this full multi-level policy iteration has
a computing time in the order of |X |. Below, we give numerical examples on
variational inequalities for two player games, the computation time of which
is improved substantially using the full multi-level policy iteration instead of
AMGπ.

The paper is organized as follow. The three following sections are some re-
calls about basic definitions on the subject. In Section 2, we introduce the defi-
nition of a two player zero-sum stochastic game with finite state space and the
corresponding dynamic programming equation. Section 3 is about two player
zero-sum stochastic differential games, we recall here the definition of the Isaacs
equation, the variational inequalities and the discretization scheme that we use.
Section 4 is devoted to the numerical background needed to solve the dynamic
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programming equation, including the policy iteration algorithm and the alge-
braic multigrid method. Section 5 describes our algorithms AMGπ and full
multi-level AMGπ. We present in Section 6 some numerical tests on Isaacs
equations and variational inequalities. Last section gives concluding remarks.

2 Two player zero-sum stochastic games: the
discrete case

The class of two player zero-sum stochastic game was first introduced by Shapley
in the early fifties [42]. We recall in this section the definition of these games in
the case of finite state space and discrete time (for more details see [42, 22, 43]).

We consider a finite state space X = {1, . . . , n}. A stochastic process (ξk)k≥0

on X gives the state of the game at each point time k, called stage. At each
of these stages, both players have the possibility to influence the course of the
game.

The stochastic game Γ(x0) starting from x0 ∈ X is played in stages as
follows. The initial state x0 is given and known by the players. The player who
plays first, says max, chooses an action a0 in a set of possible actions A(x0).
Then the second player, called min chooses an action b0 in a set of possible
actions B(x0, a0). The actions of both players and the current state determine
the payment r(x0, a0, b0) made by min to max and the probability distribution
p(·|x0, a0, b0) of the new state x1. Then the game continue in the same way
with state x1 and so on.

At a stage k, each player chooses an action knowing the history defined by
hk = (x0, a0, b0, · · · , xk−1, ak−1, bk−1, xk) for max and (hk, ak) for min. We call
a strategy or policy for a player, a rule which tells him the action to choose in
any situation. They are several classes of strategies. A behavior or randomized
strategy for max (resp. min) is represented by a sequence ᾱ := (ᾱ0, ᾱ1, · · · )
(resp. β̄ := (β̄0, β̄1, · · · )) where ᾱk (resp. β̄k) is a map which to the history hk
(resp. (hk, ak)) at stage k associates a probability distribution on the possible
actions space A(xk) (resp. B(xk, ak)). A Markovian (or feedback) strategy is a
strategy which only depends on the information of the current stage k: ᾱk (resp.
β̄k) depends only on xk (resp. (xk, ak)), then ᾱk(hk) (resp. ᾱk(hk, ak)) will be
denoted ᾱk(xk) (resp. β̄k(xk, ak)). It is said stationary if it is independent of k,
then ᾱk is also denoted by ᾱ and β̄k by β̄. A strategy of any type is said pure if
for any stage k, the values of ᾱk (resp. β̄k) are Dirac probability measures at a
certain action in A(xk) (resp. B(xk, ak)) then we shall denote also by ᾱk (resp.
β̄k) the map which to the history assigns the only possible action in A(xk) (resp.
B(xk, ak)).

A strategy (ᾱk)k≥0 (resp.
(
β̄k
)
k≥0

) together with an initial state determines

stochastic processes, (ζk)k≥0 for the actions of max, (ηk)k≥0 for the actions of
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min and (ξk)k≥0 for the states with

P (ξk+1 = y | ιk = h, ζk = a, ηk = b) = p(y |x, a, b) (3a)

P (ζk ∈ A | ιk = h) = ᾱk(x)(A) (3b)

P (ηk ∈ B | ιk = h, ζk = a) = β̄k(x, a)(B) (3c)

where the process ιk is defined by (ξ0, ζ0, η0, . . . , ξk), h is the history vector at
time k: (x0, a0, b0, . . . , xk−1, ak−1, bk−1, x) and for all measurable sets A (resp.
B) in A(x) (B(x, a) resp). For instance, for each pair of Markovian stationary
strategies (ᾱ, β̄) of the two players, the state process (ξk)k≥0 is a Markov chain
on X with transition probability

P (ξk+1 = y | ξk = x) = pᾱ(x),β̄(x,·)(y |x)

where

pα,β(y |x) =

∫
a∈A(x)

∫
b∈B(x,a)

p(y |x, a, b) d(β(a))(b) dα(a)

with x, y ∈ X and (ξk, ζk, ηk)k≥0 is a Markov Chain on {(x, a, b) |x ∈ X , a ∈
A(x), b ∈ B(x, a)}.

The payoff of the game Γ(x0) starting from x0 ∈ X is the expected sum of
all rewards that max wants to maximize and min to minimize. In this paper
we consider discounted games Γµ with discount factor 0 < µ < 1. When the
strategies ᾱ for max and β̄ for min are fixed, the payoff of the game Γµ(x0, ᾱ, β̄)
starting from x0 is

J(x0, ᾱ, β̄) = Eᾱ,β̄x0

[ ∞∑
k=0

µkr(ξk, ζk, ηk)

]
,

where Eᾱ,β̄x0
denotes the expectation for the probability law determined by (3).

A discounted game can be seen equivalently as a game which has, in each stage,
a stopping probability equal to 1−µ, independent of the actions taken by both
players. The value of the game starting from x0 ∈ X , Γµ(x0), is then given by

v(x0) = sup
ᾱ

inf
β̄
J(x0, ᾱ, β̄), (4)

where the supremum is taken among all strategies ᾱ for max and the infimum is
taken over all strategies β̄ for min. Note that a non terminating game without
any discount factor (or µ = 1) is called ergodic.

We are concerned in finding optimal strategies for both players and the
value of the discounted game Γµ in each point. These are given by the dynamic
programming equation [42] defined below.

Theorem 2.1 (Dynamic programming equations [42]). Assume A(x) and B(x, a)
are finite sets for all x ∈ X , a ∈ A(x). Then, the value v of the stochastic game
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Γµ, defined in (4), is the unique solution v : X → R of the following dynamic
programing equation:

v(x) = max
a∈A(x)

 min
b∈B(x,a)

∑
y∈X

µ p(y |x, a, b) v(y) + r(x, a, b)


︸ ︷︷ ︸

=F (v;x)

∀x ∈ X .

(5)
Moreover, optimal strategies are obtained for both players by taking pure

Markovian strategies ᾱ for max and β̄ for min such that ᾱ(x) attains the maxi-
mum in (5) for each x in X and that β̄(x, a) attains the minimum for F (v;x, a)
at all a in A(x) and x in X where

F (v;x, a) = min
b∈B(x,a)

∑
y∈X

µ P (y|x, a, b) v(y) + r(x, a, b)

 . (6)

We denote by F the dynamic programing operator from RX to itself which
maps v to the function

F (v) : X → R
x → F (v;x)

(7)

where F (v;x) is defined in (5). This operator is monotone and contracting with
constant 1 − µ in the sup-norm, i.e. ‖F (v)− F (v

′
)‖∞ ≤ (1 − µ)‖v − v′‖∞ for

all v, v
′ ∈ RX .

3 Two player zero-sum stochastic differential games:
the continuous case

Now we give some examples of partial differential equations associated to stochas-
tic differential games. After applying a suitable discretization, these partial dif-
ferential equations yield dynamic programming equations of finite state space
zero-sum two player games, which were described in the previous section.

3.1 Isaacs equations with Dirichlet boundary conditions.

Assume now that the state space is a regular open subset X of Rd. Suppose
a probability space Ω is given, as also a filtration (Ft)t≥0 on it. We consider
games where the dynamics is governed by the following stochastic differential
equation :

dξt = b(ξt, ζt, ηt) dt+ σ(ξt, ζt, ηt) dWt, (8)

with initial state ξ0 = x ∈ X and where Wt is a m-dimensional Wiener process
on (Ω, (Ft)t≥0), ζt and ηt are adapted stochastic processes taking values in
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respectively closed subsets of Rp and Rq, A and B. We shall also denote by ᾱ
(resp. β̄) the strategy of player max (resp. min) which determines the process
ζt (resp. ηt).

We denote by τ the first exit time of ξt of X . The discounted payoff of the
game stopped at the boundary, with discount rate λ, is

J(x; ᾱ, β̄) = Eᾱ,β̄x
[ ∫ τ

0

e−λtr(ξt, ζt, ηt) dt+ e−λτψ(ξτ ) | ξ0 = x

]
. (9)

The value function of the differential stochastic game starting from x is
defined by

v(x) = sup
ᾱ

inf
β̄

J(x; ᾱ, β̄)

where the supremum is taken among all strategies ᾱ for max and the infimum
is taken over all strategies β̄ for min.

As previously, we are interested in finding the value function of the game
and the corresponding optimal strategies. Denote by L(v; (x, a, b)) the second
order elliptic partial differential operator :

L(v; (x, a, b)) :=
∑
ij

aij(a, b, x)
∂2v(x)

∂xi∂xj
+
∑
j

bj(a, b, x)
∂v(x)

∂xj
− λv(x),

with (aij)i,j=1,..,d =
1

2
σσt. The value of the game v is solution (under regu-

larity assumptions on Ω and on the functions b, σ, r and ψ) of the dynamic
programming equation, called Isaacs equation: max

a∈A

(
min
b∈B

(L(v; (x, a, b)) + r(x, a, b) )

)
= 0 for x in X

v = ψ on ∂X .

(10)

This has been shown in the viscosity sense in [23]. See also [15] and references
therein for uniqueness of the solution of (10). If v is a classical solution of (10)
and ᾱ and β̄ are such that ᾱ(x) realizes the maximum for max and β̄(x, a)
the minimum for min in (10) for all x in X and a ∈ A(x), and such actions
are unique, then the strategy ζt = ᾱ(ξt) (resp. ηt = β̄(ξt, ζt)) is a stationary
Markovian pure strategy for (8) and (9).

Note that for a game with one player, i.e. for a stochastic control problem,
equation (10) is the so-called Hamilton-Jacobi-Bellman equation.

3.2 Variational inequalities

We consider games in which some of the players have the choice of stopping
the game at any moment, for detailed description see [24]. These are called
optimal stopping time games. We assume here that max has this ability and
that his possible actions consist only in choosing the stopping time κ of the
game (0 ≤ κ ≤ τ) or equivalently an element of the action space {1, 2} where
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1 means that the game is continuing, 2 that the game stops, with ζs = 2 and
ξs = ξt for s ≥ t when ζt = 2 (i.e. b(x, 2, b) = 0, σ(x, 2, b) = 0 ∀b, x in (8)). The
second player min plays as previously and we consider the same model.

The discounted payoff is now:

J(x;κ, β̄) = Eκ,β̄x
[ ∫ κ

0

e−λtr(ξt, ηt) dt+ e−λκψ(ξκ) | ξ0 = x

]
and the value function of the game starting from x is defined by

v(x) = sup
κ

inf
β̄

J(x;κ, β̄)

where the supremum is taken among all stopping times κ ≤ τ (or equivalently
all strategies ᾱ determining ζ) and the infimum is taken over all strategies β̄ for
min.

Then the value of the game is solution of the following variational inequality:
max {min

b∈B
(L(v; (x, b)) + r(x, b) )︸ ︷︷ ︸

1©

, ψ − v︸ ︷︷ ︸
2©

} = 0 for x in X

v = ψ on ∂X
(11)

As for (10), if v is a classical solution of (11), if for all x in X : ᾱ(x) is equal
to 1 or 2 if resp. 1© or 2© is maximum in (11) and if for all x in X : β̄(x, 1) is
the action b ∈ B which realize the minimum in 1©, then an optimal stationary
Markovian pure strategy is obtained by taking ηt = β̄(ξt, 1) and κ is equal to
the first time when ᾱ(ξt) = 2. So this equation behaves as Equation (10) but
where the first player has a discrete action space equal to {1, 2}, 1 meaning
continue to play and 2 meaning stop the game. This variational inequality can
be treated with the same methods as for (10).

In another usual way, the variational inequality of (11) can also be written:
min
b∈B

(L(v; (x, b)) + r(x, b) ) ≤ 0

ψ − v ≤ 0
equality must hold in one of the two inequalities above.

(12)

3.3 Discretization

Several discretization methods may transform equations (10) or (11) into a
dynamic programing equation of the form (5). This is the case when using
Markov discrezation of the diffusions (10) as in [30, 31] and in general when
using discrezation schemes that are monotone in the sense of [7]. One can
obtain such discretizations by using the simple finite difference scheme below
when there are no mixed derivative (that is σσT is a diagonal matrix). Under
less restrictive assumptions on the coefficients, finite difference schemes with
larger stencil also lead to monotone schemes [11, 35]. In the deterministic case
(when σ ≡ 0), one can also use semi-Lagrangian scheme [5, 6] or max-plus finite

8



element method [3], both of them having the property of leading to a discrete
equation of the form (5).

We suppose that X is the d-dimensional open unit cube. Let h = 1/m
(m ∈ N∗) denote the finite difference step in each coordinate direction, ei the
unit vector in the ith coordinate direction, and x = (x1, . . . , xd) a point of
the uniform grid Xh = X ∩ (hZ)m. Equation (10) is discretized by replacing
the first and second order derivatives of v by the following approximation, for
i, j = 1, . . . , d :

∂v(x)

∂xi
∼ v(x+ hei)− v(x− hei)

2h
(13)

or

∂v(x)

∂xi
∼


v(x+ hei)− v(x)

h
when bi(x, a, b) ≥ 0

v(x)− v(x− hei)
h

when bi(x, a, b) < 0.

(14)

∂2v

∂x2
i

(x) ∼ v(x+ hei)− 2v(x) + v(x− hei)
h2

, (15)

(16)

Approximation (13) may be used when L is uniformly elliptic and h is small,
whereas (14) has to be used when L is degenerate (see [30, 31]). For equations
(10) and (11), these differences are computed in the entire grid Xh, by prolonging
v on the “boundary”, ∂Xh := ∂X∩(hZ)musing Dirichlet boundary condition:

v(x) = ψ(x) ∀x ∈ ∂X ∩ (hZ)m.

We obtain a system of Nh non linear equations of Nh unknowns, the values
of the function vh : x ∈ Xh 7→ vh(x) ∈ R :

max
a∈A

( min
b∈B

(Lh(vh; (x, a, b)) + r(x, a, b) ) ) = 0 ∀x ∈ Xh , (17)

where Nh = ]Xh ∼ 1/hd and Lh is a function which to v ∈ RXh , x ∈ Xh, a ∈ A,
b ∈ B associates the approximation of L(v; (x, a, b)).

When there are no mixed derivatives (ai,j(x, a, b) = 0 if i 6= j), the discretiza-
tion is monotone in the sense of [7], then if (10) has a unique viscosity solution,
the solution vh of (17) converges uniformly to the solution v of (10) [7]. More-
over, multiplying Equation (17) by ch2 with c small enough, it can be rewritten
in the form (5), with a discount factor µ = λch2. A similar result holds for the
discretization of (11) (by multiplying only the diffusion part by ch2).
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4 Background for numerical solution of discrete
dynamic programming equations

4.1 Policy Iterations

As recalled in the introduction, one can classically solve the dynamic program-
ming equations (5) by applying fixed point iterations to the map F defined at (7).
This algorithm is known as the value iteration algorithm [8]. It has a linear con-
vergence with a factor for the sup-norm less than or equal to the contraction
factor of F , that is 1 − µ (see Section 2). Since in the case of discretization
µ = λch2, the convergence rate of the value iteration slows considerably as the
discretization step goes to zero.

Here, we consider the policy iteration algorithm for two players discounted
games as defined in Puri thesis [39]. (Recall that other references for policy
iteration for one-player and two-player games are Howard [29], Hoffman and
Karp [26], Dernado [17], Cochet-Terrasson and Gaubert [14].) It consists in
nested iterations on pure feedback strategies (also called policies) and value
functions. Recall that a pure feedback strategy ᾱ for max maps any point x of
X to a possible action ᾱ(x) in A(x). If such a strategy ᾱ is fixed, then the value
v of the game is v(x; ᾱ) = inf β̄ J(x, ᾱ, β̄). The function v(·; ᾱ) : x → v(x; ᾱ)
is solution of the equation v(x; ᾱ) = F (v;x, ᾱ(x)) ∀x ∈ X where F (v;x, a) is
defined in (6). Equivalently, v is solution of the equation v = F ᾱ(v) where F ᾱ

is the operator depending on ᾱ which maps v to the function

F ᾱ(v) : X → R
x → F (v;x, ᾱ(x)) .

The policy iteration algorithm is given in Algorithm 1.

Algorithm 1 Policy Iteration

Given an initial policy ᾱ0 for max, the policy iteration consists in applying
successively the two following steps:

1. Compute the value vn+1 of the game with fixed feedback strategy ᾱn, that
is the solution of

vn+1 = F ᾱn(vn+1)

2. Improve the policy: Find the optimal feedback strategy ᾱn+1 of max for
the value vn+1:

ᾱn+1(x) ∈ argmax
a∈A(x)

F (vn+1;x, a) ∀x ∈ X .

The first step is performed itself using the policy iteration algorithm for a
one-player game. That is, given an initial feedback strategy for min β̄n,0, which
maps each point x of X to an action of min β̄n,0(x) ∈ B(x, ᾱn(x)), we iterate
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on min policies β̄n,k and value functions vn,k. Recall that the value of the
game when the strategies of both players are fixed to ᾱ and β̄ is the payoff :
v(x; ᾱ, β̄) = J(x, ᾱ, β̄). The function v(·; ᾱ, β̄) : x→ v(x; ᾱ, β̄) is solution of the
linear system v(x; ᾱ, β̄) = F (v;x, ᾱ(x), β̄(x)) ∀x ∈ X where

F (v;x, a, b) =
∑
y∈X

µ P (y|x, a, b) v(y) + r(x, a, b). (18)

Equivalently, v is solution of the linear system v = F ᾱ,β̄(v) where F ᾱ,β̄ denotes
the operator, depending on ᾱ and β̄, which to v associates the function

F ᾱ,β̄(v) : X → R
x → F (v;x, ᾱ(x), β̄(x))

where F (v;x, a, b) is defined by (18). Then at each step k of the interior policy
iteration, one computes vn,k+1, the value of the game with fixed strategies ᾱn
for max and β̄n,k for min as the solution of

vn,k+1 = F ᾱn,β̄n,k(vn,k+1) (19)

and improve the policy for min by :

β̄n,k+1(x) ∈ argmin
b∈B(x,ᾱn(x))

F (vn,k+1;x, ᾱn(x), b) ∀x ∈ X .

Each policy iteration strictly improve the current strategy, hence it can never
visit twice the same policy. Moreover, it produces a non decreasing (resp. non
increasing) sequence of values (vn)n≥1 (resp. (vn,k)k≥1) of the external loop
(resp. internal loop), see for instance [40, 32, 9] for one player games and
[39, 14] for two player games. Hence, if the action sets for both players are
finite in each point of X , the policy iterations stop after a finite time [39]. In
all cases, this method converges faster than the value iteration algorithm, and
the sequence of value functions (vn)n≥1 has at least a linear convergence to the
solution with a factor for the sup-norm less than or equal to 1−µ. In practice it
ends in few steps (see for instance large scale random examples for deterministic
games shown in [18]).

Moreover, under regularity assumptions, the policy iteration algorithm for a
one player game with infinite action spaces is equivalent to Newton’s method,
thus can have a super-linear convergence in the neighborhood of the solution,
see [40, 2, 4] for order p > 0 superlinear convergence under some regularity and
strong convexity assumptions, and [10] for superlinear convergence under more
general regularity assumptions.

Moreover, the policy iteration algorithm for a one player game can be con-
sidered as a generalization of Newton’s method [40, 2, 4, 10]. Indeed, define
G(v) = F (v) − v where F is the programing dynamic operator of a one player
game, then the problem is to find the solution of G(v) = 0 where each entries
of G are concave functions. The policy improvement step can be seen as the
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computation of an element of the sup-differential of G in the current approxi-
mation of v and the value improvement step compute the zero of the previous
sup-differential. When G is regular, the sequence of value functions (vn)n≥1 is
exactly the sequence of the Newton’s algorithm.

4.2 AMG

The linear systems defined in (19) are all of the form v = µMv + r where M a
Markov matrix. We shall solve them using algebraic multigrid methods which
we shall recall in this section.

Standard multigrid was originally created in the seventies to solve efficiently
linear elliptic partial differential equations (see for instance [33]). It works as
follows. Assume the continuous equation is discretized on a sequence of grids.
Each of them, starting from a coarse grid, being a refinement of the previous
until a given accuracy is attained. The size of the coarsest grid is chosen such
that the cost of solving the problem on it is cheap. Assume also that transfer
operators between these grids are given: interpolation and restriction. Then, a
multigrid cycle on the finest grid consists in : first, the application of a smoother
on the finest grid; then a restriction of the residual on the next coarse grid;
then solving the residual problem on this coarse grid using the same multigrid
scheme; then, interpolate this solution (which is an approximation of the error)
and correct the error on the fine grid; finally, the application of a smoother on
the finest grid. If the multigrid components are properly chosen, this process is
efficient to find the solution on the finest grid. Indeed, in general the relaxation
process is smoothing the error which then can be well approximated by elements
in the range of the interpolation. It implies, in good cases, that the contraction
factor of the multigrid method is independent of the discretization step and also
the complexity is in the order of the number of discretization points. We shall
refer to this standard method as geometric multigrid.

Algebraic multigrid method, called AMG, has been initially developed in the
early eighties (see for example [13, 12, 41]) for solving large sparse linear systems
arising from the discretization of partial differential equations with unstructured
grids or PDE’s not suitable for the application of the geometric multigrid solver
or large discrete problems not derived from any continuous problem.

The AMG method consists of two phases, called “setup phase” and “solving
phase”. In contrast to geometric multigrids, the mode of constructing the coarse
levels (coarse “grids”) which constitute the setup phase, is based only on the
algebraic equations. The points of the fine grids are represented by the variables
and coarse grids by subset of these variables. The selection of those coarse
variables and the construction of the transfer operators between levels are done
in such a way that the range of the interpolation approximates the errors not
reduced by a given relaxation scheme. Then the “solving phase” is performed in
the same way as a geometric multigrid method and consists of the application
of a smoother and a correction of the error by a coarse grid solution. The whole
process is briefly recall below.
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Consider a system of n linear equations given in the matrix form:

Av = f (20)

where the matrix A ∈ Rn×n and the vector f Rn are given, and we are looking
for the vector v ∈ Rn. We call fine grid Ωh the set of all variables of the system,
i.e. Ωh = {1, . . . , n}.

First, recall that a relaxation method consist of the following approxima-
tions:

u← Su+ Sof with S = I − SoA

where S is called the smoothing operator and I is the identity operator in Rn×n.
The error e = u− v propagates as

e← Se.

The method is said to converge if ρ(S) < 1 where ρ(S) = maxi |λi| is the spectral
radius of S with λi his eigenvalues. For example, the smoother operator of the
weighted Jacobi method is S = I − wD−1A and that of the Gauss-Seidel is
S = I −L−1A where D and L are the diagonal and lower triangular part of the
matrix A resp.

Assume Ωl the grid on level l where level 0 correspond to the finest grid Ωh.
The construction of the coarse grid Ωl+1 from the fine grid Ωl, consists in the
splitting of the nl variables from the grid Ωl into two distinct subsets, namely
C which contains the variables belonging to both grids, Ωl and Ωl+1, and F
the variables belonging to the grid Ωl only. We have then Ωl = C ∪ F . The
coarse grid Ωl+1 = C contains nl+1 = nlC variables. This splitting is based
on the “connections” between the variables on level l [13, 41] and such as the
range of the associate interpolation or prolongation operator P ll+1 accurately
approximates the errors not efficiently reduced by the relaxation phase (these
errors are “smooth” in the algebraic multigrid terminology). The restriction
operator Rl+1

l maps residuals from grid Ωl to the grid Ωl+1. In [13, 41], the

operator is fixed to be Rl+1
l = (P ll+1)T . The coarse grid operator is defined by

Al+1 = Rl+1
l AlP ll+1 where Al+1 is the approximation of Al on Ωl+1 and A0 = A.

Similarly, for any vector vl ∈ Rnl we denote vl+1 = Rl+1
l vl its restriction on

Ωl+1. This construction can be repeated recursively from the finest level l = 0
to the coarsest level L.

The solution phase consists in applying the multigrid cycle described in
Algorithm 2, it is called V(ν1,ν2)-cycle if γ = 1 and W(ν1,ν2)-cycle if γ = 2.

Convergence results for AMG are described by using operator norms defined
by the following inner products

〈u, v〉0 = 〈Du, v〉 , 〈u, v〉1 = 〈Au, v〉 , 〈u, v〉2 =
〈
D−1Au,Av

〉
,

where u, v ∈ Rn, D = diag(A) is the diagonal part of A, 〈·, ·〉 is the euclidean

inner product of Rn and ‖u‖i = (〈u, u〉i)
1/2

(i = 0, 1, 2) are the associated
norms.
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Algorithm 2 Multigrid scheme ul ←MG(ul, f l)

if l < L then
pre relaxation :

ul ← Sul + Sof
l (on Ωl) ν1 times

coarse grid correction :
f l+1 ← Rl+1

l (f l −Alul)
ul+1 ← 0
ul+1 ←MG(ul+1, f l+1) γ times
ul ← ul + P ll+1u

l+1

post relaxation :
ul ← Sul + Sof

l (on Ωl) ν2 times
else

Solve ALuL = fL

end if

Theorem 4.1 ([41]). Assume A to be symmetric and positive definite and that
the interpolation operator P ll+1 have full rank and that the restriction and coarse

grid operators are defined as before. Furthermore, suppose that for all el,∥∥Slel∥∥2

1
≤
∥∥el∥∥2

1
− δ

∥∥T lel∥∥2

1
where T l = I l − P ll+1(Al+1)

−1Rl+1
l Al

holds with some δ > 0 independently of el and l. Then δ ≤ 1, and provided
that the coarsest grid equation is solved and that at least one smoothing step is
performed after each coarse grid correction step, the V(0, 1)-cycle to solve (20)
has a convergence factor (with respect to the energy norm) bounded above by√

1− δ.

However, as mentioned in [12], a realistic coarsing strategy can hardly sat-
isfy the condition of this theorem for the V-cycle convergence except for linear
system arising from regular elliptic PDE’s. Weaker conditions exist for two-level
convergence for linear systems where the matrix of the system is an M-matrix,
symmetric and positive definite, see for instance [13, 12, 19]. Also we can find
in the literature, two-grid convergence analysis for non-symmetric linear system
in [37], also in [34] which is based on the analysis of AMLI, a block incomplete
factorization partitioned in hierarchical form.

Another multigrid scheme called full multigrid (FMG) is based on the idea
of starting, at each level, the MG cycle with a good initial guess. This is done
by using the solution of the coarse problem Ωl+1, which is a good approximation
of the solution on the fine grid Ωl, to start the multigrid cycle on the fine grid
Ωl. Therefore a transfer operators are define and may differ from the ones used
in the multigrid cycle. The FMG scheme starts from the coarsest grid and is
given in Algorithm 3.
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Algorithm 3 Full multigrid scheme ul ← FMG(f l)

if l < L then
f l+1 ← Rl+1

l f l

ul+1 ← FMG(f l+1)
ul ← P ll+1u

l+1

end if
ul ←MG(ul, f l) γ times

ᾱ0
...
ᾱn
...

β̄n,0
...
β̄n,k
...

vn,k,0
...
vn,k,l
...
vn,k+1,0

-

-PI extern

PI intern

AMG

Figure 1: Representation of the nested iterations of AMGπ.

5 A multigrid algorithm for discrete dynamic
programming equations

5.1 AMGπ

Recall that in the policy iteration for games at each step k of the interior policy
iteration, we have to solve the linear system vn,k+1 = F ᾱn,β̄n,k(vn,k+1) (19).
These systems are all of the form v = µMv + r with M a Markov matrix
and 0 < µ < 1 the discounted factor. Since (I − µM) are non singular M -
matrices, we use AMG for the resolution of those systems. Our algorithm,
named AMGπ, is the combination of policy iterations and AMG. The itera-
tions of AMGπ are summarized in the scheme represented in Figure 1 where
(vn,k,0, · · · , vn,k,l, · · · , vn,k+1,0) is a sequence of value functions generated by
the multigrid solver. The algebraic multigrid methods allows us to solve linear
systems arising from either the discretizations of Isaacs or Hamilton-Jacobi-
Bellman equation either a true finite state space zero-sum two player games.
For the true finite state space zero-sum two player games, we use the AGMG
algorithm of [36] which is more adapted for non symmetric problems.

In the one player game case, convergence results have been established by
Hoppe [27, 28] and Akian [1, 2].
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Interpolation of strategies and value

AMGπ

Ω0

Ω1

Ω2

Ω3

Figure 2: Full multi-level AMGπ with AMGπ V-cycles

5.2 Full multi-level AMGπ

Recall that the number of policy iterations can be exponential. As for Newton’s
algorithm, convergence can be improved by starting the policy iteration with a
good initial guess, close to the solution. In this way, we developed a full multi-
level scheme called full multi-level AMGπ. As in standard FMG, it consists in
solving the problem at each grid level by performing policy iterations AMGπ
until a convergence criterion is verified, then to interpolate the strategies and
value to the next level, in order to initialize the policy iterations of the next
level. This scheme is repeated until the finest level is attained.

Figure 2 illustrates the full multi-level AMGπ algorithm when V-cycles are
use in AMGπ. The dashed lines represent the interpolation of the solution and
strategies from a coarse grid Ωl+1 to the next fine grid Ωl. The continuous V-
lines are the V-cycles AMGπ which are not fixed in number since at each level
AMGπ cycles are performed until a given criterion is attained.

Note that our full multi-level program only apply to stochastic differential
games since for them coarse representation, including equations and strategies,
can be easily constructed by tacking different size of discretization step. We
use linear interpolations between the levels of the full multi-level algorithm to
interpolate values and strategies.

For one-player discounted games with infinite number of actions and under
regularity and strong convexity assumptions, it is shown in [2, 1] that this full
multi-level policy iteration has a computing time in the order of |X |.
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6 Numerical results

In this section, we apply our programs AMGπ and Full multilevel AMGπ, which
were implemented in C, to examples of Isaac’s equations and Variational In-
equalities.

6.1 Parameters and notations

We first give some implementation details of our code and the parameters that
were use for the tests. Then we give the details of the notations for the results.

Our AMG solver implements the construction phase, including the coarsing
scheme and definition of interpolation, described in [41] and the general recursive
multigrid cycles for the solution phase. In the tests, W(1,1)-cycles were used.
The chosen smoother is a CF relaxation method, a Gauss Seidel relaxation
scheme that relax first on C points and than on F points.

We implemented the policy iterations algorithm as explain in section 4.1.
The policy iterations stop when the norm of the residual, ‖r‖L2

, is smaller than
a given value denoted by ε. For the iterations on min policies (i.e. internal loop
of the policy iteration algorithm), the residual is r = F ᾱn(v) − v and for the
iterations on max policies (i.e. external loop of the policy iteration algorithm),
r = F (v)− v which is the residual of the game.

Our AMGπ code is the combination of our policy iteration algorithm and
the AMG solver.

Our full multi-level AMGπ algorithm is the implementation of the method
explain in the previous section 5.2. The stopping criterion at each level of the
full multi-level AMGπ is ‖r‖L2

< chl
2 where hl is the discretization step size

of the current coarse level Ωl and c = 0.1.
The numerical results represented in the tables use the following notations:

n denotes the iteration over max policies and k is the corresponding number
of iterations for min policies. The residual error of the game is denoted by r
and the exact error by e = F (v)− u where u is the exact solution of the game.
Infinity norm and discrete L2 norm are given for each of them.

6.2 Isaacs equations

The first example concern a diffusion problem where the dynamic programing
equation is given by{

∆v + ‖∇v‖2 − 0.5 ‖∇v‖22 + f = 0 in X
v = g on ∂X (21)

where X =]0, 1[×]0, 1[ is the unit square. The exact solution is v(x1, x2) =
sin(x1)× sin(x2) on X = [0, 1]× [0, 1] and is represented in Figure 3.
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Figure 3: Graph of sin(x1)× sin(x2) on X = [0, 1]× [0, 1].

Table 1: Numerical results for equation (21).
Policy iteration with LU

n k ‖r‖∞ ‖r‖L2
‖e‖∞ ‖e‖L2

cpu time s

1 3 8.51e− 7 5.96e− 7 4.47e− 2 2.48e− 2 1.40e+ 2
2 2 2.44e− 8 6.16e− 9 1.84e− 4 1.05e− 4 2.31e+ 2
3 1 7.38e− 13 2.03e− 13 4.13e− 6 2.16e− 6 2.77e+ 2

AMGπ
n k ‖r‖∞ ‖r‖L2

‖e‖∞ ‖e‖L2
cpu time s

1 3 8.51e− 7 5.96e− 7 4.47e− 2 2.48e− 2 2.65e+ 1
2 2 2.44e− 8 6.16e− 9 1.84e− 4 1.05e− 4 4.59e+ 1
3 1 7.92e− 13 2.02e− 13 4.13e− 6 2.16e− 6 5.56e+ 1

Equation (21) is equivalent to : ∆v + max
‖α‖2≤1

(α · ∇v) + min
β

(
β · ∇v +

‖β‖22
2

)
+ f = 0 in X

v = g on ∂X
(22)

Numerical results were performed on equations (22) discretized on a grid with
1025 nodes in each directions, i.e. with a discretization step of h = 1/210 in
each directions. The stopping criterion for the policy iterations is ε = 1e − 10.
First table in 1 shows the results of the policy iteration algorithm with a direct
solver LU (we used the package UMFPACK [16]) and the second table in 1 the
results of AMGπ.

We observe in both tables that AMGπ solves the problem faster than the
policy iteration with a direct solver. Also remark that only three steps on max
policies are needed and a total of six internal loops which involves the resolution
of six linear systems. This is due to the fact that the solution is regular.

The number of iterations for the linear solver AMG are illustrated in Table
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n k AMG ‖r‖∞ ‖r‖L2
‖e‖∞ ‖e‖L2

cpu time s

1 2 4|3 2.121e− 04 1.489e− 04 4.443e− 02 2.497e− 02 6.000e− 02
2 1 3 3.737e− 06 1.130e− 06 1.177e− 04 5.467e− 05 8.000e− 02

Table 2: Numerical results with a 65× 65 points grid, computed by AMGπ for
equation (21).
n k AMG ‖r‖∞ ‖r‖L2

‖e‖∞ ‖e‖L2
cpu time s

1 2 4|3 5.363e− 05 3.764e− 05 4.462e− 02 2.491e− 02 2.200e− 01
2 1 3 9.628e− 07 2.805e− 07 1.388e− 04 6.935e− 05 3.300e− 01

Table 3: Numerical results with a 129 × 129 points grid, computed by AMGπ
for equation (21).
n k AMG ‖r‖∞ ‖r‖L2

‖e‖∞ ‖e‖L2
cpu time s

1 2 4|3 1.349e− 05 9.464e− 06 4.467e− 02 2.485e− 02 1.070e+ 00
2 1 3 2.441e− 07 6.992e− 08 1.498e− 04 7.717e− 05 1.560e+ 00

Table 4: Numerical results with a 257 × 257 points grid, computed by AMGπ
for equation (21).
n k AMG ‖r‖∞ ‖r‖L2

‖e‖∞ ‖e‖L2
cpu time s

1 2 4|3 3.383e− 06 2.373e− 06 4.468e− 02 2.482e− 02 4.730e+ 00
2 1 3 6.145e− 08 1.746e− 08 1.554e− 04 8.114e− 05 6.860e+ 00

Table 5: Numerical results with a 513 × 513 points grid, computed by AMGπ
for equation (21).
n k AMG ‖r‖∞ ‖r‖L2

‖e‖∞ ‖e‖L2
cpu time s

1 2 4|3 8.470e− 07 5.940e− 07 4.468e− 02 2.479e− 02 2.023e+ 01
2 1 3 1.541e− 08 4.362e− 09 1.582e− 04 8.314e− 05 2.902e+ 01

Table 6: Numerical results with a 1025×1025 points grid, computed by AMGπ
for equation (21).
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Figure 4: Graph of the solution of equation (23).

2 to 6, for the same example discretized on grids with different mesh sizes. The
second column of each tables contained the number of iterations of AMG. The
stopping criterion for the policy iterations of AMGπ is 0.1h2 where h is the
discretization step size. We can see that the number of iterations for AMG is
independent of the size of the problem.

6.3 Variational inequalities

Next tests concern optimal stopping time games where the variational equality
is given by 

max{∆v − 0.5 ‖∇v‖22 + f︸ ︷︷ ︸
1©

, φ− v︸ ︷︷ ︸
2©

} = 0 in X

v = φ on ∂X
(23)

where X =]0, 1[×]0, 1[ is the unit square. As for (11), in each x ∈ X , action
space of player max is {1, 2}, 1 means continue to play and 2 means stop the
game. When max decides to stop the game, he receives φ(x). Player min plays
as in (22). The exact solution v is represented in Figure 4.

For numerical purpose, the equations 1© and 2© are simplified separately by
keeping equations (12) true. This example leads to a free boundary problem for
the actions of max and numerical results with AMGπ are shown geometrically
in Figure 5 where only the actions of max are represented. Equation (23) is
discretized on a grid with 1025 points in each directions, green points represent
action 1 of max and blue points action 2. Optimal solution is to have only green
points above the red line and only blue points under. We start the test with
blue points for max in the whole domain.

We observe in this Figure 5 and Table 7 that AMGπ find the solution after
702 iterations and in approximately two hours and fifteen minutes. The stopping
criterion for policy iterations of AMGπ in this test is ε = 1e− 14. As mention
before the number of policy iterations can be exponential in the cardinality of
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5: Application of AMGπ to the free boundary problem (23) for a 1025×
1025 points grid : (a) after 100 iterations, (b) after 200 iterations, (c) after
300 iterations, (d) after 400 iterations, (e) after 500 iterations, (f) after 600
iterations and (g) after 700 iterations. 21



Table 7: Numerical results for optimal stopping time game (23) with a 1025×
1025 points grid, computed by AMGπ.
n k ‖r‖∞ ‖r‖L2

‖e‖∞ ‖e‖L2
cpu time s

1 0 3.645e− 01 9.195e− 03 7.243e− 01 1.998e− 01 1.790e+ 00
2 4 1.497e− 01 1.347e− 03 3.782e− 01 1.218e− 01 1.376e+ 01
3 4 1.094e− 01 8.839e− 04 3.767e− 01 1.213e− 01 2.492e+ 01

. . .
100 3 1.744e− 02 4.444e− 05 2.392e− 01 8.016e− 02 1.009e+ 03

. . .
200 3 7.398e− 03 1.879e− 05 1.222e− 01 3.996e− 02 2.214e+ 03

. . .
300 3 2.510e− 03 8.779e− 06 5.614e− 02 1.728e− 02 3.619e+ 03

. . .
400 2 1.258e− 03 4.363e− 06 2.321e− 02 6.519e− 03 4.770e+ 03

. . .
500 2 4.761e− 04 1.620e− 06 6.601e− 03 1.532e− 03 5.861e+ 03

. . .
600 2 8.857e− 05 2.781e− 07 7.274e− 04 9.598e− 05 7.045e+ 03

. . .
650 2 1.533e− 05 4.231e− 08 1.538e− 04 6.331e− 05 7.630e+ 03

. . .
700 1 5.647e− 08 8.734e− 11 1.571e− 04 6.619e− 05 8.134e+ 03
701 1 1.207e− 08 2.267e− 11 1.571e− 04 6.619e− 05 8.141e+ 03
702 1 9.992e− 16 7.284e− 17 1.571e− 04 6.619e− 05 8.148e+ 03
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Table 8: Numerical results for optimal stopping time game (23) with a 1025×
1025 points grid, computed by full multi-level AMGπ.

n k ‖r‖∞ ‖r‖L2
‖e‖∞ ‖e‖L2

cpu time s

nodes in each directions : 3, step size : 5.00e− 01
1 1 2.17e− 01 2.17e− 01 1.53e− 01 1.53e− 01 << 1
2 1 1.14e− 02 1.14e− 02 3.30e− 02 3.30e− 02 << 1

nodes in each directions : 5, step size : 2.50e− 01
1 2 2.17e− 04 8.26e− 05 3.02e− 02 1.71e− 02 << 1

nodes in each directions : 9, step size : 1.25e− 01
1 2 4.99e− 03 1.06e− 03 1.65e− 02 7.99e− 03 << 1
2 1 2.68e− 03 5.41e− 04 1.66e− 02 8.15e− 03 << 1
3 1 2.72e− 04 5.49e− 05 1.68e− 02 8.30e− 03 << 1

nodes in each directions : 17, step size : 6.25e− 02
1 1 1.73e− 03 2.80e− 04 9.68e− 03 4.37e− 03 1.00e− 02
2 1 6.40e− 04 7.43e− 05 8.96e− 03 4.10e− 03 1.00e− 02
3 1 1.65e− 07 2.13e− 08 9.01e− 03 4.14e− 03 1.00e− 02

nodes in each directions : 33, step size : 3.12e− 02
1 1 1.36e− 04 1.03e− 05 4.94e− 03 2.16e− 03 1.00e− 02
2 1 6.86e− 05 2.54e− 06 4.77e− 03 2.09e− 03 2.00e− 02

nodes in each directions : 65, step size : 1.56e− 02
1 1 3.32e− 05 8.94e− 07 2.49e− 03 1.07e− 03 4.00e− 02
2 1 1.30e− 05 2.28e− 07 2.45e− 03 1.05e− 03 6.00e− 02

nodes in each directions : 129, step size : 7.81e− 03
1 1 4.86e− 06 8.55e− 08 1.25e− 03 5.33e− 04 1.50e− 01

nodes in each directions : 257, step size : 3.91e− 03
1 1 1.23e− 06 2.15e− 08 6.29e− 04 2.66e− 04 6.00e− 01

nodes in each directions : 513, step size : 1.95e− 03
1 1 2.57e− 07 4.04e− 09 3.15e− 04 1.33e− 04 2.62e+ 00

nodes in each directions : 1025, step size : 9.77e− 04
1 1 1.31e− 07 1.90e− 09 1.57e− 04 6.63e− 05 1.17e+ 01
2 1 6.77e− 08 5.83e− 10 1.57e− 04 6.62e− 05 2.11e+ 01
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Figure 6: Application of Full multilevel AMGπ to the free boundary problem
(23) for: (a) 9× 9 points grid, (b) 17× 17 points grid, (c) 33× 33 points grid,
(d) 65× 65 points grid.
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X . However, by starting AMGπ with a good initial guest, numerical results
can be improved. With this example we show the advantage of using the full
multi-level AMGπ. Indeed, numerical results of the application of the full multi-
level AMGπ to problem (23) with a 1025 × 1025 points grid, are display in
table 8. We observe that our algorithm has solve the problem in 23 seconds.
Geometrical representation of max actions, obtained at the end of the resolution
on four successive levels during the Full multi-level AMGπ resolution, are shown
in Figure 6. With less nodes (coarse grids), the algorithm can find a good
approximation of the solution in a few iterations. The interpolation of this
solutions and the corresponding strategies, are used to start AMGπ on the next
fine level and only a few number of policy iterations are needed on each levels.

7 Conclusion and perspective

We have presented our algorithm AMGπ for solving general two player zero-sum
stochastic games. This program combines the policy iteration algorithm with
algebraic multigrid methods. Our experiences on Isaacs equations show better
results for AMGπ in comparison with policy iteration combined to a direct linear
solver.

Furthermore, we also introduced a full multi-level AMGπ algorithm for solv-
ing two player zero-sum stochastic differential games. The numerical results on
variational inequalities presented here show that our full multi-level algorithm
improves substantially the computation time of policy iteration algorithm. In-
deed the computation time of full multi-level AMGπ algorithm seems to be in
the order of the number of discretization point whereas that of a amgπ algo-
rithm is 400 times greater, since the number of necessary policy iteration to
solve the equation is in the order of the diameter of the graph of the controlled
Markov Chain.

This full multi-level AMGπ uses coarse grids discretizations of the partial
differential equation and so cannot be applied directly to the dynamic program-
ming equation of a two player zero-sum stochastic game with finite state space.
One may ask if adapting the full multi-level AMGπ algorithm to this kind of
games is possible. Indeed, the complexity of two player zero-sum stochastic
games is still unsettled, one only knows that it belongs to the complexity class
of NP∩coNP [39], and any new approach maybe useful to understand this com-
plexity.
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[14] Jean Cochet-Terrasson and Stéphane Gaubert. A policy iteration algorithm
for zero-sum stochastic games with mean payoff. C. R. Math. Acad. Sci.
Paris, 343(5):377–382, 2006.

[15] Michael G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions. User’s guide
to viscosity solutions of second order partial differential equations. Bull.
Amer. Math. Soc. (N.S.), 27(1):1–67, 1992.

[16] Timothy A. Davis. Algorithm 832: Umfpack v4.3—an unsymmetric-
pattern multifrontal method. ACM Trans. Math. Softw., 30:196–199, June
2004.

[17] Eric V. Denardo. Contraction mappings in the theory underlying dynamic
programming. SIAM Rev., 9:165–177, 1967.
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