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Abstract

Given a non-rational real space curve and a tolerance ¢ > 0, we present an al-
gorithm to approximately parametrize the curve. The algorithm checks whether
a planar projection of the space curve is e-rational and, in the affirmative case,
generates a planar parametrization that is lifted to an space parametrization.
This output rational space curve is of the same degree as the input curve, both
have the same structure at infinity, and the Hausdorff distance between them is
always finite.
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Introduction

The development of approximate algorithms for algebraic and geometric problems is
an active research area (see e.g. [21] and [23]) that focuses on different problems as, for
instance, the computation of geds (see [], [10], [16]), the factorization of polynomials
([6], [12], [15]), the implicicitization of surfaces ([7], [9]), the parametrization of curves
and surfaces ([2], [I1], [14], [I7], [18], [20]), etc. These approximate algorithms are
applicable by themselves since they face symbolic computation to real world problems.
Moreover, those of geometric nature are of special interest in the field of CAGD. For
instance, providing parametric representations of algebraic geometric objects helps in
some CAGD constructions as surface-surface intersection or performance of planar
sections (see e.g. Example 5.3. in [20]).

In this context, when using the term ”approximate”, there is certain risk of am-
biguity since it can have a double meaning (see e.g. [24]). Let us clarify what we
mean in our case. Here, as in our previous papers [17], [18], [20], with the term "ap-
proximate” we do not mean "numerical” but something different (see introduction to
[20] for further details): our input is the perturbation of an unknown input; once the
perturbation is received we treat it exactly to provide an output that is close (in this
sense it is "approximate”), under certain distance, to the theoretical output of the
unperturbed unknown input.

More precisely, the problem in this paper is as follows. Let C* be a rational real
space curve defined as the complex-zero set of a finite set M C R|z,y, z] of real
polynomials; in practice card(M) = 2. Nevertheless, instead of getting M as input
of our problem, we get a new finite subset F C R[z,y, 2] (which is a perturbation of
M) of real polynomials that defines a new curve C, obviously different to C*. Since
the genus of a curve is unstable under perturbations, the input curve C will have
positive genus and hence it will not be parametrizable by rational functions. Ideally,
the problem would consists in finding the initial curve C* or, even better, a rational
parametrization of it. However, this goal is unrealistic. Instead, one might require to
find a rational parametrization of the closest rational curve to C under certain distance;
say, under the Hausdorff distance. Nevertheless, in this paper we deal with a weaker
statement of the problem. Namely, finding a rational parametrization of one rational
space curve being close (in comparison to a given tolerance ¢ > 0) to C under the
Hausdorff distance. Our statement, although may not yield to the best output rational
curve, generates one good answer. This can be seen as a first step for the harder, more
general, and theoretical problem of finding the best (in the sense of closest) rational
curve being, our solution, meanwhile ready to be used in applications.

In [I7], the authors show how to solve the problem for the particular case of
e-monomial plane curves (i.e. plane curves having an e-singularity of maximum e-
multiplicity); see also [18] for the case of surfaces. Later, in [20], the problem was
solved for the more general case of e-rational plane curves. The current paper is, there-



fore, the natural continuation of this research since it deals with the next step, namely
the case of space curves.

In the unperturbed case, the problem can be solved by birationally projecting the
space curve on a plane, checking the genus of the projected curve and, in case of genus
zero, parametrizing the plane curve to afterwards inverting the parametrization to a
rational parametrization of the input curve (see e.g. [22] for further details). Now,
the situation is more complicated. More precisely the strategy (see box below) is as
follows.

We get C, pa(r)ameém;izec% })y
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We assume some conditions on the original space curve C (see Section [I]) such that
when it is projected onto a plane we get a curve satisfying the hypotheses required by
the algorithm in [20]; let us denote by 7.(C) the projected curve, so we are assuming
w.l.o.g. in this explanation that projection has been performed on the plane z = 0.
Then, the algorithm in [20] determines whether 7.(C) is e-rational, where € is a fixed
given tolerance. If 7,(C) is not erational one may try a different projection, but
here we simply ask the algorithm to terminate since, although in some examples this
seems to work, we do not have any theoretical argumentation to ensure when that
projection exists. Otherwise, the algorithm in [20] goes ahead and computes a rational
parametrization Q(t) of a plane rational curve D. The last step consists in lifting D
to a rational space curve C being close to C. For this purpose, we first realize that a
sufficient condition for the finite Hausdorff distance requirement, between both curves,
is given by the structure at infinity of the input curve C. Taking into account this fact,
and using a Chinese-remainder type interpolation, we get a rational parametrization



of C. As a consequence of this process, we get a rational space curve C of the same
degree as C, having the same structure at infinity as C, and such that the Hausdorff
distance between C and C is finite.

The structure of the paper is as follows. In Section [, we introduce the notation
that will be used throughout the paper as well as the general assumptions. Moreover,
we comment on the reasons for the inclusion of these assumptions, we discuss how
to check them algorithmically, and we show that they (the assumptions) are general
enough. Section Plis devoted to the projected curve 7, (C) and, more precisely, to prove
that under the general assumptions imposed in [l 7,(C) satisfies all requirements in the
algorithm in [20]. SectionBlfocuses on how to lift the rational plane curve D (generated
by applying the algorithm in [20] to 7.(C)) to the curve C such that both curves, C
and C, have the same structure at infinity; note that 7, is a birational map between
C and 7,(C), but we are lifting D # m,(C). In Section ] we summarize these ideas to
derive an algorithm that is illustrated by two examples. In Section [ we prove that the
Hausdorff distance between the input and output curves, of our algorithm, is always
finite. For this purpose, we briefly study the asymptotes of space curves. Finally, in
Section [6] we approach the study of the Hausdorff distance empirically analyzing the
examples in Section [l

1 General Assumptions and Notation

We consider a computable subfield K of R, as well as its algebraic closure [F; in practice,
we may think that K = Q. We denote by F? and F? the affine plane an affine space
over T, respectively. Similarly, we denote by P?(F) and P3(FF) the projective plane and
projective space over I, respectively. Furthermore, if A C F? (similarly if A C F?)
we denote by A* C F? its Zariski closure, and by A" C P3(F) the projective closure
of A*. We will consider (z,y, z) as affine coordinates and (z : y : z : w) as projective
coordinates. Also, for A as above, we denote by A the intersection of A" with the
projective plane of equation w = 0. In addition, for every polynomial H € K[z, v, 2]
we denote by H"(x,y, z,w) the homogenization of H.

Our method will be based on the projection of the space curve on a plane. Without
loss of generality (see below) we will consider that z = 0 is the projection plane. So we
introduce the map

7, B =2 (2,9, 2) — (z,y),

as well as
PPN {(0:0:1:0)} = P*(F),(z:y:2:w)— (z:y:w).

Our main object of study will be an irreducible (over F) affine real (non-planar) space
curve C C F3. Although, in practice, in most cases, C will be given by two generators,
we present the results for the general case where a finite set of generators is provided.
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Therefore, we assume that C is given as the zero-set (over F) of a finite set of real
polynomials F = {F,...,F,} C K[z,y,2|, s > 2. € will be the tolerance and we
assume that 0 < e < 1. In addition, we assume the following:

General Assumptions

1. The cardinality of C* is deg(C).

2. 7, : C — m,(C)* is birational and deg(C) = deg(7.(C)*).

3. (1:0:X:0),(0:1::0),(0:0:1:0)¢&C> for any A\, € F.
4 I (LT A:p:0),(L:A:p*:0)€C™ then p= p*.

5. The coefficient of Fy in z'4e(F1) is a non-zero constant; where tdeg denotes the
total degree of Fj.

We briefly comment on the reasons for the inclusion of the above assumptions,
and we describe how to check them algorithmically. The condition on irreducibility
is natural since rational curves are irreducible varieties. In any case, one can always
consider the irreducible decomposition of the input to apply the results to each of the
irreducible components. The assumption on the reality of the curve is included because
of the nature of the problem, but the theory can be similarly developed for the case of
complex non-real curves. The exclusion of planar curves is to simplify the exposition.
Note that this is not a loss of generality, since one can always apply the algorithm in

[20].

Concerning the general assumptions, condition (1) will play a fundamental role in
the error analysis, and it will be used to ensure that the Hausdorff distance between out-
put and input is always finite. The birational requirement in condition (2) is introduced
to reduce the problem to a plane curve after projection, and the degree fact will be used,
in combination with (3) and (4), to ensure that 7,(C)* has as many different points at
infinity as its degree; condition that is required by the algorithm in [20]. Conditions (3)
and (4) are related to the projection 7,. On one hand, (1:0: A:0),(0:1:p:0) & C>,
for any A\, € F, ensures that (1:0:0),(0:1:0) & 7,(C)> which is a requirement for
the algorithm in [20] to be applied to 7.(C)*. On the other, (0:0:1:0) ¢ C* guar-
antees that 7" is well defined on C". In addition, conditions (3)-(4) ensure that 7/ is
injective on C*°. Condition (5) is also introduced to guarantee that 7, (C)* satisfies the
hypotheses in [20] (see Theorem [2.4]). Note that this property can always be achieved
by means of a suitable orthogonal affine change of coordinates, and hence preserving
distances.

Taking into account that, in practice, C is expected to come from the perturbation of
a rational space real curve, in general, all above conditions will hold. Nevertheless, let
us discuss how to decide algorithmically whether a given input satisfies them. Checking
the irreducibility of C can be approached by checking whether the corresponding ideal



is prime (see, for instance, Section 4.5 in [§] or [3]). In order to check the reality, one
can apply cylindrical algebraic decomposition techniques to decide the existence of real
regular points (see e.g. [3]). The non-planarity of C can be deduced from a Grébner
basis of F. Let us now deal with the general assumptions. One can compute C" by
homogenizing a Grobner basis of F, w.r.t. a graded order (see e.g. page 382 in [§]).
The degree of C can de determined by counting the number of intersections of C with
a generic plane; in fact a randomly chosen plane might be enough. So, (1) is also
checkable. Also, (3) and (4) are checkable. Condition (2) can be analyzed by direct
application of elimination theory techniques. Condition (5) is trivially checkable.

In the previous description, we have considered that z = 0 is the projection plane.
Indeed, conditions (3)-(5) depend on this fact. So, if any of these conditions fails
we might either consider a suitable orthogonal affine change of coordinates or choose
another projection plane. Also, if (2) fails we need to find a different projection plane.
We recall that, for almost every plane, the corresponding projection is birational over
C and that for almost every plane the number of intersection points of the plane with
C is deg(C). Therefore, the combination of these two facts with Lemma [[.T] ensures
that condition (2) must be achieved by taking the projection plane randomly.

Lemma 1.1. Let IT C F? be a plane such that card(C N1TI) = deg(C), let u be a (non-
zero) parallel vector to 11 and non-parallel to the vectors in {P —Q | P,Q € CNII, P #
Q}, and let TI* be any plane orthogonal to u. Then, deg(m.(C)*) = deg(C), where e
is the projection map from F3 onto I1%.

Proof. Let d = deg(C) and C NIl = {P,..., P}, and let L be the line IT N IT".
By construction, {mu(P;)}i=1, .4 C mne(C)* N L. Since w is not parallel to P, — P},
with i # j, then card({mu(P;)}iz1,.4) = d. Therefore, deg(C) < deg(mu(C)*). Now,
let L’ be a line in TI* such that L' N (7« (C)* \ 7« (C)) = O and such that card(L' N
7 (C)*) = deg(m«(C)*); note that almost all lines in II* satisfy this property. Let
L'Nrpe(C)* ={Q1,...,Qa} and let II' be the plane containing L' and being parallel
to u; note that w is normal to IT*, and hence L’ is not parallel to u. Because of the
construction me (Q;)NC # () and it is contained in IT". Therefore, UL 7 (Q;) NC NITY
has cardinality at least d’, and hence deg(m(C)*) = d’ < deg(C). |

2 The Projected Curve

In this section, we analyze the basic properties of the projected curve m,(C)*. In
particular, we show that it satisfies the hypotheses in [20]. We recall that, since 7, is
birational and C is irreducible, 7,(C)* is irreducible. We start with a technical lemma
on Grobner bases

Lemma 2.1. Let L C F be a field and Gy,...,G,, € Llxy,...,z,| be such that
deg, (G1) = tdeg(G1) > 0; where tdeg denotes the total degree. Let {H,..., H,}
be a Grobner basis of (Gy,...,Gp) w.r.t. the graded lex order with v, < --- < x,.
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Then, there exists i € {1,...,r} such that deg, (H;) = tdeg(H;). Moreover, if the
variety defined by {G1,...,Gn} over F is not empty then deg, (H;) = tdeg(H;) > 0.

Proof. Let { = deg, (G1). Since ¢ = tdeg(G1), because of the ordering, the leading
term of Gy is #f. Now, by Exercise 5, page 78, [8], there exists i € {1,...,r} such
that the leading term of F; divides xf. Finally, because of the ordering, tdeg(H;) =
deg, (H;). Now, if the variety of {G1,...,G,,)} is empty, we assume that the Grobner
basis is normal (this does not affect to the previous reasoning). By Theorem 8.4.3 in

[25], H; is not constant. So tdeg(H;) > 0. O

The next lemma shows how generalized resultants can be used to compute the
projection.

Lemma 2.2. Let
[ B+ AF 4+ APF, if s> 2
FA(xayaA>_{F2 ZfS:2 )

where A is a new variable, and let F& be the homogenization of Fa(x,y,w,A) as a
polynomial in K[A][z,y, z]. Let

i

R=Res.(Fi,Fa) =Y _aj(z,y)N, S =Res.(F}', F) =Y _ iz, y, w)A".
7=0 =0

It holds that
1. m,(C)* s the affine plane curve defined by ged(av, ..., ), and m =m’.

2. If F is a Grébner basis, w.r.t. the graded lex order with x < y < z, then m,(C)"
is the projective plane curve defined by ged(Po, - - -, Bm)-

Proof. (1) We first prove that 7,(C)* is the variety defined by {ag,...,a,}. In-
deed, let (a,b) € m.(C). Then, there exists ¢ € F such that P = (a,b,c) € C.
So, Fi(P) = 0,FA(P,A) = 0. Thus, R(a,b,A) = 0, and hence ap(a,b) = --- =
am(a,b) = 0. Conversely, let ag,...,a,, vanish at (a,b). Then R(a,b, A) = 0. Now,
since deg,(F)) = tdeg(F}), there exists ¢ in the algebraic closure of F(A) such that
Fi(a,b,c) = 0,Fa(a,b,c,A) = 0. Since c is a root of Fi(a,b,z) € F|[z] then ¢ € F.
Therefore, from Fa(a,b,c, A) = 0, we get that Fy(a,b,c) = --- = Fy(a,b,c) = 0. So,
(a,b,c) € C and (a,b) € m,(C).

Let a = ged(a, ..., ) and @; be such that o; = @;a. Let V and W be the
varieties defined by « and {ay, ..., @}, respectively. Then, 7,(C)* = V U W. Since
C is irreducible and 7, birational, we have that 7.(C) is an irreducible curve. So, V
is 1-dimensional and W is either empty or O-dimensional. In any case, because of the
irreducibility, W C V. So 7.(C)* = V.

Finally, let us see that m = m/. We assume w.l.o.g. that all ; are non-zero. Since
deg_(Fy) = deg,(F"), by Lemma 4.3.1. in [25], we get that R(z,y, A) = S(x,y,1,A),

7



up to multiplication by a non-zero constant. Moreover, S is homogeneous as a poly-
nomial in F[A][z,y,w]. Thus, §; are homogeneous (of th e same degree). Therefore,
Bi(z,y, 1) does not vanish. Thus, m = deg, (R) = dega (S(z,y,1,A)) = dega(S) = m'.

(2) We first prove that w does not divide S. Let S = wM(z,y,w,A). Then, for
all (a,b) € F?, since deg(F") = deg, (F!'), there exists ¢ € F (in principle, ¢ is in
the algebraic closure of F(A) but, reasoning as above, we get that ¢ € F) such that
FMa,b,c,0) = F&(a,b,c,0,A) = 0. Therefore, since ¢ € F, F'(a,b,c,0) = 0,i =
1,...,s; let us call p(a,b) the corresponding ¢ associated to (a,b). Then, the infinitely
many points {(1 : n : p(1,n) : 0)},en are included in the intersection of C" with the
plane w = 0, which is a contradiction; note that since F is a Grobner basis w.r.t. a
graded order then {F" |i=1,..., s} generates C".

From R(z,y,A) = S(x,y,1,A) we get that a;(z,y) = B;(x,y,1). Therefore, since
B; is homogeneous, a?w"ﬂ' = f3j, for some n; € N. Moreover, since w does not divide
S, there exists ig € {0,...,m} such that o = j3;, and ged(al,w) = 1.

Let o = ged(ag, ..., q,) and v = ged(afl, ..., al). We see that o = . Let
a; = a@;. Then, o = o"a?. So, o divides 7. Conversely, let af = ya&;. Then,
y(x,y,1) divides of(z,y,1) = a;. Therefore, y(x,y,1) divides . In addition, since
a divides v, a divides y(x,7,1). Hence, up to multiplication by non-zero constants,
a = v(x,y,1). Therefore, since by construction w does not divide 7, we get that

al = 7.

Finally, it remains to prove that v = gcd(Bo,...,0m). We know that
ged(Bo, - -+, Bm) = ged(abw™, ... ol w™). Let a = ged(afw™, ... o w™™). Clearly
v divides a. Conversely, a divides al (see above). Since ged(a),w) = 1, then
ged(a, w) = 1. Therefore, a must divide all o”. Hence, a divides 7.

Summarizing ged(ag, . .., a,)" = gcd(aé’y, conal) = ged(afw™, ol wtm) =
ng(ﬁo,...,ﬁm). |

Remark 2.3. We observe that in the proof of Lemma 2.2 from all the hypotheses
imposed in Section [l we have only used the following: general assumption (5) is used
in both (1) and (2). The fact that C has dimension 1 and that is irreducible is used in
(1), jointly with the fact that m, is finite. Finally, in (2), we use that C" intersects the
plane w = 0 in finitely many points.

We finish the section by stating the main properties of the projected curve.

Theorem 2.4. It holds that
1. wh(C>®) = 7. (C)>®.
2. card(m(C)™) = deg(m-(C)").
3.(1:0:0),(0:1:0) &m.(C)>.



Proof. (1) Because of Lemma 21 we can assume w.lo.g. that {Fy,..., F} is a
Grobner basis w.r.t the graded lex order with x < y < z, and that deg, (F) = tdeg(F}).
Also, let Fa, F&, S, R, oy, B; be as in Lemma 22, and a = ged(ay, - . ., ay).

Note that C* is the zero set in P3(F) of {F'(x,y,2,0),..., F*(z,y,2,0)}. So, since
C> is zero-dimensional, then ged(FP(x,y,2,0),..., F"(x,y,2,0)) = 1. In addition, by
Lemma 22, 7, (C)™ is the zero set in P?(F) of a"(z,y,0).

Now, let (a : b:c:0) € C®. Then, Fl'(a,b,c,0) = F&(a,b,c,0) = 0. Therefore,
S(a,b,0,A) = 0. Thus, Bi(a,b,0) = 0. By Lemma B2, we know that o"(z,y,w) =
ged(Bo, ..., Bm). So, Bi = aB,. Let us assume that o’ (a,b,0) # 0 (ie. that (a :
b:0) & m,(C)®). By general assumption (3), a,b cannot be both zero. We assume
w.l.o.g. that a = 1. Then, §,(1,b,0) = 0 for all i. We now consider the polynomials
Hi(y, z,w) = F'(1,y, z,w) as well as the affine variety D defined by them. Note that,
since (1:b:c:0)€C" (bc,0)€ D +#(. Moreover, since C is irreducible, D is an
irreducible curve. Furthermore, tdeg(H;) = deg,(H;) = deg.(Fy) > 0. Furthermore,
since C is not planar, D is not a line perpendicular to the plane z = 0, so 7, is finite
over D. Also, since C is not planar, D" intersection = 0 has only finitely many
points. Furthermore, because of Lemma 2] we can assume w.l.o.g. that {Hy,..., H,}
is a Grobner basis w.r.t the graded lex order with w < y < z, and that deg,(H;) =
tdeg(H;). Thus, D satisfies the hypotheses of Lemma (see Remark 2.3)). Let Ha
as in Lemma 22 let T(y, w, A) = Res,(Hy, Hp), and let S, o, o, 3; be as in the proof
of Lemma 2.2l Reasoning as in the proof Lemma 2.2, we get that dega (T") = dega (5)
and that, if 7= """ p; A" then p;(y,w) = B;(1,y,w). Moreover, by Lemma 22 we
get that 7,(D)* is defined by p = ged(po, - - -, pm); note that 7, (D)* is irreducible, and
hence p is an irreducible polynomial.

From p;(y,w) = B;(1,y,w) = a"(1,y,w)B;(1,y, w) we get that o(1,y,w) divides
p(y,w). Also, since C is not planar, 7,(C)* is not a line, and hence (1, y, w) is not
constant. Thus, since p is irreducible, we get that, up to multiplication by non-zero
constants, p(y,w) = o"(1,y,w). Finally, from (b,c,0) € D, we get that p(b,0) =
a(1,b,0) = 0, which is a contradiction. This proves that 7(C*) C 7. (C)>.

On the other hand, because of general assumptions (3) and (4) one has that 7"
is injective over C*, and hence we get that card(7”(C*)) = card(C*). Then, from
general assumptions (1) and (2), we get that 72(C*) = 7.(C)>®

(2) Because of general assumptions (3) and (4), card(C®) = card(7"(C*)) and, by
general assumptions (1) and (2), card(C®) = deg(C) = deg(m.(C)*). Now the proof
ends by applying statement (1) in this theorem.

(3) It follows from general assumption (3) and statement (1) in this theorem. m

3 The Lifted Curve

In Theorem 2.4] we have seen that, under the assumptions introduced in Section [
7,(C)* satisfies the hypotheses required by the parametrization algorithm in [20]. In
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this situation, we apply algorithm in [20] to 7,(C)*. If 7,(C)* is not e-rational, then
we can not use 7,(C)* to parametrize C approximately by this method. However, it
might be that there exists another projection such that the projected curve is e-rational
and hence the method applicable to this other projection. Nevertheless, we have not
researched in this direction leaving this as a future research line. So, let us suppose
that 7. (C)* is e-rational, and let

_(pa(t) pa(t)
Q®‘Q@ww)

be the parametrization output by the algorithm in [20]. Let D be the rational plane
curve parametrized by Q(t). We want to lift D from F? to a rational curve C in F®.
For this purpose, in order to guarantee that the Hausdorff distance between C and C
is finite (see Corollary £.5), we will associate to D a rational curve C in F? such that

7.(C) = D, deg(C) = deg(C) and C>* =C"°

We know that 7. (C)* and D have the same degree and the same structure at infinity
(see Theorem 4.5. in [20]). Thus, by Theorem 24 D> = 7"(C>). In addition, it also
holds that deg(p;) < deg(q) = deg(D) (see proof of Lemma 4.2 in [20]). Moreover,
by construction, ged(p;,q) = 1 (see Step 10 in the algorithm in [20]). Furthermore,
(p1(t) : pa(t) : q(t)) reaches all points in D> (see proof of Theorem 4.5. in [20]).
Therefore, since card(D>) = deg(D) (see Theorem 2.4 and note that D> = 7(C>)),
q(t) is square-free. Thus, if {&, ..., &4} are the roots of ¢(t),

D> = {(1 : ZES :O) }i=1 a

.....

because of general assumption (4), for every i there exists a unique x; € F such that

(RS

.....

Note that, if {Gy,...,G,,} is a Grobner basis of {F},..., Fi;} w.r.t. the graded lex
order with x < y < z, then Y; is the root of

S R )

Let p3(t) be the interpolating polynomial such that ps(&;) = p1(&)xi, for i =1,...,d;
recall that ¢(t) is square-free. We then define C as the rational curve

p1(t) pa(t) P3(t))
Pt) = iy .
Q @@qmq@
Note that ged(pi,pa s a) = 1, q is square-free, deg(py),deg(py) < deg(q) and
deg(ps) < deg(q).

Taking into account the previous reasonings, we have the following theorem.
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Theorem 3.1. The lifted curve C, defined as above, satisfies that

1. C is rational.

o0

2.C*=C
3. deg(C) = deg(C).
4. 7.(C)* =D.

We finish this section explaining how to compute C (i.e. the polynomial ps(t))
without having to explicitly compute the roots of ¢(¢). The idea is to adapt the
Chinese Remainder interpolation techniques. Let {G1,...,G,,} be as above, and let
q(t) = H§:1 ¢;(t) be an irreducible factorization of ¢(t) over K. Now, for each ¢; we
consider the field L = K(x), where p is the algebraic element over K defined by ¢;(¢),
as well as the polynomial ring L[z]. Let

Dj(z) = ged (G’f (1,M,z,o) G (1,M,z,0)) ,

L[z] p1(p) p1(p)

where the ged is taken in the Euclidean domain IL[z]. Because of the previous reasoning,
we know that D;(z) can be expressed as

D;(2) = (a;(n)z = bj(n))" € L2,

where u € N. Let ¢;(u) be the polynomial expression of b;(x)a; (1) ~'p1 () as an element
in L. On the other hand, for i # j, ged(g;, ¢;) = 1. So, there exist u; ;, u;; € K[t] such
that w; ;¢; + u;,q; = 1. We introduce the following polynomial

— 1 (t) Hf:z ui,l(t) z(t> + - F Cz(t) Hf;ll Uu(t) Z(t) if¢>1
Alt) = { c1(t) ' ! if 0= 1.

Then, we have the following result.

Lemma 3.2. ps(t) is the remainder of the division of A(t) by q(t).

Proof. If ¢ =1 the result is trivial. Let £ > 1 and let R(t), Q(t) be the remainder and
quotient of the division of A(t) by ¢(t), respectively. Clearly deg(R) < deg(q). Now,
let & be a root of ¢(t); say w.l.o.g. that & is a root of ¢;(¢). Then, by construction,

c1(&) = xip1(&). Therefore,

R(&) = A(&) — q(&)Q(&) = A(&) = c1(&)uai(&)a2(8) - - uea(§i)qe(&)-
However, for k # 1, ur1(&)q(&) = 1 — win(&)a(&) = 1. So, R(&) = ai(&) =
Xip1(&i) = p3(&i)- O

11



4 Algorithm and Examples

In this section we collect all the ideas developed in the previous sections to derive the
approximate parametrization algorithm, and we illustrate it by a couple of examples.
For this purpose, we assume that we are given a tolerance 0 < ¢ < 1 as well as an
space curve C satisfying all the hypotheses imposed in Section [Il. Then the algorithm
is as follows

Algorithm

1. Compute the defining polynomial of 7,(C)* (apply e.g. Lemma 2.2)).

2. Apply to m.(C)* the parametrization algorithm in [20]. If the plane curve is not
e-rational exit returning no parametrization else let (’; 1(%), ’;2(%)) be the output
parametrization.

3. Apply Lemma B2 to determine ps(t).

4. Return (5, 5550, ).

Remark 4.1. Note that, because of Theorem [B.I], it holds that the rational curve
output by the algorithm has the same degree and structure at infinity as the input
curve. Also, as already mentioned in Section [3] if in step 2 we do not get e-rationality,
it does not imply that under another projection one could not get an e-rational curve.
However we can not guarantee theoretically when such a projection exists.

In the following examples, the polynomial f defining m,(C)* and the parametriza-
tions Q(t) of D, and P(t) of C, are expressed with 10-digits floating point coefficients,
but the executions have been performed with exact arithmetic; the precise data can be
found in http://www2.uah.es/rsendra/datos.html.

Example 4.2. Let C be the space curve defined by the polynomials

718945312497 698623125001
— 100 T+ 100 y — 671015625 z + 13865578693 z y

— 12118499950 2z + 24392628607 x y — 18401807886 y* — 1311877532 2*

431020499999 1675347948801
— oF T+ 100 y — 1609143200 z + 4365980240 z y

— 401217042 z z — 24936051360 > — 683547137 22 + 24392628607 2>

1 =

2:

and let € = Wlo' One can check that C satisfies all the hypotheses imposed in Section

I Moreover, deg(C) = 4. The projected curve 7,(C)* is defined by the polynomial (see
Fig. [.2))

12



f(x,y) = 5.192147942 - 10% zy — 2.214420657 - 10%® y — 5.059350678 - 102 2 —
2.636990684 - 10% 22 — 3.506554787 - 10*? 22y + 2.001041491 - 102 y* —
1.375243688 - 10*2 y® + 1.181135404 - 10*% 23 + 3.822854018 - 10*2 zy? —
2.315025392 - 1040 ¢ — 2.990857566 - 10*2 21® — 1.221346211 - 10*2 22y? +
3.915698981 - 10*2 23y — 1.812915331 - 10*2 2.

Note that deg(m.(C)*) = 4. Applying the approximate parametrization algorithm

for plane curves in [20] we get that m.(C)* is erational. Furthermore the algorithm

outputs the parametrization Q(t) = (pql(—%), pqz(—%))

(—0.4173571408 + 1.171283433 ¢ — 0.8477221239 % — 0.1445883061 > 4 0.2133409452 t*

—0.9059858774 4 1.956830479 ¢ — 0.6103552658 t2 — 1.494650450 t3 + t4

0.1828752070 ¢ 4 0.6268800173 ¢ — 1.028340444 ¢ + 0.3822448988 t* — 0.1884116000
—0.9059858774 + 1.956830479 ¢ — 0.6103552658 t2 — 1.494650450 t3 + ¢4

It only remains to compute the numerator of the third component of the rational
parametrization of the lifted curve; namely p3(¢). Applying Lemma we get the

approximate parametrization (see Fig. P(t) (’; 1((:))7 ’; 2(%), ’; 3((5)) of the space curve

C (i.e. the parametrization of C), where

ps(t)  —1.067157288¢* — 0.2783759249 — 0.7182447737 ¢ + 1.955832944 t*
q(t)  —0.9059858774 + 1.956830479 ¢ — 0.6103552658 t2 — 1.494650450 3 + 4~

Example 4.3. Let C be the space curve defined by the polynomials

F; =20052827033zy + 28509043422y — 7155364672z — WU@
— 7869010116z + 174341(2)(?51801(7; — 43102722226y* 4 16109460622
Fy = — 183309439842y + 3385763012422 — %:02999% — 569216023202+
12611iii?36001y——166608514760y2%—5717974207622%—20052827033x2
and let € = Wlo' One can check that C satisfies all the hypotheses imposed in Section

0 Moreover, deg(C) = 4. The projected curve m,(C)* is not e-rational, but m,(C) is.
So we work with the projection on the plane y = 0. The defining polynomial of 7, (C)*
is

f(x,2) = 6.959832072 - 10" zz — 4.075715387 - 103¢ x — 6.207866771 - 10% 2 +
1.769623619 - 1077 2% + 9.541705261 - 10%° 22 4 1.269145848 - 10* 2% +
8.077561390 - 107 232 — 1.355904241 - 10%8 222 — 2.573514563 - 10 2% +
2.289865008 - 10" 2% — 3.292700550 - 10%® 2%z + 4.798217962 - 10*® 223 +
3.090311649 - 10* 2222 — 2.981944666 - 1017 2.
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Figure 1: Up left: plot of C; Up right: plot of C; Down left: plot of 7. (C); Down right:
plot D.

Note that deg(m,(C)*) = 4. Applying the approximate parametrization algorithm
for plane curves in [20] we get that m,(C)* is e-rational. Furthermore the algorithm

_ (pi(®) ps®)
outputs Q(t) = ( a(t) * q() )

p1(t) = — 1.304559082 - 10*1° ¢ — 2.995071314 - 10*'* +* — 2.096039950 - 10*!* —
1.114733279 - 10*5 ¢ — 3.005548232 - 10" 3,
ps(t) =6.238758852 - 10*!8 ¢ — 5.937809784 - 10" ¢3 + 3.175932541 - 10*!®
— 3.618736499 - 10" t* — 2.083861701 - 10*1 ¢2,
q(t) =3.555348439 % 4 t* + 4.622830832 * + 2.625458073 t + 0.5529230644.

It only remains to compute the numerator of the second component of the rational

parametrization of the lifted curve; namely py(t). Applying Lemma we get the
pi(t) p2() p3(®)
q(t) ? q(t) > q(t)

approximate parametrization P(t) = ( ) of the space curve C (i.e. the
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parametrization of C) where

po(t) = = 8.923772403 - 107 ¢ + 1.249180934 - 107 +* + 2.137471224 - 107+
5.846606727 - 10™ 3,

5 Error Analysis

In this section, we prove that the Hausdorff distance between the input and output
curves, of our algorithm, is always finite. For this purpose, we first need to develop
some results on asymptotes of space curves. Afterwards we will analyze the distance.
To start, we briefly recall the notion of Hausdorff distance; for further details we refer
to [I]. In a metric space (X,d), for ) # B C X and a € X we define

d(a, B) = infpep{d(a,b)}.
Moreover, for A, B C X \ @ we define
Ha(A, B) = max{sup,c,{d(a, B)}, supep{d(b, A)}.
By convention Hq(0,()) = 0 and, for § # A C X, Hq(A,0) = co. The function Hy

is called the Hausdorff distance induced by d. In our case, since we will be working in
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(C3,d) or (R3,d), being d the usual unitary or Euclidean distance, we simplify the
notation writing H(A, B).

Let € be an space curve in C?; similarly if we consider the curve in C". The intuitive
idea of asymptote is clear, but here we formalize it and state some results. Although
these results might be part of the background on the theory of asymptotes, we have
not been able to find a reference in the literature suitable for our needs.

We say that a line £ in C? is an asymptote of £ if there exists a sequence {P,},en
of points in & such that lim,||P,| = oo and lim,d(P,, L) = 0; where d denotes the
usual unitary distance in C3 and || || the associated norm. In the following, we show
how the tangents at the simple points at infinity of £ are related with the asymptotes.
More precisely, we have the following lemma. In the sequel, if V is a projective variety
in P3(F), we denote by V, the open set VN {w # 0}. In addition, for A € C, X denotes
its conjugate.

Lemma 5.1. Let P = (a : b: c: 0) € £ be simple and let T(P,E") be the tangent
line to " at P. If T(P,E") is not included in the plane w = 0, then T(P,E"), is an
asymptote of £. Moreover, (a,b,¢) is a direction vector of the asymptote.

Proof. Let {Hy,...,H,} C F[z,y,z,w| be homogeneous polynomials defining the
ideal of £". Let

OH,;
or

0H;
dy

OH,;
0z

OH,;
ow

(P)x + (P)y + (P)z+ (P)w

mi(z,y, z,w) =

Then, T(P,&") is the projective variety defined by {mi(z,y, z,w), ..., mm(z,y, 2, w)}
(see e.g. pp. 181 in [I3]). Note that, since T(P,E") is not included in the plane w = 0,
T(P,&M), is an affine line. Now, we consider a local parametrization P(t) = (z(t) :
g(t) : 2(t) s w(t)) of E centered at P. Since P is simple, and its tangent is not included
in w = 0, the multiplicity of intersection of £" and the plane w = 0 at P is 1. Thus,
w(t) can be expressed as w(t) = tu(t), where u(t) has order 0. Therefore, u(t)™" is a
power series and P(t) can be expressed as

P(t) = (x(t) - y(t) - 2(t) : 1)

where z(t) = Z(tH)u=(t), y(t) = g(t)u='(t), 2(t) = Z(t)u"'(t) are power series. More-
over, since T(P, £") is the tangent, the order of 7;(P(t)) has to be, at least, 2. Therefore,
7;(P(t)) can be expressed as m;(P(t)) = tYv(t), where £; > 1 and v(t) has order 0.
Now, let {¢,} be a sequence of complex numbers converging to 0, and such that
tn # 0. Then, for all n, P, = (mgi”), y(ti"), ZE;”)) € £. Moreover, lim, || P,|| = co. Let II;
be the affine plane defined by m;(x,y, z,1). We prove that, for all 7, lim,d(P,, I1;) = 0.
From where, one deduces that lim,d(P,, T(P,&"),) = 0, and hence that T(P, &), is

an asymptote.
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Indeed,
|7TZ(Pm 1)| tg._l (t")‘

e ez [Eege2e)]

Since the denominator is not zero, because T(P, £") is not included in w = 0, and since
;i —1 >0 and order of v is 0, we get that lim, d(P,,I1;) = 0.
Finally, we see that u = (@,b,¢) is a direction vector of the asymptote. First we
observe that u is not zero, since P € P3(F). Now, by Euler equality we have that
0H; 0H; O0H;

O0H,
’ ’ :d Hz Hz
Oxx—i_ 0yy+ 0zz+0ww es(H:)

Substituting by P, we get

d(P,, 11;)

0H; 0H; 0H; 0H; B B
Hence,
0H; 0H,; 0H; 0H; 0H; 0H;
P P P)) -u= P P P)c=0.
(G e e ) = Gy TP S e =0
Thus u is orthogonal to all the planes II;. |

Remark 5.2. Note that the previous lemma is also true for P singular and for each
simple tangent not included at the plane at infinity.

Applying the previous lemmas we get the next theorem.
Theorem 5.3. Let &,E, C C? be such that

1. EF =&

2. card(E°) = card(E5°) = deg(&1) = deg(&y).
Then, H(gl,gg) < 0.
Proof. By (2), all points at infinity of both curves are simple and none tangent line is
included at the plane infinity. Therefore, by Lemma [5.I], all branches of the curves go
to infinity following asymptotes. Since the direction vectors of the asymptotes depend

only on the points at infinity (see Lemma[5.1]), by (1) the asymptotes of & and &, are
parallel. Now, the result follows reasoning as in the proof of Lemma 6.1. in [20]. |

Remark 5.4. Note that, under the assumptions of Theorem [(.3] it also holds that
H(ENR3, ENR3) < oo. We also observe that the previous theorem can be used under
weaker assumptions for bounding H(&; NR3, & N R3), since the result would follow
analyzing the real asymptotes.

Corollary 5.5. Let c,C be the input and output curves of our algorithm. Then
H(C,C) < 0o and H{CNR3,C NR3) < oo.

Proof. It follows from the general assumptions, and from Theorems 3.1 and O
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6 Empirical Analysis of the Error

We proved in the previous section that the Hausdorff distance H(C,C) is finite. In this
section, because of the computational difficulties, instead of computing or bounding
theoretically H(C,C) we approach the study of the Hausdorff distance empirically and
apply it to the examples in Section @l Recall that

H(C,C) = max{suppec{d(P.C)}, supgee{d(Q, C)}},

where C,C are the input and output curves of our algorithm.

We explain next how to estimate suppce{d(P,C)} and sup,{d(Q,C)} indepen-
dently. Let P(t) = (p1(t),pz(t), P3(t)) € R(t)® be the parametrization of C output by
our algorithm.

Estimation of sup,z{d(Q,C)}

For every ty € Q, such that _f(to) is well defined, and pr’(to)p2'(to)P3 ' (to) # 0, we
consider the normal plane to C at the point P(ty) given by the parametrization:

£1(t0, ]{31, ]{32) = P(to) + ]ﬁUl (to) -+ kQUg(to),

where vy (tg) and vy(tg) are unitary vectors in the direction of (—p3’(t0), 0,71 (t9)) and
(0, —p3'(to), P2 (to)) respectively. Moreover, we introduce the polynomials

D;(to, k1, ko) = Fi(L1(to, k1, k2)) € Qlky, ko], i =1,...,s;

we recall that {F}, ..., F,} are the polynomials generating C. In this situation, it holds
that

d(P(tO),C) S IIliIl{Hk’lUl(to) + k‘g’Ug(to)H | Di(to, k’l, k’g) = 0, k’l, k’g € C, 1= 1, ey S}.

Let py(to) denote the r.h.s. of the previous inequality.

We explain next how to choose an appropriate finite set 7 C Q to give
max;e7{p1(to)} as an estimation of supyz{d(Q,C)}. First, we obtain a finite set
To C Q as follows. For each real pole of the parametrization P(t) we consider a finite

.....

point. Then 7y is the set containing all the middle points. Secondly we consider the
set 71 ={(=2)"|i=1,...,10°} for some e; € N and finally we take 7 = Ty U T;.

Estimation of supp..{d(P,C)}

For every non singular point Py = (a,b,c¢) € C, we consider the normal plane to C at
P()I
£2(P0, xr, Y, Z) = Nl(PQ)(ZL' — a) + NQ(PQ)(y — b) + Ng(PQ)(Z — C)

18



where (Ny(Fy), No(Fy), N3(F)) is a unitary normal vector to C at Fy. Moreover let
G(Py,t) be the numerator of Lo( Py, p1(t), pa(t), p3(t)). Then it holds that

d(Py,C) < min{||Py — P(t)|| / G(Py,t) = 0 and t € C}.

Let po(Py) denote the r.h.s. of the previous inequality.

We explain next how to choose an appropriate finite set £€ C C to give
maxpyce{p2(Fo)} as an estimation of suppee{d(P,C)}. For each i = 1,..., e, where
ey € N, we compute the sets w?, w! and w? of intersection points of C with the planes
r=(=2)" y=(-2)" and z = (—2), respectively. Then & = U2, (w? Uw! Uw?). Tt
should be noticed that, in practice, the points in £ cannot be taken as exact points on
the curve but as e-points (see [19]), thus contributing to an increment of the magnitude
of the estimation. Observe that this is avoided when taking 7.

Distance Estimation for Examples in Section 4]

Example The parametrization P(t) of C has 2 real poles. For ey = 20 we get
maxy, e {p1(to)} = 0.2203928911 and for 7 = {(—2)" | ¢ = 1,...,10%} we obtain
maxy,e7; {01(f) } = 0.1036637452. Then our estimation of supge{d(@,C)} is equal to
0.2203928911.

For £ = UX, (wf Uw! Uw?) we obtain an estimation of suppec{d(P,C)} equal to
maxp,ce{p2(FPo)} = 0.4705723389. Thus our estimation of H(C,C) is 0.4705723389.
Example The parametrization P(t) of C has 2 real poles. For ey = 20 we get
maxe7{p1(to)} = 0.1558549452 and for 71 = {(—2)" | i = 1,...,10%} we obtain
maxy,e7; {01(fo) } = 0.1603882181. Then our estimation of supge{d(Q,C)} is equal to
0.1603882181.

For £ = UX, (wf Uw! Uw?) we obtain an estimation of suppe{d(P,C)} equal to
maxp,ee{p2(FPo)} = 0.1562381230. Thus our estimation of H(C,C) is 0.1603882181.
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