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We extend recent analyses of stochastic effects in game dynamical learning to cases of multi-
player games, and to games defined on networked structures. By means of an expansion in the noise
strength we consider the weak-noise limit, and present an analytical computation of spectral prop-
erties of fluctuations in multi-player public good games. This extends existing work on two-player
games. In particular we show that coherent cycles may emerge driven by noise in the adapta-
tion dynamics. These phenomena are not too dissimilar from cyclic strategy switching observed in
experiments of behavioural game theory.
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I. INTRODUCTION

The theory of evolutionary dynamics is a corner-
stone of modern biology. It has helped to describe a
variety of systems where distinct elements compete to
reproduce, for example in zoology and population dy-
namics [1], but also in the dynamics of cancer growth
and the different possible progressions of HIV [2], or
in the evolution of language [3]. Since the work of
Maynard Smith [1] evolutionary ideas have also been
applied in the context of game theory, and have aug-
mented the more traditional approach to strategic
decision making, based on equilibrium concepts [4–
6]. There is now an established field referred to as
‘evolutionary game theory’ (see e.g. [7, 8]). This dis-
cipline is concerned with the study of populations of
players, who interact in a game and who each carry
a strategy and resulting fitness as a result of their
success or otherwise in the game. Successful individ-
uals then reproduce faster than those who are less
successful in playing the game. Strategies are passed
on from parent to offspring, with or without muta-
tion, and the strategic content of the population of
individuals hence evolves in time. Traditionally such
processes have been modelled by means of replicator
equations (or similar dynamical systems). These de-
scriptions are typically deterministic in nature, and
systematically neglect stochastic effects. More re-
cently, the role of stochasticity and intrinsic noise has
been considered in more detail, and the development
of a mathematical theory with which to systematize
these effects is very much work in progress. Phenom-
ena brought about purely by stochasticity, and hence
not captured by deterministic approaches, include for
example fixation and the loss of biodiversity [9, 10],
drift reversal [11, 12], or coherent stochastic oscilla-
tions [13–15].
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With an increasing number of experiments involv-
ing real human players being performed in laborato-
ries of behavioural economics, ideas from evolution-
ary game theory have also been applied to describe
the adaptation processes of game learning, see for ex-
ample [16–18]. In this context, the strategic choices
themselves are ‘genetic’ elements. A ‘reproduction
event’ corresponds to an instance in which a human
decides to switch from one strategy to another. These
processes are frequently described mathematically by
models drawn from evolutionary game theory. The
advantage of using evolutionary game theory rests
in the fact that there is a vast body of theoretical
work available, ready to be tied to experiments of be-
havioural game theory. This approach does have its
limitations though. Models of evolutionary game the-
ory describe populations of agents, subject to selec-
tion pressure and generally involving birth and death
processes. For obvious reasons no such birth-death
dynamics takes place in a behavioural economist’s
laboratory, instead a number of fixed individuals in-
teracts repeatedly in such experiments, without spe-
cific individuals being removed or replaced, born or
killed.

It may therefore seem more appropriate to model
the psychological decision making processes directly
on the level of the interacting individual, rather than
on a population level. Examples of such models can
be found in [18–24]. As one main ingredient of these
psychologically motivated models players keep so-
called ‘attractions’ or ‘propensities’ for each of the
possible actions. These are then converted into a
mixed strategy profile, and specific moves (pure ac-
tions) are played with the corresponding frequencies.
Payoffs are received, depending on one’s own move
as well as on those made by the relevant opponents.
In response to the outcome, players then update their
propensities, increasing those of strategies that would
have been successful against the observed moves, and
reducing those of less successful actions. The process
then iterates.

On the mathematical level, models of such pro-

http://arxiv.org/abs/1107.0878v1
mailto:alex.bladon@postgrad.manchester.ac.uk
mailto:tobias.galla@manchester.ac.uk


2

cesses define stochastic dynamical systems in discrete
time. These models are not too dissimilar from learn-
ing algorithms studied in machine learning, includ-
ing for example dynamical processes such as fictitious
play and derivatives [24–26]. Stochasticity in learn-
ing can here have profound effects, depending on the
details of the learning model adaptation can be seen
to converge to Nash equilibria, or the learning process
may fail to reach a stationary point due to persistent
fluctuations and noise.

Existing work on the analytical characterisation
of noisy trajectories in game learning [27, 28] has
revealed close similarities with stochastic effects in
evolutionary processes in finite populations, but dif-
ferences have been found as well [29]. Analytical
studies have mostly been limited to the case of two-
player learning i.e., games in which two individuals
interact repeatedly and adapt to each other’s moves.
The correlation properties of fluctuations about lim-
iting deterministic trajectories have been computed
based on an expansion in the inverse noise strength,
in good agreement with numerical simulations. The
purpose of the present paper is to extend these stud-
ies and to address multi-player learning and learning
of agents arranged on a (fixed) network. Stochas-
tic effects in network learning have been considered
before [29], but no systematic analytical characteri-
sation has been attempted. As one result of our anal-
ysis we will demonstrate that amplified stochastic os-
cillations, commonly found in models of evolutionary
game theory, also appear in multi-player and network
learning. We also analyse how the networks structure
and parameters of the earning rule affect the outcome
of adaptation.

The remainder of the paper is organised as follows:
in Sec. II we outline a simple model of reinforcement
learning and define the public good game we will be
studying subsequently. Sec. III contains a brief anal-
ysis of a deterministic limiting case of the learning
process. We then classify the oscillations associated
with stochastic multi-player learning in Sec. IV. We
analyse the resulting power spectra and discuss their
implications for game learning in Sec. V. Network
games are then considered in Sec. VI. Sec. VII con-
tains concluding remarks and an outlook on possible
future lines of research.

II. MODEL AND DEFINITIONS

In this section we define the public goods game and
the learning algorithm which we will analyze in the
subsequent sections.

A. Public good game

In a typical public good game each player decides
whether or not to contribute an amount c to a shared
‘pot’, for example a contribution to a common effort.
The amount in the pot is then multiplied by a factor
r > 1 and re-distributed amongst all players involved
in the game, no matter whether they contributed or
not. If a player does not contribute they still receive a
share of the pot, however the fewer people contribute
the smaller each individual’s share becomes. Thus
the public goods game can be thought of as a multi-
player social dilemma, similar to the celebrated two-
person prisoner’s dilemma. There is a temptation to
defect (i.e., not to contribute), but the reward for
a group consisting only of defectors is less than that
for a group of contributors. In the public goods game
outlined by [17] this basic setup is extended to allow
players not to participate in the game at all. Such
players, called ‘loners’, instead receive a small, but
guaranteed payout of σc, where σ is some non-zero
constant, chose such that σc is less than (r − 1)c.
This produces a cyclic relationship between the three
actions: if everyone is contributing the best thing to
do is defect; if everyone is defecting, playing ‘loner’
is the best option and if everyone is a loner then the
greatest payoff comes from contributing.
The net payoff for each strategy (defined as the

difference between the money received at the end and
the money put in at the beginning) can be written as

πC = −c+ rc
nC + 1

1 + nC + nD
, (1)

πD = rc
nC

1 + nC + nD
,

πL = σc,

where nC and nD are numbers of contributors and
defectors in the rest of the group interacting in a par-
ticular instance of the game. In other words, the
above payoff πC is that of a co-operator playing with
a group of nC other co-operators and nD defectors,
and similar for πD. At variance with some definitions
of public good games, we here assume that the above
payoff relations also hold if only one single player de-
cides to participate in the game, and if all other play-
ers decide to abstain. This choice is mainly made for
analytical convenience. Unless otherwise specified we
will use r = 1.8, c = 1 and σ = 0.5 (as in [17]). We
will abbreviate the three pure strategies as C, D and
L in the following.

B. Reinforcement learning

We consider the game learning model proposed by
[18]. In such models, N players play a game at-
tempting to maximise their payoffs. In each round
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of the game each player uses one of the S available
pure strategies, each with a probability defined by the
strategy’s previous performance as perceived by the
player. This will be specified further below. For the
case of the public goods game we have S = 3 pure
strategies, contribute (C), defect (D) and ‘loner’ (L),
but our theory is applicable for general S.

1. Update of propensities

The probabilities with which a given player chooses
to play the three actions form a mixed strategy pro-
file in the language of game theory. In our learning
model the strategy profile will be based on so-called
‘scores’ (or propensities) that each player assigns to
the pure strategies available to him/her. These scores
measure the performance of the pure actions against
the observed actions of opponents. The score given to
strategy s ∈ {1, . . . , S} by player i is assumed to be
updated once every Ω rounds of the game, and kept
constant inbetween. Real-world play corresponds to
Ω = 1, i.e. updating after each round. For our pur-
poses it is however useful to introduce the more gen-
eral dynamics as (see also [27, 28, 30])

qi,s(t+Ω) = (1− λ)qi,s(t) +
1

Ω

t′=t+Ω−1∑

t′=t

u(s, s−i(t
′)),

(2)
where qi,s is assumed to remain unchanged between
time t and time t + Ω − 1. Here u(s, s−i(t)) is the
payoff for player i when they play strategy s at time
t given that the other players play the pure strate-
gies denoted by s−i ∈ {1, . . . , S}N−1. In our case s
can take the values s ∈ {C,D,L}, and similarly each
entry in s−i takes values in {C,D,L}. The payoff
u(s, s−i(t)) is given by expressions (1), where nC and
nD are the number of entries C and D respectively in
the vector s−i. Some more explanation of the update
rule of Eq. (2) is here appropriate. The above learn-
ing rule assumes that adaptation occurs only once
every Ω iterations of the game. This corresponds to
what is known as batch learning [31]. The last term
on the RHS of Eq. (2) is indeed the average payoff
per round obtained by player i in Ω iterations of the
game, and given his or her opponents’ actions s−i(t

′)
during those Ω rounds (t′ = t, t + 1, . . . , t + Ω − 1).
The philosophy behind introducing batch-learning
dynamics is discussed further below in the context
of the deterministic limit of the stochastic dynamics
(Sec. II B 4). The pre-factor 1−λ in the first term on
the RHS of the update rule describes memory loss.
For λ = 0 the score qi,s(t) is proportional to the pay-
off player i would have received up to time t had he
or she played action i at all times, and given his or
her opponents’ actions. All past play carries equal
weight and is accumulated. The parameter λ ∈ [0, 1]
is a memory-loss parameter. For λ > 0 past play

is exponentially discounted, and observations in the
distant past carry a lesser weight than more recent it-
erations of the game. Similar mechanisms are present
in learning models of behavioural game theory, see for
example [20], they have also been used in [30]. Oc-
casionally a pre-factor λ is introduced in the second
term on the RHS of Eq. (2). This is mainly a matter
of notation, and amounts to a re-scaling of payoffs.
We here use the notation of [18, 30].

2. Fully connected and networked setups

In writing down Eq. (2) we have implicitly as-
sumed that the payoff of any given player i may at
least potentially depend on the actions s−i of all other
players. This corresponds to a fully connected (or
well-mixed) population, in which each player inter-
acts with any other player. Specifically, a well mixed
model describes a group of N players, who all en-
gage in the same N -player public good game by each
choosing from the three actions {C,D,L}. Differ-
ent setups have been considered for example in [32]
where a group of N players is selected randomly from
a larger populations of Z individuals.
We also consider the case of a networked arrange-

ment of players. Here agents are placed on the nodes
of a graph, and each player is then assumed to repeat-
edly play iterations of the public goods game with
their neighbours on the graph. Evolutionary descrip-
tions of such network public goods games have been
considered for example in [33]. The analog of the
adaptation rule of Eq. (2) is then given by

qi,s(t+Ω) = (1− λ)qi,s(t) +
1

Ω

t′=t+Ω−1∑

t′=t

u(s, s∂i(t
′)),

(3)
where ∂i denotes the set of neighbours of i in the
network, and where s∂i accordingly is the vector of
pure actions taken by those neighbours. The learning
dynamics on networks will be discussed in more detail
below (see Sec. VI).

3. Conversion into mixed strategies

In our model the scores (or propensities) {qi,s} de-
termine the mixed strategy profiles of players using
the so-called logit (or softmax) rule

xi,s(t) =
eβqi,s(t)∑
s′ e

βqi,s′ (t)
, (4)

where xi,s(t) is the probability of player i using strat-
egy s in round t. This scheme has similar features to
the Fermi update rule commonly used in evolution-
ary dynamics [13, 34, 35]. Rules of this type have
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also been used to fit data from experiments with real
players, see e.g. [16, 21, 36].
The parameter β in Eq. (4) is referred to as the

intensity of choice (or learning rate) and determines
how much importance is given to a difference in pay-
offs when calculating the mixed strategy profile. If
β = 0 for example the players choose their actions
completely at random and disregard their propensi-
ties entirely. If β = ∞ then they strictly play the
pure action with the highest score.
Following [30] it is possible to combine Eq. (4) and

Eq. (2) into map

xi,s(t+Ω) = (5)

xi,s(t)
1−λ exp( βΩ

∑t′=t+Ω−1
t′=t u(s, s−i(t

′)))
∑

s′ xi,s′ (t)1−λ exp( βΩ
∑t′=t+Ω−1

t′=t u(s′, s−i(t′)))
.

This equation defines the discrete-time evolution of
the mixed strategy vectors of players, no reference to
the propensities is required. Eq. (5) here applies to
the well-mixed case, but it is straightforward to for-
mulate the corresponding map for a networked sys-
tem.

4. Deterministic limit

Models in behavioural game theory [20, 21] are typ-
ically based on frequent update of propensities and
mixed strategy profiles. Adaptation is assumed to oc-
cur after each iteration of the game, corresponding to
Ω = 1 in our model. Such dynamics are intrinsically
stochastic, as moves of all players are drawn at ran-
dom from the underlying mixed strategy profiles. The
main purpose of the present work is to investigate the
effects this stochasticity has on the outcome of learn-
ing. It is however generally very difficult to obtain an-
alytical results for stochastic dynamical systems such
as the one corresponding to the case of Ω = 1. We
therefore follow an approach similar to that used in
evolutionary dynamics: (i) we first derive the deter-

ministic limit dynamics. This corresponds to tak-
ing the limit Ω → ∞, and is akin to considering the
limit of infinite populations in evolutionary game the-
ory (resulting in deterministic differential equations
of the replicator or replicator-mutator type), (ii) we
then perform a systematic perturbative expansion in
Ω−1/2 in order to capture stochastic effects to lowest
non-trivial order. This is again similar to approaches
taken in the context of evolutionary games, where
expansions in the inverse population-size are often
carried out, see for example [11–15]. While such ex-
pansions in the inverse batch size are technically only
valid for large, but finite Ω we will show below that
they can capture the on-line dynamics, Ω = 1 in good
approximation as well.
We will here briefly derive the deterministic limit of

learning, and analyze the outcome in the next section.

The expansion in the noise strength is then carried
out in Sec. IV.
In the limit Ω → ∞, Eq. (5) the mean of the pay-

offs from the last Ω rounds approaches the expected
payoff for player i when using a given pure strategy,
where the expectation is to be taken with respect to
the mixed strategies of i’s opponents. Specifically we
have

lim
Ω→∞

1

Ω

t′=t+Ω−1∑

t′=t

u(s, s−i(t
′))

= µi,s ≡
∑

s−i

u(s, s−i)p−i,s−i
, (6)

where p−i,s−i
=
∏

j 6=i xj,sj is the probability of player

i facing the pure strategies s−i ∈ {1, . . . , S}N−1 be-
ing played by his or her opponents. The sum over s−i

in the above expression extends over all SN−1 possi-
ble realizations of the vector s−i. Rescaling time by
a suitable factor the update rule of Eq. (5) then be-
comes

xi,s(τ + 1) =
xi,s(τ)

1−λ exp(βµi,s(τ)))∑
s′ xi,s′ (τ)1−λ exp(βµi,s′ (τ))

, (7)

Again, this deterministic map was formulated for the
well-mixed case, generalization to network learning is
straightforward.
It is also possible to write Eq. (4) and Eq. (2)

together in the form of an approximate continuous
time dynamic if β ≪ 1. This is known as the Sato-
Crutchfield dynamics [30]. These dynamics are sim-
ilar to the replicator-mutator equations where the
learning rate is analogous to selection strength and
the memory loss is analagous to the mutation rate
[13, 37]. We will restrict our analysis to the map as
we feel it better represents the discrete rounds used
in experiments.

III. THE FULLY CONNECTED CASE:

RESULTS OF THE DETERMINISTIC

ANALYSIS

In this section we will first focus on the fully con-
nected (or well-mixed) setup, networked systems are
addressed below. Before discussing the outcome of
deterministic learning is it useful to briefly comment
on the role of initial conditions. If the mixed strat-
egy profiles for the different players are initiated from
the same point in the space of all mixed strategies
i.e., xi,s(τ = 0) = xj,s(τ = 0) for all players i, j
and all pure actions s, then the deterministic map,
Eq. (7), will preserve this symmetry, i.e., the mixed
strategy profiles will remain identical across players,
xi,s(τ) = xj,s(τ) for later times τ as well. We will
refer to such cases as a start from homogeneous ini-
tal conditions. Each player will then receive the same
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FIG. 1: (Color online) Dynamics of the three-player pub-
lic good game with homogeneous initial conditions (in-
tensity of choice is β = 0.1). The black line indicates
the trajectory to the fixed point at λ = 10−3, the dashed
red line is the limit cycle at λ = 10−4 and the solid blue
line is the limit cycle around the edge of the simplex at
λ = 10−7.

average payoffs in each round, and the strategy vec-
tors of all players will evolve identically. Thus each
player is effectively playing with N−1 copies of them-
selves. For heterogeneous initial conditions, or noisy
dynamics, this is not necessarily the case.

We will begin by examining the behaviour of the
deterministic system, Eq. (7), for homogeneous ini-
tial conditions. The deterministic dynamics is found
to exhibit three types of behaviour: (i) for sufficiently
large values of the memory-loss parameter λ trajec-
tories approache a stable fixed point, (ii) for interme-
diate values of λ one finds convergence towards limit
cycles in the interior of strategy space, and (iii) at
small memory-loss asymptotic trajectories along the
edges of the strategy simplex are seen. Examples are
shown in Fig. 1.

A more systematic analysis can be found in Fig. 2
where we show phase diagrams for games of N = 3,
4 and 5 players. The location and existence of the
fixed point is determined numerically and, as such,
the boundary between stable spirals and limit cycles
reported in the figure are approximate. Performing a
linear stability analysis of the fixed points reveals that
stable fixed points are always found to be spirals (the
eigenvalues of the Jacobian form complex conjugate
pairs with negative real parts). The transition to the
limit cycle regime occurs through a Hopf bifurcation.
The size and degree of stability of the limit cycles is
determined by the distance to the Hopf bifurcation in
the parameter space. As this distance increases the
limit cycles move closer to the border of the simplex,
eventually becoming restricted to the border itself (as
seen in Fig. 1). The dynamics of the limit cycles
follow a periodic pattern, with contributing, defecting
and loner each becoming the most prominent strategy

10
-1

β

10
-4

10
-3

10
-2

λ
spirals

limit
cycles

stable

FIG. 2: (Color online) Phase diagram characterizing the
outcome of deterministic learning in the N-player public
goods game. Lines show the location of the Hopf bifurca-
tion in parameter space, separating stable from unstable
fixed points. From bottom to top, lines corresponds to
N = 3 (black), N = 4 (red) and N = 5 players (green).

10
-4

10
-2

10
0

λ

0.2

0.3

0.4

0.5

x
i C

D

L

FIG. 3: (Color online) This figure shows the components
of the fixed point as a function of the memory loss param-
eter λ. Here, N = 3 and β = 0.01. The black line shows
the concentration of contribution in the mixed strategy
profile, red the concentration of defection and green the
concentration of the loner strategy.

in turn. The effect of the memory loss parameter on
the fixed point of the players is shown in Fig. 3, at
low memory loss the players tend to mostly abstain
(L), at large memory loss play occurs essentially at
random, with all three actions being used with nearly
the same frequencies.
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We will mostly ignore the case of heterogeneous
initial conditions in the following, in all tested cases
we find numerically that the system approaches the
same fixed point as for homogeneous initial condi-
tions. Since we will be interested in features where
the deterministic system is at a fixed point, restrict-
ing our investigations to the simpler case of homoge-
neous initial conditions will not affect our findings.

IV. BATCH-SIZE EXPANSION FOR THE

WELL-MIXED CASE

Similar to what is seen in population-based mod-
els of evolutionary game theory [13–15, 38, 39], mod-
els of epidemics [40–43] and in other biological sys-
tems [44–46] the behaviour of the stochastic dynam-
ics of learning can be quite different from that pre-
dicted by the deterministic description. In particu-
lar a mechanism of coherent amplification can lead
to sustained stochastic cycles in the noisy system for
values of the model parameters in which deterministic
learning converges. Fig. 4 shows an example of this
behaviour. In population-based models these oscilla-
tions are known as ‘quasi-cycles’, they are an effect
seen in finite populations, caused by so-called ‘demo-
graphic noise’ [44], noise induced by sampling inter-
acting agents from a finite pool of individuals. De-
terministic descriptions of evolving systems are valid
only in the limit of infinite populations. In the con-
text of two-player learning similar cycles have been
studied in [27, 28]. While the mechanism of stochas-
tic amplification is similar to that in population dy-
namics, the source of noise is different. As described
in Sec. II B the players’ adaptation is intrinsically
stochastic if they base their strategy updates on fi-

nite sets of observations of their opponents’ moves.
In Eq. (2) for example we have assumed that a finite
number Ω of observations is made between any two
adaptation events. Learning becomes deterministic
only in the limit Ω → ∞. In this sense the batch size
Ω is similar to the population size in evolving sys-
tems, they both control the strength of noise in the
resulting dynamics. This observation is one of the
main reasons for introducing the learning algorithm
at general batch size, tuning Ω allows us to interpo-
late between the realistic case of frequent updating
(Ω = 1), and the deterministic limit, Ω → ∞.

We will now proceed to obtain an analytical charac-
terization of the stochastic quasi-cycles shown in Fig.
4. To this end we carry out a systematic expansion
in the noise strength, more precisely in powers Ω−1/2

of the inverse batch size. This is conceptually similar
to the van Kampen expansion [47] in powers of the
inverse system size of population-based models. We
here discuss the key steps of the calculation for the
general N -player game, choosing a suitably compact
notation. In order to make the mathematical details

5.00×10
5

5.05×10
5

τ

0.2

0.4
x

i

L

C

D

FIG. 4: An example of the stochastic oscillations in the
mixed strategy profiles of a fixed player for β = 0.1 and
λ = 0.005. The three oscillating curves show the mixed
strategy obtained from one simulation run of the stochas-
tic learning dyamics (L, C and D from top to bottom).
Solid lines indicate the deterministic fixed point.

more transparent we also detail the resulting expres-
sions for the explicit case N = 3 in the Appendix.
The first step of the expansion is to rewrite the last
term on the RHS of Eq. (2). This term represents
the average payoff per round to player i in Ω iterates
of the game. Separating stochastic fluctuations from
the expected mean payoff this term can be written as
follows

1

Ω

t′=t+Ω−1∑

t′=t

u(s, s−i(t
′)) = µi,s + ξ̃i,s (8)

where µi,s =
∑

s−i
u(s, s−i)p−i,s−i

is the expected

payoff (per round) for player i given his opponents’
mixed strategy profiles, and provided player i plays

pure strategy s. The second contribution, ξ̃i,s, repre-
sents the fluctuations about the deterministic trajec-
tory. The correlations between these noise terms are

found by rearranging Eq. (8), isolating ξ̃i,s and aver-
aging over all possible actions of all players. Correla-
tions between noise variables associated with strate-
gies belonging to the same player are given by

〈ξ̃i,s(τ)ξ̃i,s′ (τ
′)〉 =

δττ ′

Ω

∑

s−i

(u(s, s−i)− µi,s) (9)

×(u(s′, s−i)− µi,s′)p−i,s−i
.

Unlike in the two-player case [27, 28], there are now
correlations also between the noise variables associ-
ated with different players. This is because the pay-
offs of any two players both depend on the actions
of the remaining players. These correlations take the
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form

〈ξ̃i,s(τ)ξ̃j,s′ (τ
′)〉 = (10)

δττ ′

Ω

∑

s

(u(s, s−i)− µi,s)

× (u(s′, s−j)− µj,s′)ps,

where s = (s1, . . . , sN) ∈ {1, . . . , S}N describes the
vector of actions taken by the whole group of players,
and where ps =

∏
k xk,sk . It is worth pointing out

that Eq. (9) can be seen as a special case of Eq. (10),
if i = j in the latter relation then the sum over actions
of player i can be factored out, and one obtains Eq.
(9).
Given that the payoffs, Eq. (8), are now random

variables, the same will be true for the components
xi,s of the players’ mixed strategy profiles. In order to
separate fluctuations from the deterministic dynam-
ics we use the ansatz

xi,s(τ) = x̄i,s(τ) + x̃i,s(τ), (11)

where the first term on the RHS is the determinis-
tic trajectory, and where the second term is of or-
der Ω−1/2 and describes fluctuations about the de-
terministic solution. Using this ansatz, together with
Eq. (8), and after the re-scaling of time discussed
above, we can rewrite Eq. (5) as

xi,s(τ + 1) =

(x̄i,s + x̃i,s)
1−λeβ(µ̄i,s+µ̃i,s+ξ̃i,s)

∑
s′(x̄i,s′ + x̃i,s′)1−λeβ(µ̄i,s′+µ̃i,s′+ξ̃i,s′ )

, (12)

where

µ̄i,s =
∑

s−i

u(s, s−i)p̄−i,s−i
, (13)

µ̃i,s =
∑

s−i

u(s, s−i)p̃−i,s−i
, (14)

and where all quantities on the RHS of Eq. (12)
are evaluated at time τ . We have here introduced
p̄−i,s−i

=
∏

k 6=i x̄k,sk and

p̃−i,s−i
=
∑

k 6=i

∂p̄−i,s−i

∂x̄k,sk

x̃k,sk

=
∑

k 6=i


 ∏

j /∈{i,k}

x̄j,sj


 x̃k,sk . (15)

We now expand Eq. (12) in powers of Ω−1/2, taking

into account that x̃i,s and ξ̃i,s scale as Ω−1/2 ∀i, s.
Naturally, from the leading-order terms in this one
expansion recovers the deterministic dynamics

x̄i,s(τ + 1) =
x̄1−λ
i,s eβµ̄i,s

∑
s′ x̄

1−λ
i,s′ e

βµ̄i,s′
. (16)

At next-leading order in the expansion one finds

x̃i,s(τ + 1) =
∑

k

∑

s′

(
∂gi,s

∂x̃k,s′

)∣∣∣∣
x̃=ξ̃=0

x̃k,s′

+
∑

s′

(
∂gi,s

∂ξ̃i,s′

)∣∣∣∣∣
x̃=ξ̃=0

ξ̃i,s′ , (17)

where gi,s is a short-hand for the RHS of Eq. (12).

The notation x̃ = ξ̃ = 0 indicates that all variables

x̃i,s and ξ̃i,s (i = 1, . . . , N , s = 1, . . . , S) are to be
taken to zero when evaluating the derivatives. The

derivative of gi,s with respect to ξ̃k,s′ vanishes for k 6=
i. The resulting coefficients in Eq. (17) multiplying
the variables {x̃k,s′} are the entries of the Jacobian

of Eq. (12), to be evaluated at x̃i,s = ξ̃i,s = 0. We
now further simplify these terms and find

∑

s′

(
∂gi,s

∂ξ̃i,s′

)∣∣∣∣∣
x̃=ξ̃=0

ξ̃i,s′

= βx̄i,s

(
ξ̃i,s −

∑

s′

x̄i,s′ ξ̃i,s′

)
, (18)

similar to what has been reported in [28]. The re-
sulting dynamics for the fluctuations x̃i,s about the
deterministic trajectory can be compactly written as
a set of Langevin equations for the N × S variables,
x̃i,s,

δ(τ + 1) = δ(τ) + J δ(τ) + ζ. (19)

We have here introduced δ = (x̃1, . . . , x̃N), where
x̃i = (x̃i,1, . . . , x̃i,S). We have also written ζ =
(γ̃1, . . . , γ̃N ) with γ̃i = (γi,1, . . . , γi,s), and where

γi,s = βx̄i,s

(
ξ̃i,s −

∑

s′

x̄i,s′ ξ̃i,s′

)
. (20)

The (NS) × (NS)-matrix J is the Jacobian of
Eq. (12), evaluated at the fixed point of the determin-
istic dynamics. The correlations between the compo-
nents of γ, can be expressed in terms of those of the

{ξ̃i,s}, specifically we have

〈γi,sγj,s′〉

= β2x̄i,sx̄j,s′

(
〈ξ̃i,sξ̃j,s′ 〉 − x̄i,s

∑

s′′

x̄j,s′′ 〈ξ̃i,sξ̃j,s′′ 〉

−x̄j,s′

∑

s′′

x̄i,s′′ 〈ξ̃i,s′′ ξ̃j,s′ 〉

+
∑

s′′s′′′′

x̄i,s′′ x̄j,s′′′ 〈ξ̃i,s′′ ξ̃j,s′′′ 〉

)
. (21)

Fourier transforming Eq. (19) gives

(
(eiω − 1)I − J

)
δ̂ = ζ̂, (22)
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where δ̂ is the Fourier transform of δ and ζ̂ that of ζ.
Defining M(ω) =

(
(eiω − 1)I − J

)
, with I the iden-

tity matrix, and using the notation B for the matrix
of correlations of γ we find

〈
δ̂(ω)δ̂(ω′)T

〉
= M(ω)−1B(M†(ω))−1δ(ω + ω′).

(23)
We will refer to the matrix P (ω) =
M(ω)−1B(M†(ω))−1 as the set of power spec-
tra of fluctuations in the following. This is the final
result of the batch-size expansion. Although formu-
lated in Fourier space the expressions in Eq. (23)
contain full information about the autocorrelation
functions and crosscorrelation functions of the vari-
ables x̃i,s. They hence characterize the fluctuations
about the deterministic fixed point (during the
course of the calculation we have assumed that the
deterministic trajectory approaches a stable fixed
point, generalization to limit cycles is possible,
but tedious, see [48, 49]). It is straightforward to
carry out the required matrix inversions, and to
evaluate the RHS of Eq. (23) numerically. We will
here mostly focus on quasi-cycles, it is therefore
convenient to operate in Fourier space. In particular
we will compare the power spectra of quasi-cycles, as
obtained from Eq. (23) against numerical simulations
in the next section. Given that we have carried out
an expansion in powers of Ω−1/2 and that we have
only retained the next-to-leading order we expect
our results to be valid for large, but finite values of
the batch size Ω.

V. CHARACTERIZATION OF

QUASI-CYCLES IN THE FULLY

CONNECTED CASE

We now proceed to test the theoretical results ob-
tained in the previous section against numerical sim-
ulations of the multi-player learning process. Tak-
ing a three-player game as an example, we find good
agreement between simulation and theory, see Fig. 5.
This figure also demonstrates the finite-size effects
at different batch sizes. The case Ω = 1 is the so-
called ‘on-line’ learning limit where players update
their scores after every round [31]. Here the agree-
ment with the theory is only approximate, which is no
surprise given that higher-order terms in the expan-
sion have been discarded. Nevertheless the anaytical
theory is able to predict the dominating frequency of
the quasi-cycles to a good approximation. At lower
noise strengths, the theory becomes increasingly more
accurate. The batch size required to obtain a pre-set
degree of agreement between simulations theory will
generally increase the closer a given choice of param-
eters is to the Hopf bifurcation, similar to what has
been seen in [48]. Although the mixed strategy pro-
files of individual players will evolve differently in any

0.02 0.04
ω

0

0.2

0.4

0.6

0.8

1

P(
ω

)

Ω=1
Ω=10
Ω=100

FIG. 5: This figure shows the power spectrum of the con-
tributory strategy in a three player game at λ = 0.005,
β = 0.1. The different symbols shows simulations at
Ω = 1, 10, 100, averaged over in excess of 100 indepen-
dent runs. The solid line is the theoretical spectrum from
Eq. (23).

one run of the learning dynamics, there are statis-
tically equivalent when an average over sufficiently
many runs is taken. Power spectra such as those
shown in Fig. 5 in particular are identical for differ-
ent players, due to the symmetry of the well-mixed
setup with respect to permutations of players. As
we will see below, this is no longer the case in net-
worked systems when different players have different
connectivities.
Fig. 6 shows a comparison between the spectrum

for a three, four and five player game. Higher num-
bers of players lead to smaller amplitudes of oscil-
lations, greater distance between the two peaks and
an increase in the ratio of the heights of the peaks.
The difference in amplitudes of fluctuations may here
be due to the fact that there are more possible pay-
offs in between the maximum and the minimum pay-
off as the number of players is increased. Smaller
jumps between payoffs may therefore reduce the ef-
fects of stochasticity, keeping all other model param-
eters fixed.
Experimental situations often observe oscillations

with much higher frequencies than the examples given
here so far. An experiment by Milinski et al [50], al-
though constructed differently to the situation this
model mimics, shows oscillations of frequency ω ≈ 2.
Fig. 7 shows an example with a high learning rate
and rapid memory loss that reproduces such frequen-
cies. We stress though that no claim is made that
such memory-loss rates or intensity of choice are nec-
essarily realistic. Experimental data for other games
is available in [21]. Instead the purpose of Fig. 7 is
mainly to show that the characteristic frequency of
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0 0.02 0.04
ω

0

0.5

1

P(
ω

)

N = 3
N = 4
N = 5

FIG. 6: This figure shows the power spectrum for a
player’s contributory strategy at λ = 0.005, β = 0.1 for
different numbers of players. The different colours in-
dicate different numbers of players as described in the
legend. Symbols are from simulations run at Ω = 100,
averaged over in excess of 100 independent runs. Solid
lines are from the theory.

0 1 2 3
ω

0.02

0.03

0.04

P(
ω

)

FIG. 7: This figure shows a power spectrum for the con-
tributing strategy which exhibits frequencies similar to
those seen in experiments. The parameters for this five
player game are Ω = 100, β = 2, λ = 1.

the observed quasi-cycles can vary over a wide range.

VI. PUBLIC GOOD GAMES ON

NETWORKS

In real social systems populations are not well-
mixed, instead people will only interact with certain
others. It is no surprise that the study of games

on networks, and the properties of networks in gen-
eral, has become so popular, see e.g. [51–54]. An-
alytical progress in studying games on networks has
been made [55–57], these methods typically assume
meta-population models, with a large group of player
placed at each node of the underlying network. We
here take a different approach, and consider single
individuals, connected via a static network. Within
the game learning approach we can then apply the
expansion outlined in Sec. IV, treating the strate-
gies on each node as separate variables. The network
structure is reflected in the calculation of the aver-
age payoffs and in the correlations of the noise. This
approach produces a dynamical system whose dimen-
sionality increases linearly with the number of nodes,
making the study of large networks difficult although
technically possible. However, up to recently, experi-
mental situations are usually also restricted to small
numbers of players [21, 36, 50], with some notable
exceptions, e.g. [58].

A. Batch-size expansion on a network

In the networked model we assume that each player
at each iteration of the game chooses a move (C,D
or L), according to his or her mixed strategy profile.
Payoffs are then determined by Eq. (1), where the
group of opponents faced by player i is the set of his
neighbors ∂i. The calculation then proceeds along
similar steps to that of the well-mixed case. If there
are N nodes (players) in the network, and if each one
of them chooses between S pure strategies, then the
resulting dynamics has N(S − 1) degrees of freedom,
as before. In the limit of infinite batch size this leads
to an N(S − 1) dimensional deterministic dynamical
system in discrete time. As one crucial difference to
the well mixed case the permutation symmetry be-
tween players is no longer present, even for homoge-
neous initial conditions. For general networks, differ-
ent players will typically have different degrees, i.e.,
they face different numbers of opponents. Hence the
mixed strategies played at deterministic fixed points
will generally vary across the set of players (as be-
fore we here focus on the case of parameters in which
deterministic learning converges). Carrying out the
expansion in the inverse batch size one also finds that
the network structure affects the noise correlators and
the structure of the Jacobian of the deterministic dy-
namics. It is worth noting that we do not neces-
sarily expect to see a breaking of the permutation
symmetry for regular networks, i.e., when all play-
ers have the same degree k. For homogeneous initial
conditions the mixed strategies of all players will then
evolve identically under the deterministic dynamics.
For heterogenous initial conditions and/or noisy dy-
namics this may not necessarily be the case though,
as shown for the two-player case in [29].
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FIG. 8: The network chosen for analysis. We will look at
two players: the ‘hub’ player (left) and the ‘ring’ player
(right).

In the networked setting the expected payoff for
player i is given by

µi,s =
∑

s∂i

pi,s∂i
u(s, s∂i

) (24)

where s∂i
∈ {1, . . . , S}|∂i| are the actions of those

players connected to player i (in the fully connected
case this is simply the set of all other players), and
where pi,s∂i

is the probability for their joint action

s∂i
to occur. The analog of Eqs. (9) and (10) can be

written as

〈ξ̃i,sξ̃j,s′〉

=
∑

s∂i∪∂j

p∂i∪∂j,s∂i∪∂j
(u(s, s∂i

)− µi,s) (25)

× (u(s′, s∂j
)− µj,s′),

where ∂i ∪ ∂j is the union of the sets of neighbours
of i and of j. The remaining steps are as in Sec. IV,
with the appropriate modifications to take account
of the changed payoff structure in the networked ar-
rangement, Eq. (24).

B. Effect of degree

We will restrict our discussion to the network
shown in Fig. 8, and we investigate the dynamics
both for the central player, and for those on the outer
spokes. The choice of this particular shape of network
is to a certain extent arbitrary, it is important to keep
in mind though that our theoretical approach applies
to general graphs. The choice made here is hence
mainly for purposes of illustration.

1. Deterministic features

Let us first examining the effect of degree on the
deterministic behaviour of the system, we focus on

3 4 5 6 7 8 9
k

0

0.2

0.4

0.6

x
i

Contribute
Defect
Loner

FIG. 9: This figure shows the concentrations of the three
strategies for the central player in networks of the type
shown in Fig. 8, as a function of the player’s degree k.
The parameter values are β = 0.1, λ = 0.005. Results are
from the deterministic map, lines connecting the symbols
are guides to the eye.

the fixed point regime, i.e., sufficiently quick memory
loss. As discussed above the mixed strategies played
by different players at deterministic fixed points will
generally depend on their degree and the degree of
their neighbours. To illustrate this we have consid-
ered networks of the type shown in Fig. 8, varying the
degree k of the central player. The resulting mixed
strategy profile at convergence of the deterministic
dynamics is shown in Fig. 9 for the central player, and
in Fig. 10 for a player on the outer ring of the net-
work. As the degree of the central players increases,
so does the probability that he or she defects. For the
outer player it is mostly the probability of abstaining
(i.e., to play ‘loner’) which increases, as the connec-
tivity of the central player is increased. This is what
one would expect given that their central neighbour
is becoming increasingly likely to defect.

2. Stochastic features

As a final part of the analysis we study the effect of
connectivity on oscillations induced by intrinsic noise
in the learning process. In Fig. 11 we depict the
power spectra of fluctuations of the probability with
which the central player in our sample network plays
strategy C. An analogous plot for a player on the
outer ring of the network is shown in Fig. 12. In both
cases a good match between theory and simulations
is found, even at relatively moderate batch sizes of
Ω = 10. The theoretical approach based on a batch-
size expansion is therefore successful in predicting the
characteristic frequency of the observed quasi-cycles.
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FIG. 10: This figure illustrates how the mixed strategy
profile of a player on the outer ring of networks of the
type shown in Fig. 8 changes, as the degree k of the
central player is varied. The parameter values are β = 0.1,
λ = 0.005. Results are from the deterministic map, lines
connecting the symbols are guides to the eye.

Comparison of Figs. 11 and 12 with Fig. 6 reveals an
intriguing behaviour: (i) increasing the overall con-
nectivity in the ‘hub-and-ring’ network seems to re-
duce fluctuations of mixed strategies of players on the
outer ring of the network. This is similar to the ef-
fect we have seen in the well-mixed case (see Fig. 6),
where fluctuations are suppressed as the number of
players in the group (or equivalently the total num-
ber of links in the graph) increases. In-line with this
behaviour we find that the player on the outer ring
of the network is more likely to abstain as the degree
of the central node is increased, similar behaviour is
found in the well-mixed case as the overall number
of players is increased (not shown); (ii) The central
player in the network however shows a different type
of behaviour as their degree is increased. He or she
is less likely to abstain (see Fig. 9), and fluctuations
of the central player’s mixed strategy increase with
increasing degree (Fig. 11).

Care needs to be taken though in making direct
comparisons between the network shown in Fig. 8
and the well-mixed case. Increasing the degree k of
the central player in the network does not imply an in-
creased connectivity of the players on the outer ring,
and the situation is therefore different from that of a
regular random network with uniform degree across
all nodes. The juxtaposition between the behaviour
of the central agent in the network and that of a
player in the fully connected case indeed suggests that
it is not only the degree of a player itself that deter-
mines his or her mixed strategy and the magnitude
of fluctuations about it, but that on the contrary the
degrees of the players he or she is connected to play
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FIG. 11: Shown are the power spectra for the contribut-
ing strategy of a player in the centre of a ring-and-hub
network. Different colours represent different degrees as
shown in the legend. The parameter values are β = 0.1,
λ = 0.005. Simulations are from 500 runs at Ω = 10.
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FIG. 12: The power spectra for the contributing strategy
on the edge of a ring-and-hub network. Different colours
represent different degrees of the ‘hub’ neighbour. The
parameter values are β = 0.1, λ = 0.005. Simulations are
from 500 runs at Ω = 10.

an important role as well.

VII. CONCLUSION AND OUTLOOK

In summary we have investigated the determinis-
tic and stochastic learning dynamics in multi-player
games. Our approach builds on models from be-
havioural game theory [20, 21], and is similar to
the Sato-Crutchfield formulation of game learning
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[18, 19, 30]. The approach by Sato et al is however
based on deterministic ordinary differential equa-
tions, and ignores effects of noise on the outcome of
learning. Such stochastic effects have recently been
studied for two-player games in [27, 28], the main
contribution of the current work is to extend these
approaches to the case of multi-player games, and to
games on networks. We have here successfully car-
ried out expansions in the inverse noise strength. On
the deterministic level Sato-Crutchfield learning, and
its extensions to discrete time, exhibit features similar
to those of the replicator, or replicator-mutator equa-
tions. On a stochastic level we confirm the presence of
quasi-cycles in a wide range of model parameters, in
particular stochastic learning can exhibit persistent
oscillations in parameter regimes where determinis-
tic learning converges. Based on the expansion in
the inverse noise strength we are able to make an-
alytical predictions on the existence or otherwise of
quasi-cycles as a function of parameters of the learn-
ing dynamics and of the underlying game or network
structure.

We believe that taking a modelling approach based
on adaptation dynamics intrinsic to individual play-
ers, inspired by models of behavioural game theory,
has a number of advantages over population-based
approaches repying on birth-death processes. Learn-
ing models allow the incorporation of memory loss
which has been shown experimentally to be an im-
portant factor. By contrast, since the replicator ap-
proach models the evolution of strategies rather than
the behaviour of players it is often not straightfor-
ward to include such psychological or cognitive effects
directly. On the other hand, both approaches are not
mutually exclusive, and there are indeed a number of
similarities between them. Memory loss and muta-
tion for example play similar roles in the respective
modelling frameworks. Future research may there-
fore focus on drawing further analogies, and to use
the existing knowledge on evolutionary models in fi-
nite populations to elucidate the mathematical struc-
tures and outcomes of stochastic learning models in
further detail.
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Appendix A: Batch-size expansion for a

well-mixed, three-player game

As an example of the application of the equations
derived in Sec. IV, we detail the steps involved in the
calculation for the well-mixed case with N = 3 and
S = 3. The average payoff for strategy s used by
player i then becomes

µi,s =
∑

s′s′′

ass′s′′xj,s′xk,s′′ , (A1)

where j and k indicate the other two players and
ass′s′′ is an 3-dimensional tensor containing the pay-
off for strategy s when the other players use strategies
s′ and s′′. Average payoffs for the other players are
found through cyclic permutation of i, j and k. Eval-
uating Eq. (9) we find

〈ξ̃i,s(τ)ξ̃i,s′ (τ
′)〉

=
δττ ′

Ω

∑

s′′,s′′′

xi,s′′xi,s′′′ (ass′′s′′′ − µi,s)

× (as′s′′s′′′ − µj,s′). (A2)

From Eq. (10) we find

〈ξ̃i,s(τ)ξ̃j,s′ (τ
′)〉 =

δττ ′

Ω

∑

s′′,s′′′,s′′′′

xi,s′′xj,s′′′xk,s′′′′

× (ass′′′s′′′′ − µi,s)(as′s′′s′′′′ − µj,s′)

(A3)

Eq. (10) differs from the two player-case studied in
[27, 28] where the correlations of the noise associ-
ated with strategies belonging to different players is
zero. In the three-player case, this noise is correlated
through the actions of the third player. If we intro-
duce the ansatz xi,s = x̄i,s + x̃i,s as in Sec. IV, the
average payoffs given by Eq. (A1) can be separated
into a term of order Ω0 and a term of order Ω−1/2

µ̄i,s =
∑

s′s′′

ass′s′′ x̄j,s′ x̄k,s′′ (A4)

µ̃i,s =
∑

s′s′′

ass′s′′(x̄j,s′ x̃k,s′′ + x̃j,s′ x̄k,s′′ ). (A5)

The expansion of Eq. (12) for the three player case
then gives the following for terms of order Ω−1/2.

x̃i,s(τ + 1)− x̃i,s(τ) =
∑

s′

(
∂gi,s

∂x̃i,s′

)∣∣∣∣
x̃=ξ̃=0

x̃i,s′ (A6)

+
∑

s′

(
∂gi,s

∂x̃j,s′

)∣∣∣∣
x̃=ξ̃=0

x̃j,s′ +
∑

s′

(
∂gi,s

∂x̃k,s′

)∣∣∣∣
x̃=ξ̃=0

x̃k,s′

+
∑

s′

(
∂gi,s

∂ξ̃i,s′

)∣∣∣∣∣
x̃=ξ̃=0

ξ̃i,s′ .
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For player i, the coefficients multiplying ξ̃j,s′ and ξ̃k,s′

vanish. The remainder of the calculation then pro-
ceeds exactly as in Sec. IV.
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