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Benchmark helium dimer and trimer calculations with a public

few-body code.

Vladimir Roudnev and Michael Cavagnero

Abstract

We present detailed calculations of bound and scattering states of dimers and trimers of He to

produce highly accurate data and to test a non-relativistic three-body code currently in develop-

ment for public distribution. For these systems, uncertainties and inaccuracies in the fundamental

constants frequently used in published works can substantially exceed numerical errors. Our bench-

mark calculations include specific estimates of the numerical accuracy of the calculations, and also

explore sensitivity to fundamental constants and their uncertainties. The use of an inexact cou-

pling constant in the previous calculations leads to 0.08% error for the ground state energy, 0.3%

error for the excited state energy and up to 0.15% error for the atom-dimer scattering length in

the system of three 4He atoms. The corresponding errors for the unsymmetric 4He2
3He system are

0.3% for the bound state energy and 0.03% for the atom-dimer scattering length.
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I. INTRODUCTION

Experimental investigations of He dimers and trimers [1–3] in the 1990’s generated con-

siderable theoretical interest in these weakly-bound few-body systems. Small He clusters

are now considered one of the most extensively studied molecules – theoretically and com-

putationally [4–31] (see also an extensive review [31]). Many semi-empirical and ab initio

potential models have been proposed for the interaction of He atoms[4–10]. These potential

models have been used as input in a number of two- three- and even four- body quantum

calculations[21, 26]. The numerical results of these investigations are, for the most part, in

agreement, with small remaining discrepancies due simply to limits of numerical accuracy.

Nevertheless, we wish to revisit, reproduce and check these previous results. While small

clusters of He are structurally quite simple, they are also delicate, with very weak binding,

and so are challenging to model numerically. Given the extensive set of known potential

models and the number of results published, it seems natural to use bound and scattering

states of two and three He atoms to benchmark the accuracy of existing and future few-body

quantum-chemical software.

The near-threshold state of the He dimer is extremely sensitive to the details of the

interaction potential. Visually indistinguishable potentials can lead to qualitatively different

expectations for the properties of the He dimer. The three-body states are likewise expected

to be very sensitive to the details of the interaction, since their binding is similar to that of

Efimov states. One immediate result of our investigations is that, even for a fixed potential,

He cluster observables can vary substantially depending on the accuracy of the fundamental

constants used in the calculations. Unfortunately, the fundamental constants and conversion

factors published by the developers of potential models and early He cluster calculations –

and, therefore, widely used in subsequent publications – have intrinsic systematic errors that

prevent them from being used for benchmark purposes.

In this paper, we consider three questions: To what extent is the accuracy of near-

threshold calculations limited by knowledge of the fundamental constants? To what extent

can the known discrepancies in the published results be explained by possible use of inexact

coupling constants? Can our three-body calculations reach the “natural” accuracy limit set

by the uncertainties of the known fundamental constants? Answers to these questions will

allow us to benchmark a quantum few-body code being prepared for public release, with
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intended applications to a wider variety of atomic and molecular few-body systems.

The detailed technical description of the three-body code we use for the calculations will

be made elsewhere; generally, the techniques used in these calculations are similar to the ones

employed in [18, 22, 25]. In the current stage of development the code is not yet completely

ready for an extensive public distribution. Interested readers, however, are encouraged to

contact the authors for obtaining the current development version.

We assume throughout this paper that the system of He atoms can be described by

a single-channel pairwise interaction. We, therefore ignore the contribution of three-body

forces. This contribution can, substantially exceed the numerical accuracy of the calculations

presented. Our goal, however, is to provide an exemplary data set based on known potential

models rather than to perform the most realistic calculation of the physical system. We

also ignore all the off-diagonal non-adiabatic corrections not included in the single-channel

potential model.

In the following sections we shall give a short description of the problem, analyze the

uncertainties that enter the benchmarking problem, give a review of published results and

provide our results, which account for all known physical uncertainties.

II. PHYSICAL UNCERTAINTIES IN TWO-BODY OBSERVABLES

Consider the Schrödinger equation for a two-body system

(− h̄2

2m
∇2 + cV (r)− E)Ψ = 0 .

Here, c is a conversion factor between the energy units of the potential (provided by the

various developers of two-body potentials) and our chosen “natural” units, as specified below.

This conversion factor, specified with varying degree of precision by different authors, is

usually a simple function of fundamental constants. Rescaling the energy we reduce the

equation to

(−∇2 + v(r)− z)Ψ = 0 ,

where v(r) = c2m
h̄2 V (r) and z = 2m

h̄2 E. To analyze the sensitivity of the state Ψ to the

inaccuracy of the fundamental constants and other conversion factors, we introduce a (di-

mensionless) coupling constant λ and treat the eigenvalue z as a function of the coupling
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constant

(−∇2 + λv(r)− z(λ))Ψ = 0 .

Knowing the derivative of the energy eigenvalue d
dλ
z(λ)|λ=1 one can estimate the sensitiv-

ity of the dimer bound state, or scattering phase shifts, to the degree of precision of the

fundamental constants of interest.

Many model potentials of rare gas atom interactions were published in units of tem-

perature. The conversion factors between atomic units of energy (typically employed in

calculations) and temperature units are, however, not always provided. In some cases, when

the corresponding conversion factors are published, the values suggested by the authors differ

significantly from the values recommended by NIST. For instance, the recommended value

for the TTY potential is 3.1669×10−6 a.u. K−1, which differs from the recommended value

of 3.1668154×10−6 a.u. K−1 in the 5th significant figure. Even such small differences can

appreciably affect the accuracy of derived results owing to the weakly-bound nature of few-

body clusters, and can make benchmarking and comparison of alternative computational

strategies difficult.

Many three-body calculations of He clusters [12, 18, 26, 31] have been performed, as-

suming Å for distance and the conversion coefficient h̄2

2µkb
≈ 12.12 Å2K. Keeping only 4

significant figures may lead, however, to significant inaccuracy in 2-body observables. Let

us estimate the accuracy of this coupling constant based on the best available data from the

NIST database. Based on the following recommended values

2µ = m4He = (4.0026032497± 0.0000000010) a.m.u.

h̄ = (1.054571628± 0.000000053)× 10−34Js

kB = (1.3806504± 0.0000024)× 10−23JK−1

1a.m.u. = (1.660538782± 0.000000083)× 10−27kg

the value of the conversion factor for two 4He atoms should be taken as h̄2

2µkb
= (12.11928±

0.00002) KÅ2. The major source of the uncertainty in this conversion factor is the Boltz-

mann constant, followed by the Planck constant and the mass unit.

The results of our calculations of the binding energy and effective range expansion pa-

rameters for two He atoms are summarized in Table I. For conversion of energy between K

and atomic units we use the value of the Boltzmann constant kB = 3.1668154×10−6 a.u./K
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We provide two types of results. The first group of calculations is performed with the ef-

fective coupling constant used in previous three-body calculations, the second type is done

with the best values recommended by NIST. The calculations are done in atomic units.

For conversion between K and a.u. (the factor ”c” discussed above) we also use the values

recommended by NIST. This explains the difference between the values reported here and

previously published results for the TTY potential. Evidently, the binding energy and the

h̄2

m
≡ 12.12 KÅ2 h̄2

m
≡ 12.11928 KÅ2

Potential E2, mK a, Å r0, Å E2, mK a,Å r0, Å

HFD-B(He) 1.6853 (0.4%) 88.60 (0.2%) 7.28 1.6921 88.43 7.28

LM2M2 1.3034 (0.5%) 100.2 (0.2%) 7.33 1.3094 100.0 7.33

TTY 1.3149 (0.5%) 99.82 (0.2%) 7.32 1.3210 99.59 7.33

HFD-B3-FCII 1.5872 (0.4%) 91.19 (0.2%) 7.29 1.5938 91.00 7.29

TABLE I. Binding energy and effective range parameters for different potential models calculated

for exact and approximate effective coupling constants. Relative effect of rounding the coupling

constant is given in parentheses.

scattering length are quite sensitive to the often neglected small inaccuracy of the coupling

constant. Even though the the coupling constant employed in many published calculations

differs from the exact value only in the fifth figure, it is the third significant figure of the

binding energy and the scattering length which is affected by this small inaccuracy.

As the characteristics of near-threshold He-He states are quite sensitive to the accuracy

of the effective coupling constant employed, it is useful to place physically reasonable limits

on the accuracy of few-body calculations. Fig. 1 shows the coupling constant dependence of

the He2 binding energy dependence for the TTY potential. The inset shows the variations

of the two-body bound state energy within one-σ confidence interval for the effective cou-

pling constant. This permits an estimation of the accuracy of the few-body near-threshold

calculations at the level of 0.4 µK, which corresponds to a relative error of the order of

∝ 3× 10−4. This provides a natural limit to the accuracy of numerical calculations for this

system, a limit deriving from the known precision of the fundamental constants. Explicitly,

varying the effective coupling constant h̄2

m
from 12.11926 KÅ2 to 12.11930 KÅ2 we see the

binding energy varying from −1.69231 mK to −1.69194 mK. Thus, numerical calculations
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FIG. 1. He dimer binding energy as a function of the coupling constant. The inset shows the

variation of the binding energy within the bounds determined by the inaccuracy of the fundamental

constants.

with an accuracy of more than four significant figures are not possible, since the potentials

are defined in units of the Boltzmann constant kB.

III. THREE-BODY OBSERVABLES

The known strong correlations between the two-body scattering length and the energies of

trimer bound states suggests that we can also expect sensitivity to the coupling constant in

three-body calculations. The three-body results reported here were obtained using a general-

purpose three-body code based on solving Faddeev equations numerically. The numerical

technique used in this code is similar to the one reported in [22, 25]. A very brief description

of our approach to solving the Faddeev equations is given in the Appendix. The code is

intended for public release and this work is a part of the release preparation.
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A. Three identical He atoms

In order to determine the degree of sensitivity of three-body observables to small vari-

ations of the coupling constant, we must first conduct a thorough analysis of the intrinsic

numerical uncertainties and convergence properties when the coupling constant is held fixed

at its recommended value. Convergence tables for bound states of the 4He3 trimer calculated

with the LM2M2 potential are shown in Table II. The bound state energies (with respect

to the three-body break-up threshold) are presented for different numbers of grid points in

spline solutions to the Faddeev equations. The number of grid points in the “cluster coordi-

nate” x and in the “reaction coordinate” y are set equal, and the number of grid points in

the angular coordinate z = (x,y) is varied independently. (The detailed description of the

coordinate system can be found in [25]). The cut-off distances are set to Rx = 1200 a.u. for

the cluster coordinate and Ry = 2000
√

3
2
a.u. for the reaction coordinate. Not surprisingly,

the excited state is much less sensitive to the grid in angular coordinate: as is shown in [25],

the excited state is strongly dominated by the two-body s-state.

To estimate the intrinsic numerical error we extrapolate the calculated values to an infinite

grid and compare the calculated values with the extrapolated one. Estimating the error

very conservatively we obtain the energy estimates E3 = (−4.0060 ± 0.0001) × 10−7 a.u.=

−126.499 ± 0.003 mK for the ground state and E∗
3 = (−7.21540 ± 0.0001) × 10−9 a.u.=

−2.2784 ± 0.0003 mK for the excited state with the LM2M2 potential. Results obtained

with other model potentials are given in Tab. III.

We have also calculated the scattering length for a 4He atom scattered off the 4He2 dimer.

As our previous calculations have shown [22], the box size is very critical for obtaining

accurate results, and should be of order 3000 a.u. in the cluster coordinate. The results of

scattering length calculations for the same set of potential models are shown in Tab. IV.

We can now address the issue of sensitivity to the coupling constant. How do small

inaccuracies in the coupling constant used in many previous calculations affect the calculated

observables? For this purpose we have introduced a coupling constant λ = 12.11928/12.12 =

0.9999406 in front of the potential and repeated the calculations using the most dense grid.

In Tab V we compare results of such calculations with the results of previous calculations

performed using similar techniques. Examining Tab V we find that the results obtained

here confirm the results of earlier calculations performed with sparser meshes using a widely
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Ground state energy, a.u.

Nx = Ny Nz = 1 Nz = 2 Nz = 4 Nz = 6 Nz = 8 ∞

20 -3.96752E-7 -3.99142E-7 -3.99137E-7 -3.99342E-7 -3.99468E-7 -3.99455e-07

25 -3.98763E-7 -3.99602E-7 -4.00046E-7 -4.00415E-7 -4.00356E-7 -4.00360e-07

30 -3.98560E-7 -3.99610E-7 -3.99967E-7 -4.00139E-7 -4.00111E-7 -4.00113e-07

35 -3.98839E-7 -4.00237E-7 -4.00534E-7 -4.00670E-7 -4.00671E-7 -4.00671e-07

40 -3.98781E-7 -4.00235E-7 -4.00476E-7 -4.00547E-7 -4.00562E-7 -4.00561e-07

45 -3.98727E-7 -4.00230E-7 -4.00449E-7 -4.00541E-7 -4.00565E-7 -4.00563e-07

50 -3.98764E-7 -4.00310E-7 -4.00513E-7 -4.00577E-7 -4.00607E-7 -4.00604e-07

55 -3.98778E-7 -4.00273E-7 -4.00486E-7 -4.00571E-7 -4.00595E-7 -4.00593e-07

60 -3.98753E-7 -4.00298E-7 -4.00494E-7 -4.00567E-7 -4.00597E-7 -4.00594e-07

65 -3.98777E-7 -4.00288E-7 -4.00497E-7 -4.00577E-7 -4.00603E-7 -4.00601e-07

70 -3.98763E-7 -4.00298E-7 -4.00496E-7 -4.00572E-7 -4.00602E-7 -4.00599e-07

∞ -3.98767E-7 -4.00296E-7 -4.00498E-7 -4.00574e-7 -4.00603E-7 -4.00600e-07

Excited state energy, a.u.

Nx = Ny Nz = 1 Nz = 2 Nz = 4 Nz = 6 Nz = 8 ∞

20 -7.20149E-9 -7.21731E-9 -7.21671E-9 -7.21825E-9 -7.21908E-9 -7.21911e-09

25 -7.20046E-9 -7.20577E-9 -7.20855E-9 -7.21090E-9 -7.21046E-9 -7.21047E-09

30 -7.20196E-9 -7.20863E-9 -7.21089E-9 -7.21195E-9 -7.21172E-9 -7.21172E-09

35 -7.20645E-9 -7.21541E-9 -7.21725E-9 -7.21809E-9 -7.21806E-9 -7.21806E-09

40 -7.20136E-9 -7.21070E-9 -7.21216E-9 -7.21256E-9 -7.21262E-9 -7.21263E-09

45 -7.20376E-9 -7.21344E-9 -7.21475E-9 -7.21528E-9 -7.21541E-9 -7.21541E-09

50 -7.20411E-9 -7.21407E-9 -7.21527E-9 -7.21561E-9 -7.21578E-9 -7.21578E-09

55 -7.20348E-9 -7.21311E-9 -7.21438E-9 -7.21487E-9 -7.21499E-9 -7.21500E-09

60 -7.20384E-9 -7.21379E-9 -7.21495E-9 -7.21536E-9 -7.21555E-9 -7.21555E-09

65 -7.20372E-9 -7.21345E-9 -7.21469E-9 -7.21515E-9 -7.21531E-9 -7.21531E-09

70 -7.20374E-9 -7.21363E-9 -7.21481E-9 -7.21525E-9 -7.21543E-9 -7.21543E-09

∞ -7.20374E-9 -7.21358E-9 -7.21478E-9 -7.21522E-9 -7.21539E-9 -7.21540e-09

TABLE II. Convergence tables for 4He3 bound state energies for LM2M2 potential.
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Potential Ground state energy Excited state energy

E3, a.u.

(best grid)

E3, a.u.

(extrapolated)
E3/kB , mK

E∗
3 , a.u.

(best grid)

E∗
3 , a.u.

(extrapolated)
E∗

3/kB , mK

HFD-B(He) -4.21430E-7 -4.21425E-7 -133.075 -8.68438E-9 -8.68438E-9 -2.74231

LM2M2 -4.00602E-7 -4.00600E-7 -126.499 -7.21543E-9 -7.21540E-9 -2.27844

TTY -4.00722E-7 -4.00720E-7 -126.537 -7.25704E-9 -7.25703E-9 -2.29159

HFDBFCI1 -4.15369E-7 -4.15365E-7 -131.163 -8.25861E-9 -8.25861E-9 -2.60786

TABLE III. Bound state energies (with respect to the break-up threshold) for the 4He3 trimer.

Potential Scattering length estimates

a12, a.u. (best grid) a12, a.u. (extrapolated) a12, Å

HFD-B(He) 230.416 230.424 121.93

LM2M2 218.051 218.060 115.39

TTY 218.936 218.945 115.86

HFDBFCI1 228.380 228.388 120.86

TABLE IV. Scattering length for the 4He-4He2 atom-dimer scattering.

adopted inexact value of the coupling constant. The values obtained for the TTY potential,

however, differ from the previously reported values. As is mentioned above, in the previous

calculations we used the value of the Boltzmann constant suggested by the authors of the

potential. Here we are using the value recommended by NIST. It is also evident that the

difference in three-body observables induced by the variation of the coupling constant at the

level of 0.005% is well resolved by our code. We have summarized the results of calculations

performed with the exact and the rounded value of the coupling constant in Table VI.

It has been suggested by many authors that the system of three He atoms should demon-

strate a nearly universal behavior [23, 24]. Using a separable interaction Pen’kov has

shown [24] that all the low-energy parameters of the system of three 4He atoms can be

described by a single dimensionless parameter within a few percent error. A similar obser-

vation has been made by Braaten and Hammer [23] on the basis of effective field theory

and by Platter and Phillips [27] who used an approach similar to [23], but used a higher

order expansion and different regularization technique. In all these works the pair angu-

lar momentum cut-off has been introduced and only the s-wave interaction has been taken

9



Potential Scattering length estimates (rounded coupling constant)

a12, a.u. a12, Å a12, Å[22]

HFD-B(He) 230.28 121.86 121.9

LM2M2 217.74 115.22 115.4

TTY 218.64 115.70 115.8

HFDBFCI1 228.21 120.76 n/a

Potential Ground state energy (rounded coupling constant)

E3, a.u. E3/kB , mK E3/kB , mK [25]

HFD-B(He) -4.21084E-7 -132.968 -132.98

LM2M2 -4.00265E-7 -126.394 -126.41

TTY -4.00384E-7 -126.431 -126.40

HFDBFCI1 -4.15689E-7 -131.264 -131.26

Potential Excited state energy (rounded coupling constant)

E∗
3 , a.u. E∗

3/kB , mK E∗
3/kB , mK [25]

HFD-B(He) -8.65867E-9 -2.7342 -2.734

LM2M2 -7.19200E-9 -2.2711 -2.271

TTY -7.23353E-9 -2.2842 -2.280

HFDBFCI1 -8.28580E-9 -2.6164 -2.617

TABLE V. Calculated observables with the coupling constant modified to match previous calcula-

tions.

into account. Therefore, when comparing results of direct full-configuration calculations

with predictions based on universality arguments one can expect better agreement for the

strongly s-wave dominated near-threshold states, with poorer agreement expected for the

ground state of the trimer – which is not as dominated by the s-wave. Each of these theories

has a parameter which should be fit to reproduce some three-body observable, and then

predicts other three-body observables within a few percent error. A similar observation was

also made by Delfino et al. [32], who suggested that the ratio of neighboring bound state

energies of an Efimov-like system is a universal function of the ratio of the dimer binding

energy to the energy of the three-body ground state. We show this example in Fig. 2. The

curve from the original work [32] has been recovered graphically, and the accuracy of this
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h̄2

m
≡ 12.12 KÅ2 h̄2

m
≡ 12.11928 KÅ2

Potential E3, mK E∗
3 , mK a12, Å E3, mK E∗

3 , mK a12, Å

HFD-B(He) -132.968 (0.08%) -2.7342 (0.3%) 121.86 (0.06%) -133.075 -2.74231 121.93

LM2M2 -126.394 (0.08%) -2.2711 (0.3%) 115.22 (0.15%) -126.499 -2.27844 115.39

TTY -126.431 (0.08%) -2.2842 (0.3%) 115.70 (0.14%) -126.537 -2.29159 115.86

HFD-B3-FCII -131.264 (0.08%) -2.6164 (0.3%) 120.76 (0.08%) -131.163 -2.60786 120.86

TABLE VI. Energies of the bound states of 4He3 and the atom-dimer scattering length for different

potential models calculated for exact and approximate effective coupling constants. In parethesis we

show the relative difference between the results obtained with exact and inexact coupling constant.

procedure is comparable with the observed discrepancy. It is, therefore, unclear, whether

the small discrepancy comes from digitization or from the model employed in [32].

Similar correlations can be observed for the atom-dimer scattering length. As the atom-

dimer scattering is dominated by the pole of the t-matrix corresponding to the near-threshold

state of the trimer, the atom-dimer scattering length should behave as

a12 ∼
1√

E2 − E∗
3

∼ a
√

E∗

3

E2
− 1

, (1)

where a is the two-body scattering length. Our numerical calculations confirm this simple

observation extremely well. In Fig. 3 we show the ratio of the atom-dimer scattering length

to the two-body scattering length as a function of the dimensionless parameter 1
√

E∗

3

E2
−1

. All

the numerical results fall on a nearly perfect straight line. (Similar connection between the

neutron-deuteron doublet scattering length and the energy of the three-body bound state is

known in nuclear physics as the Phillips line [33]). Again, we see that the shifts in scattering

length induced by an inaccuracy of the coupling constant consistently follow the overall

trend.

Before turning to other examples of three-body systems that can be treated with our

code, let us compare our results with other known full-configuration calculations. We have

summarized the results reported for the ground state of the 4He3 trimer with the TTY

potential in Tab. VII. In the left column we summarize the results obtained in adiabatic

hyperspherical (AH) representation, including single-channel [13, 28] and multi-channel [14,

19, 28] calculations. In the right column the results of direct numerical solution of the
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FIG. 2. Ratio of the energies of two subsequent bound states of the 4He3 trimer as a function

of the dimer binding energy. The dotted line is recovered from Ref. [32] ( with digitization error

comparable with the observed discrepancy). The difference between the results obtained with exact

and inexact coupling constants is clearly resolved and consistent with the overall trend.

Schrödinger [29] or Faddeev equations [18, 26, 31] are given. The result reported in [31] was

obtained with a restricted angular basis corresponding to the very simplest angular grid used

in the present calculations, and agrees perfectly well with the value of -125.95 mK which

we obtain in this simplified case. The overall agreement between the results of solving the

equations directly is much better than those obtained within the AH approach. Although

the AH approach provides an effective and reliable tool for studying few-body systems

qualitatively, obtaining converged results is more difficult. The variations of the results due

to inaccuracies in the conversion factors can not account for systematic underestimating

of the binding energy which we see in adiabatic hyperspherical calculations. We want to

emphasize that although obtaining converged results in the AH approach is technically

more difficult, it should not be considered impossible. For instance, Suno and Esry [30]

report E3 = −133.55 mK for the ground state and E∗
3 = −2.7845 mK for the excited state

energy of the trimer in the calculation with 35 AH channels using the SAPT2007 potential
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FIG. 3. The atom-dimer scattering length (in units of the two-body scattering length) as a function

of the distance to the pole in the three-body t-matrix. The difference between the results obtained

with exact and inexact coupling constants is clearly resolved and consistent with the overall trend.

AH Reference Direct calculation reference

[13] -106.1 mK (a) [31] -125.9 mK

[28] -105 mK (a) [26] -126.39 mK

[19] -125 mK (b) [18] -126.40 mK

[14] -125 mK (b) [29] -126.2 mK

[28] -123.8±0.5 mK (b) Present -126.537 (126.431) mK (c)

TABLE VII. Comparison of different results reported for 4He3 ground state with TTY potential.

(a) Single-channel approximation has been used. (b) Full multi-channel calculation in AH repre-

sentation. (c) The value corresponding to the rounded coupling constant is given in parenthesis

[10]. These values agree well with our result of E3 = −133.589 mK for the ground and

E∗
3 = −2.78474 mK for the excited state.
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IV. UNSYMMETRIC TRIMER

Unlike the symmetric trimer, the trimer formed from two 4He atoms and one 3He atom

has only one bound state. In order to approach the Efimov regime there should be two

subsystems possessing large binary scattering lengths compared to the effective range. In

the case of the unsymmetric trimer the 3He-4He scattering length is only twice as big as

the effective range, and, therefore, the situation is quite far from the Efimov limit. The

data published on the unsymmetric trimer is not as extensive as for the symmetric case.

However, the 4He2
3He trimer is a simple inhomogeneous three-body system, and as such

it is an important example for the benchmarking of three-body codes. In this section we

report tests similar to those shown above for the symmetric system.

All the 2-body results are given in Table VIII. As we can see from Table VIII, the 3He-4He

h̄2

m
≡ 12.12 KÅ2 h̄2

m
≡ 12.11928 KÅ2

Potential a, a.u. r0, a.u. a, a.u. r0, a.u.

HFD-B(He) -34.382 18.40 -34.401 18.39

LM2M2 -33.245 18.56 -33.263 18.56

TTY -33.226 18.56 -33.244 18.55

HFD-B3-FCII -34.050 18.45 -34.069 18.45

TABLE VIII. Scattering length and the effective range for 3He-4He collisions.

scattering length is less sensitive to the variations of the coupling constant, so the variations

in three-body observables should mostly be due to the sensitivity of the 4He2 subsystem. The

three-body data is summarized in Table IX. The sensitivity of the unsymmetric trimer bound

state energy to small variations of the coupling constant is comparable to the sensitivity of

the bosonic trimer excited state. The atom-dimer scattering length, however, is much less

sensitive.

Similarly to the case of the symmetric bosonic trimer, we have plotted the ratio of the

3He-4He2 atom-dimer scattering length to the 4He-4He scattering length as a function of

the dimensionless parameter 1
√

E3

E2
−1

which characterizes the distance between the two-body

threshold and the pole of the three-body t-matrix corresponding to the unsymmetric trimer

bound state. All the data consistently follow the same trend (see Fig. 4).
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h̄2

m
≡ 12.12 KÅ2 h̄2

m
≡ 12.11928 KÅ2

Potential E3, a.u. a12, a.u. E3, a.u. a12, a.u.

HFD-B(He) -5.3815E-8 (0.3%) 36.18 (0.03%) -5.3958E-8 36.17

LM2M2 -4.5355E-8 (0.3%) 36.91 (0.03%) -4.5488E-8 36.90

TTY -4.5270E-8 (0.3%) 37.23 (0.03%) -4.5404E-8 37.24

HFD-B3-FCII -5.1442E-8 (0.3%) 36.57 (0.03%) -5.1582E-8 36.56

TABLE IX. 4He2
3He bound state energy and 3He-4He2 atom-dimer scattering length. In paren-

thesis we show the relative difference between the results obtained with exact and inexact coupling

constant.

FIG. 4. The 3He-4He2 atom-dimer scattering length (in units of the 4He-4He scattering length)

as a function of the distance to the pole in the three-body t-matrix. The difference between the

results obtained with exact and inexact coupling constants is clearly resolved and consistent with

the overall trend.

V. CONCLUSIONS

We have performed highly accurate calculations of the system of three He atoms, including

both symmetric and unsymmetric cases. We have studied the effects of small (0.006%)
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variations of the interaction coupling constant on the energies of He dimer and trimer bound

states and scattering lengths. Results of the calculations reported here are converged to

5 significant figures for the most of the observables. All the results are consistent with

previously published calculations and follow the same universal – potential independent –

trend. We can summarize the sensitivity of the results to small inaccuracies in the coupling

constant as follows: a 0.006% variation of the coupling constant induces 0.5% shift in the

energy of the dimer, 0.3% shift in the energy of the excited state of the homogeneous trimer

and the single bound state of the inhomogeneous trimer, 0.2% shift in the 4He-4He atom-

atom scattering length, 0.06%-0.15% shift in the 4He-4He2 atom-dimer scattering length,

0.08% shift in the energy of the ground state of the homogeneous trimer, and 0.03% shift

in the scattering length for 3He-4He2 collisions. As the effective coupling constant for the

potentials reported in units of temperature is known with the relative accuracy of 0.0002%,

the physical limit for the accuracy of the binding energy of the He dimer, the excited state of

homogeneous He trimer and the energy of the inhomogeneous He trimer is about 5 significant

figures. This accuracy is achieved in the present calculations performed with a computer

program being prepared for a public release.

The authors hope that both the qualitative observations and the numerical results re-

ported in this work can be used in the future for benchmarking various quantum few-body

codes.
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APPENDIX A

Here we provide a very brief overview of our approach to solving the Faddeev equations

numerically. More detailed and rigorous description of the equations and the numerical

approach is being prepared as a separate publication.

According to the Faddeev formalism [34] the wave function of three particles is expressed
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in terms of Faddeev components Φ

Ψ(x1,y1) = Φ1(x1,y1) + Φ2(x2,y2) + Φ3(x3,y3) ,

where xα and yα are Jacobi coordinates corresponding to the fixed pair α

xα = (
2mβmγ

mβ+mγ
)
1

2 (rβ − rγ) ,

yα = (
2mα(mβ+mγ)

mα+mβ+mγ
)
1

2 (rα − mβrβ+mγrγ

mβ+mγ
) .

(2)

Here rα are the positions of the particles in the center-of-mass frame. The Faddeev compo-

nents obey the set of three equations

(H0 + Vα(xα)− E)Φα(xα,yα) = −Vα(xα)
∑

β 6=α

Φβ(xβ ,yβ)

α = 1, 2, 3

, (3)

where Vα(xα) stands for the pairwise potential and H0 is the kinetic energy of the three

particles. To make this system of equations suitable for numerical calculations one should

take into account the symmetries of the physical system. As far as all the model potentials

are central it is possible to factor out the degrees of freedom corresponding to the rotations

of the whole cluster [35]. For the case of zero total angular momentum the reduced Faddeev

equation reads

(H0α + Vα(xα)−E)Φα(xα, yα, zα) = −xαyαVα(xα)
∑

β 6=α

1

xβyβ
Φβ(xβ , yβ, zβ) . (4)

Here H0α = − ∂2

∂x2
α
− ∂2

∂y2α
− ( 1

x2
α
+ 1

y2α
) ∂
∂zα

(1− z2α)
1

2
∂

∂zα
,

xα = |xα| ,
yα = |yα| ,

zα =
(xα,yα)

xαyα
,

(5)

and the coordinate transformations between different system of Jacobi coordinates follow

from the definition of the Jacobi coordinates (2).

The asymptotic boundary condition for bound states consists of two terms [34]

Φ(x, y, z) ∼ φ2(x)e
−kyy + A(

x

y
, z)

e−k3(x2+y2)
1

2

(x2 + y2)
1

4

,

where φ2(x) is the two-body bound state wave function, ky =
√
E2 − E3, k3 =

√
−E3, E2 is

the energy of the two-body bound state and E3 is the energy of the three-body system. The
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second term – which corresponds to virtual decay of the three body bound state into three

free particles – decreases much faster than the first one which corresponds to virtual decay

into a particle and a two-body cluster. In our calculations we neglect the second term in

the asymptotic introducing the following approximate boundary conditions for the Faddeev

component at sufficiently large distances Rx and Ry

∂xΦ(x, y, z)⌊x=Rx

Φ(x, y, z)⌊x=Rx

= k2 ≡ i
√

E2 ,

∂
y
Φ(x, y, z)⌊y=Ry

Φ(x, y, z)⌊y=Ry

= ky .
(6)

In order to solve the equations numerically we introduce a basis of Hermit splines sat-

isfying the boundary conditions (6) and use orthogonal collocations to calculate a discrete

matrix analog of the Faddeev operator

(Ĥ0α + V̂αŜα − ŜαE)Φ̂α = −V̂α(ĈαβΦ̂β + ĈαγΦ̂γ) .

More detailed description of the discretization procedure can be found in [25] (see also [36]

where we describe the procedure of constructing optimal non-uniform grids automatically).

We solve the system of linear equations iteratively exploiting factorability of the left-hand

side of Eqs. (4) for preconditioning. In particular, we introduce localized components

τα ≡ (Ĥ0α + V̂αŜα − ŜαE)Φ̂α (7)

which – due to the asymtotic properties of the Faddeev components – has much better

spacial localization than the original Faddeev component. The equations for the localized

component read

τα = −V̂α(Ĉαβ(Ĥ0β + V̂βŜβ − ŜβE)−1τβ + Ĉαγ(Ĥ0γ + V̂γŜγ − ŜγE)−1τγ) (8)

The transformation (7) makes it possible to reduce the rank of the linear system essentially,

typically by a factor of 3. Application of Eqs. (8) to atom-dimer scattering can be found in

[22]. A similar idea has been discussed in [37].
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