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An alternative unified formulation for integer and fractional quantum Hall effects
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In this paper, a new unified formulation of integer and fractional quantumHall effect are presented.
Firstly, under the condition of strong magnetic field and symmetry gauge, the Pauli equation is
solved in which the wave function and energy levels are given explicitly, then after the calculation of
the degeneracy density for 2-dimensional idea electron gas system, the Hall resistance of the system
is obtained, where the quantum Hall number ν is introduced. The new defined ν , called filling
factor in the literature, is related to radial quantum number nρ and angular quantum number |m|,
different nρ and |m| corresponding to different ν, which gives unification explaination for integer
and fractional quantum Hall effects, and we also predicate more new cases of fractional quantum
Hall effects to be confirmed by experiment.
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INTRODUCTION

In 1879, E. H. Hall discovered that when a conductor
carrying an electric current perpendicular to an applied
magnetic field develops a voltage gradient which is trans-
verse to both the current and the magnetic field. This
phenomenon is called Hall effect. About 100 years after
the discovery of Hall effect, Klaus von Klitzing, in 1980,
made the unexpected discovery that, under low temper-
ature and strong magnetic field, the Hall conductivity
was exactly quantized[1], in which the Hall conductivity

σ takes on the quantized values, i.e. σ = ν e2

h and ν takes
integer values, we call it quantum Hall effect (QHF). For
this finding, von Klitzing was awarded the 1985 Nobel
Prize in Physics[2]. Very soon after that, under much
more low temperature, the fractional quantum Hall ef-
fect(FQHE) was experimentally discovered in 1982 by
Daniel Tsui and Horst Stormer[3], in which ν, called fill-
ing factor, takes fractional values. Each particular value
of the magnetic field corresponds to ν = p

q , where p and
q are integers with no common factors. Here q turns out
to be an odd number with the exception of two ν’s 5/2
and 7/2. The principal series of such fractions are 1

3 ,
2
5 ,

3
7 ,

etc.,and 2
3 ,

3
5 ,

4
7 , etc., all fractions have an odd denomina-

tor. The effect was explained by Laughlin in 1983, using a
novel quantum liquid phase that accounts for the effects
of interactions between electrons. Tsui, Stormer, and
Laughlin were awarded the 1998 Nobel Prize in physics
for their work.

The theoretical study of integer and fractional quan-
tum Hall effect has about thirty years’ history[5]. For
examples, the theory of Laughlin which introduced sev-
eral novel concepts in correlated quantum fluids, in-
spired analogous effects in other subfields of physics;
the quantum Hall effect was generalized to four dimen-
sions [6] in order to study the interplay between quan-
tum correlations and dimensionality in strongly corre-

lated systems; two-dimensional electron systems were
modeled by strings interacting with D-branes [7], where
the fractionally-charged quasi-particles and composite
fermions were described in the language of string the-
ory; an interesting analogy between the quantum Hall
effect and black hole has been reported, and in particu-
lar, the edge properties of a quantum Hall effect system
have been used to model black hole physics from the point
of view of an external observer [8]. Important develop-
ments of the quantum Hall effect have also taken place
from the field theoretical point of view[9].

In this paper, we give an alternative unification de-
scription for integer and fractional quantum Hall effect,
in which we use purely quantum mechanics theory and
do not need any other suppose conditions or hypothesis.

THE SOLUTION OF PAULI EQUATION

In this section, we study the wave function and energy
levels for the electron moving in strong magnetic field,
and give the expectation value of the moving range of
single electron, then after a new definition of quantum
Hall number ν, the Hall resistance formula is given ex-
plicitly.

The Dirac equation for an electron moving in magnetic
filed is usually expressed as,

i~
∂

∂t
ψ = [c~α · (~p+

e

c
~A)− eφ+ µc2β]ψ. (1)

Let’s consider the situation of the electron moving in
x − y plane, and uniform magnetic field applied in z-
direction, then under the symmetric gauge, i.e. ~A =
(−B

2 y,
B
2 x), without electric field, the non-relativistic ap-

proximation of Dirac equation (1) is cast to Pauli equa-
tion as follows,
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i~
∂

∂t
ψ = (

1

2µ
(px−

eB

2c
y)2+

1

2µ
(py+

eB

2c
x)2+

1

2µ
p2z+

e~B

2µc
σz)ψ,

(2)
last term is the Stern-Gerlach term.
In cylinder coordinate description, we find, after te-

dious calculation, the stationary wave function is ob-
tained,

ψnρlλ(ρ, ϕ, z, s, t) = [
(nρ+|l|)!

πnρ!
]1/2 1

aξ
|l|e−ξ2/2.

Σ
nρ

k=0
(−1)kBinomial(nρ,k)

(k+|l|)! ξ2k+|l|χλ(s)e
ilϕe−ipzz/~e−iEt/~,

(3)
where ξ = ρ

a and a = (2~c/eB)1/2, which defines the
moving scale of the electron. When magnetic strength
B = 17T , the valve of a is 93.68Å, which is 177 times
as large as Bohr radius. So under strong magnetic field
electron gas system can be considered as an idea gas,
the interaction among electrons can be neglected. The
energy levels for the stationary state can be expressed
as,

Enρmλ = 1
2µp

2
z + (2nρ + |m|+m+ λ+ 1) e~B2µc ,

nρ = 0, 1, 2, . . . ; m = 0,±1,±2, . . . ;λ = −1, 1
(4)

where, nρ’s are radial quantum number, m’s are angular
quantum number (z-direction) and λ’s are spin quantum
number in the Pauli representation. When the angular
momentum quantum number m ≤ 0, we have m+ |m| =
0, then the energy formula (4) can be replaced as

En =
1

2µ
p2z+(nρ+

λ+ 1

2
)
e~B

µc
, nρ = 0, 1, 2, . . . ; λ = −1, 1

(5)
This energy level formula shows that when m ≤ 0, the

energy levels do not depend on angular quantum num-
ber, namely, the energy degeneracy is infinite. On other
words, because of the low temperature and strong mag-
netic field, electron is forced to be in the states of infinite
energy degeneracy. This is just the very condition for
quantum Hall effect. Theoretically, because of the infi-
nite energy degeneracy, there should be infinite number
of electrons occupying one energy level, but it is not true
for reality. Because every electron has certain moving
space, so in a finite plane, there should be finite electron
occupying one energy level. For two dimensional idea
electron gas, the expectation value of moving area for
single electron is depended on quantum number nρ and
m,

< S >nρ,m=< πρ2 >nρ,m= π
∫ 2π

0
dϕ

∫∞
0
ρ3|φ(ρ, ϕ, z, s)|2dρ

= π(2nρ + |m|+ 1)2~ceB ,
(6)

the detail calculation can be found in [10]. The physics
conditions of quantum Hall effect are: 1) electrons are
fully polarized, namely, λ = −1; 2), m ≤ 0. The en-
ergy level does not depend on m, so for one energy level

the angular quantum number can take (|m| + 1) values
as 0,−1,−2,−3, · · ·,−m. Therefore, for the electron gas
with total electron number N , in strong magnetic field,
on the plane range of N < S >nρ,m, the number of elec-
tron state is

NB = N(|m|+ 1). (7)

So the energy degeneracy density (energy degeneracy on
per unit area) for electron gas in strong magnetic field is

nB =
NB

N < S >nρ,m
=

|m|+ 1

2nρ + |m|+ 1

eB

hc
. (8)

this shows that the energy degeneracy on unit area de-
pends on radius quantum number nρ and angular quan-
tum number |m|, and is also proportional to magnetic
strength B.
Let us define a quantum Hall number ν as:

ν =
|m|+ 1

2nρ + |m|+ 1
, (9)

then the equation (8) can be rewrite as,

nB =
NB

N < S >nρ,m
= ν

eB

hc
. (10)

From the definition of Hall resistance and equation (10),
we get the Hall resistance as

ρxy =
B

nBec
=

1

ν

h

e2
(11)

Obviously, the Hall resistance is only depended on the
quantum Hall number ν, and the later depends on the
ratio of |m|+1 and 2nρ+ |m|+1. This is the key result of
this paper, from this result, the quantum Hall effect and
fractional quantum Hall effect can be unified formulated
(see section below).

UNIFICATION FORMULATION OF INTEGER

AND FRACTIONAL QUANTUM HALL EFFECTS

In this section, we will use the results above to give a
unification description for both quantum Hall effect and
fractional Hall effect. From the formula of quantum Hall
number (9), we can see that different quantum number nρ

andm corresponding different quantum states, and ν can
take value 1 and also fraction, they relate respectively to
integer quantum Hall effect and fractional quantum Hall
effect.
1, When nρ = 0, from equation(9) we get ν = 1. And

now the angular quantum number can still take one of
|m|+1 values: 0,−1,−2 · · ·−|m|. On other words, on one
energy level, the electrons of the electron gas system can
fill different state with different angular quantum number
0,−1,−2 · · · −|m|. the less absolute value of angular
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TABLE I: fractional quantum Hall number

m\ nρ 1 2 3 4 5 6 7 8 9
0 1/3 1/5 1/7 1/9 1/11 1/13 1/15 1/17 1/19
-1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10
-2 3/5 3/7 1/3 3/11 3/13 1/5 3/17 3/19 1/7
-3 2/3 1/2 2/5 1/3 2/7 1/4 2/9 1/5 2/11
-4 5/7 5/9 5/11 5/13 1/3 5/17 5/19 5/21 5/23
-5 3/4 3/5 1/2 3/7 3/8 1/3 3/10 3/11 1/4
-6 7/9 7/11 7/13 7/15 7/17 7/19 1/3 7/23 7/25
-7 4/5 2/3 4/7 1/2 4/9 2/5 4/11 1/3 4/13
-8 9/11 9/13 3/5 9/17 9/19 3/7 9/23 9/25 1/3
-9 5/6 5/7 5/8 5/9 1/2 5/11 5/12 5/13 5/14

quantum number correspond to the more stable state and
less moving range. Firstly, when all electrons occupy
the state of angular quantum number equals 0, and thus
Hall plateau appears. When the magnetic field becomes
less, electron density of electron gas also gets less, then
the extra electrons of state m = 0 will fill the states
of m = −1, when these states are full filled, the Hall
plateau appears again. When the extern magnetic field
gets less and less, the electrons will fill the states of m =
−2,−3, · · ·, other Hall plateaus appear one by one, this
is the integer Hall effect.

2, When nρ 6= 0, the electrons of the electron gas sys-
tem stay in excited sates, different nρ and different |m|
corresponding to different fractional quantum Hall num-
ber (see the table I), and thus correspond to different
Hall effects, which is just the fractional Hall effect.

The fractional quantum Hall effect corresponding to
the filling of electron to exciting states. The principal two
series of nρ, mentioned in the introduction part, i.e. ν =
1
3 ,

2
5 ,

3
7 , ··· .,and ν = 2

3 ,
3
5 ,

4
7 , ··· are completely included in

the table I. Besides, there are also some other fractional
ν in tableI which ,may correspond to new fractional Hall
effects, they should be experimentally checked.

REMARKS AND CONCLUSIONS

From the calculations and analysis above, we give some
remarks as follows.

1, From the table I, we can see that the ν of all known
fractional quantum Hall effects are concluded in the ta-
ble, for examples, ν = 1

3 , ν = 2
3 , ν = 2

5 , ν = 3
5 , · · · The

ν = 1
3 appears firstly in the table and also most fre-

quently. From this point of view, its first discovering by
experiment is easy understood, and also it corresponds to
the excited state with most low energy. 2, The ν which
second frequently appears in the table I is ν = 1

2 , the first
ν = 1

2 in the table corresponds to the quantum number
nρ = 1,m = −1, λ = −1, the energy level, for single
electron, the wave function and the probability density
of this state are:

φ1,−1(ξ, ϕ, z, s) =
2−ξ2

a
√
2π
ξe−ξ2/2χλ(s)e

−iϕe−ipzz/~e−iE1λt/~,
(12)

E1λ =
1

2µ
p2z +

(λ+ 3)e~B

2µc
, (13)

f1,−1 = (2 − ξ2)ξ3e−ξ2 . (14)

The second ν = 1
2 corresponds to the quantum number

nρ = 2,m = −3, λ = −1, the single particle energy, wave
function and probability density of this state are:

φ2,−3(ξ, ϕ, z, s) =
20−10ξ2+ξ4

a
√
240π

ξ3e−ξ2/2χλ(s)e
−3iϕe−ipzz/~e−iE2λt/~,

(15)

E2λ =
1

2µ
p2z +

(λ+ 5)e~B

2µc
, (16)

f2,−3 =
20− 10ξ2 + ξ4

120
ξ7e−ξ2 . (17)

Other ν = 1
2 situations can also be discussed similarly.

3, For m = 0, the Hall quantum number is reduced
to ν = 1

2nρ+1 , the electron gas system in these states

are so called incompressible quantum liquid, in this case,
electrons are in s-wave states, namely in circular Bohr
orbit.
4, Besides the some quantum Hall numbers defined

in (9) fully description the known fraction Hall effects,
the fractional Hall effect for other quantum Hall num-
bers defined in (9) may also exist, we expect they can be
experimentally checked very soon.
In conclusion, using the method of quantum mechan-

ics, we firstly got the expectation value of the move range
of single electron, and then the degeneracy density for
electron gas system is obtained, at same time the new
defined quantum Hall number ν was introduced, which
is called filling factor in the literature. The most impor-
tance of our formulation is that we gave out a unified
explaination for integer and fractional quantum Hall ef-
fects, and some possible fractional quantum Hall effects
was also predicted, and what is more, we do not need
any suppose conditions, such as the fractionally-charged
quasi-particles, composite fermions and extension states
etc. which are needed to be introduced to explain the
fractional Hall effects in the literature.
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