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Abstract

It is argued that, for motion in a central force field, polar reciprocals of trajectories are an elegant

alternative to hodographs. The principal advantage of polar reciprocals is that the transformation

from a trajectory to its polar reciprocal is its own inverse. The form of polar reciprocals k∗ of

Kepler problem orbits is established, and then the orbits k themselves are shown to be conic

sections using the fact that k is the polar reciprocal of k∗. A geometrical construction is presented

for the orbits of the Kepler problem starting from their polar reciprocals. No obscure knowledge

of conics is required to demonstrate the validity of the method. Unlike a graphical procedure

suggested by Feynman (and amended by Derbes), the algorithm based on polar reciprocals works

without alteration for all three kinds of trajectories in the Kepler problem (elliptical, parabolic,

and hyperbolic).
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Approximately, a hodograph is a plot of velocities along a trajectory; more precisely, it

is the locus of the tips of the velocity vectors after they have been parallelly transported

until their tails are at the origin (in velocity space). There have been many articles on the

pedagogic virtues of hodographs.1–5 Feynman’s Lost Lecture6 contains, amongst other things,

a recipe for drawing the elliptical path of a planet given its hodograph. The procedure, as

reproduced in Ref. 6, has some shortcomings,7,8 but, fortunately, these have been more

than satisfactorily rectified by Derbes.9 Derbes notes that Feynman’s scheme also works for

hyperbolic orbits and he is able to devise another construction for the exceptional case of

parabolic orbits. A completely different way of tracing all three kinds of orbits with the help

of hodographs has been successfully developed by Salas-Brito and co-workers in a series of

publications culminating in Ref. 10.

The various geometrical methods of the previous paragraph are easily implemented, but,

to prove their validity, a student would have to be acquainted with many properties of conics

which no longer form part of most school curricula. Indeed, at least one reader of Derbes’

article feels that his exposure to the hodograph left him “disappointed by the trade-off of

intricate calculus for obscure geometry”.11 There is, however, an alternative approach which

requires only some elementary vector algebra and calculus for its justification.

The seed for this other construction can be traced back to a result of Newton (Proposition

I, Corollary I on page 41 of Ref. 12) arising from the conservation of angular momentum

in a central force field. Let ⇀r be the position vector of a body relative to the center O of

the force field and let ⇀C be the body’s angular momentum per unit mass with respect to O;

then,

C = |⇀C| = |⇀r × ⇀̇r | = r⊥|⇀̇r | , (1)

where r⊥ is the component of ⇀r perpendicular to the instantaneous velocity ⇀ν = ⇀̇r (relative

to O): since C is a constant of the motion, the speed ν = |⇀̇r | of the body is inversely

proportional to r⊥ (ν = C/r⊥). Consider now the mapping P → P∗ illustrated in Fig. 1.

The point P is on a typical trajectory τ of a body in an (attractive) central force field (with

center O); of course, τ is in the plane through O perpendicular to ⇀C (and so are ⇀r and ⇀ν).

By construction, the vector ⇀OP ∗ (in this plane) is perpendicular to the velocity ⇀ν at P and

has magnitude |⇀OP ∗| = r−1
⊥ . Since r−1

⊥ = ν/C [from Eq. (1)] and the direction of ⇀OP ∗ is

obtained from that of ⇀ν by a clockwise rotation through 90◦ (see Fig. 1), the curve τ∗ in

Fig. 1, which is the locus of points P∗ as P varies over τ , is the hodograph of τ , rescaled by
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FIG. 1. The map P → P∗ and the polar reciprocal τ∗ of τ ; r∗ = r−1
⊥ . (The notation ⇀r∗ for ⇀OP ∗ is

convenient in Appendix A.)

a factor of C−1 and rotated clockwise through 90◦ (see also section 3 of Ref. 13). Following

Ref. 13, I will term τ∗ the polar reciprocal of τ .

It is the inverse of the mapping P → P∗ in Fig. 1 which can be used to draw trajectories.

In fact, there is a pleasing symmetry. The mapping P → P∗ is involutory, i.e. (P∗)∗ = P

(see Appendix A for an elementary proof), so trajectories in a central force field and their

hodographs (after rotation and rescaling as in the preceding paragraph) are polar reciprocals

of each other. The point-by-point determination of a trajectory from a rotated and rescaled

hodograph involves exactly the steps depicted in Fig. 1.14 Unlike the methods of Refs. 9 and

10, polar reciprocation is valid for any smooth hodograph associated with any central force

field. Be that as it may, I will now specialize to orbits of the Kepler problem. I will also use

the identity

⇀OP ∗ = ⇀ν ×⇀C/C2, (2)

which takes advantage of the fact that, for the trajectory τ depicted in Fig. 1, ⇀C points

perpendicularly out of the page, so that ⇀ν × ⇀C is parallel to ⇀OP ∗ and has magnitude ν C.

For an inverse-square force per unit mass of −γ⇀r/r3 (γ > 0), the equation of motion for

the position vector⇀OP ∗ of a typical point P∗ on the polar reciprocal of an orbit (see Fig. 1)

reads

d

dt
⇀OP ∗ =

d⇀ν

dt
×

⇀C
C2

= −
γ

Cr2
êr ×

⇀C
C

= +
γ

C2

dφ

dt
êφ = ρ

dêr
dt

, (3)
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where ρ ≡ γ/C2 and plane polar coordinates r and φ have been adopted for the orbital

plane; the corresponding unit vectors are êr and êφ with the origin of the coordinate system

at the force center O, and the azimuthal angle φ defined as in Fig. 2 (so that ⇀C = r2φ̇k̂).

Equation (3) implies that⇀OP ∗−ρêr is a (vectorial) constant of the motion, say⇀OO∗ (drawn

in Fig. 2). Setting ⇀OO∗ = ρ⇀ε∗,

⇀OP ∗ = ρ(⇀ε∗ + êr), (4)

which demonstrates that the polar reciprocal k∗ of an orbit k of the Kepler problem is a

circle or an arc of a circle (as suggested by the plot in Fig. 2).15

The polar reciprocal of k∗ (which would be the corresponding orbit k) comprises points

like P∗∗ in Fig. 2, the image (under polar reciprocation) of P∗ on k∗. In terms of the angles

in Fig. 2, r = OP∗∗ = 1/OQ = [OP∗ cos(φ − φ∗)]
−1 = (⇀OP ∗ · êr)

−1 or, evaluating ⇀OP ∗ · êr

with Eq. (4),
1

r
= ρ(⇀ε∗ · êr + 1) = ρ(1 + |⇀ε∗| cosφ). (5)

Comparison of Eq. (5) with the standard equation16 for a conic in polar coordinates confirms

that P∗∗ is on a conic with focus O, eccentricity e = |⇀ε∗|, latus rectum 2/ρ, and directrix

perpendicular to OO∗. The angle φ can thus be identified as the true anomaly (of celestial

mechanics), and ⇀ε∗ can be reinterpreted as a vector of magnitude equal to the eccentricity

e of the orbit k, directed from the force center O to the point on k of closest approach (i.e.

the periapse). In fact, to within a constant, ⇀ε∗ is the Laplace-Runge-Lenz vector.17

In the previous two paragraphs, it has been shown that it is easy to establish the character

O∗O

P∗

P∗∗

Q

k∗
ρ⇀ε∗

⇀r
ρêr

φφ∗

FIG. 2. A typical point P∗∗ on the polar reciprocal of k∗; ∠P∗OP∗∗ = φ− φ∗ as O∗P∗ ‖ OP∗∗. By

construction, OP∗∗ = OQ−1 = [OP∗ cos(P̂∗OP∗∗)]
−1 just as, in Fig. 1, OP∗ = [OP cos(P̂OP∗)]

−1.
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of the polar reciprocal k∗ of an orbit k of the Kepler problem and even easier to infer from k∗

that the orbit k must be a conic section. It is now possible to indicate how, as an alternative

to the methods of Refs. 9 and 10, polar reciprocation may be used, in principle, to draw

orbits with a compass and ruler.

Suppose that the orbiting body’s velocity is given at some point P0 on the orbit (which

need not coincide with an apse of the orbit); let ⇀r0 be the position vector of P0 relative to

O, and let the associated velocity (in the rest frame of O) be ⇀ν0. First, one must construct

k∗. The following sequence of steps can be employed (P0∗ below denotes the image under

polar reciprocation of P0):

(i) calculate C = |⇀r0 × ⇀ν0| and then ρ (= γC−2);

(ii) add graphically the vectors ⇀OP 0∗ = ⇀ν0 ×
⇀C/C2 and⇀P0∗O∗ = −(ρ/r0)⇀r0 to find the

position of O∗ relative to O;

(iii) determine the eccentricity e (= OO∗/ρ);

(iv) at O∗, draw a circle of radius ρ if e < 1 or a circular arc on which the points P∗ are

such that |∠OO∗P∗| > cos−1 e−1 if e ≥ 1 (cf. Fig. 3 in Appendix B).18

From a point P∗ on k∗, the corresponding point P∗∗ on k can be determined by demanding

that ⇀OP ∗∗ is parallel to ⇀O∗P ∗ and has magnitude |⇀OP ∗∗| = 1/OQ. Well-known compass-

and-ruler constructions suffice. One can:

(1) erect at P∗ a line (l⊥) perpendicular to the line through O∗P∗;

(2) draw through O the line (l‖) parallel to the line segment O∗P∗, and then;

(3) invert the point of intersection of l⊥ and l‖ (the point Q in Fig. 2) with respect to the

unit circle centered on O.

Compass-and-ruler implementations (with JavaSketchpad) of all three of these procedures

can be found at <http://www.susqu.edu/brakke/constructions/constructions.htm>

(accessed July 2, 2011).19

For students today, who have access to programs like Mathematica, it may seem that

there is little or no need for the geometrical construction under discussion; it takes only a

few keystrokes (as in Example 2.1.9 of Ref. 20) to generate a plot of a Kepler problem orbit; I
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have, nevertheless, witnessed the intellectual satisfaction students experience in being able to

correctly anticipate the character and orientation of an orbit: these features can be deduced

from initial conditions via steps (i) to (iii) of the preceding paragraph. A more traditional

alternative would be to use the Laplace-Runge-Lenz vector, but I have found that even my

most talented and dedicated junior-level students are somewhat mystified by this construct

and disinclined to use it, when it is introduced in isolation (as it usually is) as a single-

valued combination of dynamical variables which happens to be a constant of the motion.

My students have been more receptive to this “exotic” constant of the motion when it is

presented within the context of a discussion of hodographs or polar reciprocals of the Kepler

problem. Other more mundane issues can be tackled. Some suggestions for problems are

given in Appendix B.
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Appendix A: PROOF THAT P∗∗ = P IN A CENTRAL FORCE FIELD

The proof below involves some elementary vector algebra and, crucially, use of the equa-

tions of motion, which can be assumed to be of the form

⇀̈r = f(r)⇀r, (A1)

where ⇀r(t) = x(t)̂ı + y(t)̂ is the position of the orbiting body relative to the force center

(the orbital plane is taken the xy-plane with the z-axis parallel to the angular momentum

per unit mass ⇀C).

By definition, under polar reciprocation, the point P with position vector ⇀r(t) (on trajec-

tory τ) is mapped to the point P∗ (on τ∗) with position vector ⇀r∗(t) = ⇀̇r(t)× ⇀C/C2, where

⇀C = ⇀r(t) × ⇀̇r(t). Likewise, under polar reciprocation, P∗ is mapped to the point P∗∗ with

position vector ⇀r∗∗ = ⇀̇r∗(t)×
⇀C∗/C

2
∗ , where

⇀C∗ = ⇀r∗(t)× ⇀̇r∗(t).

Substituting ⇀r(t) = x(t)̂ı + y(t)̂ into the definition of ⇀r∗, one finds that

⇀r∗(t) = [ẏ(t)̂ı− ẋ(t)̂ ] /C, (A2)
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where C = x(t)ẏ(t) − y(t)ẋ(t) (> 0). Using Eq. (A1) and the fact that C is a constant of

the motion, ⇀̇r∗ can be simplified to

⇀̇r∗(t) = f(r) [y(t)̂ı− x(t)̂ ] /C, (A3)

and, hence,

⇀C∗ = −f(r)k̂/C. (A4)

Equations (A3) and (A4) imply that ⇀̇r∗(t)×
⇀C∗ = C2

∗
⇀r or ⇀r∗∗ = ⇀r (as required).

Appendix B: SUGGESTED PROBLEMS

(1) It is not unusual to see the orbital plane (or xy-plane) identified with the complex

plane (or z-plane) via the (obvious) isomorphism (x, y) → z = x + iy. Formulate polar

reciprocation as an operation in the complex plane. Use this representation to prove polar

reciprocation is involutory.21

(2) The polar reciprocal k∗ of a known orbit k of the Kepler problem can be easily found.

a) Justify the claim that the images under polar reciprocation of just two points on k suffice

to fix k∗.

b) Show that, with the x-axis aligned along ⇀ε∗, the velocity at points around k is

⇀ν = (γρ)
1

2 (e ̂+ êφ) (B1)

in the notation of this paper.

c) By considering the periapse A of k (where ⇀νA ⊥ ⇀rA and ⇀rA ‖ ⇀ε∗), demonstrate that the

energy E of the orbiting body is related to the eccentricity e of k by

E

m
= 1

2
γρ(e2 − 1), (B2)

where m is the mass of the orbiting body. (Begin by finding expressions for r−1
A = νA/C

and νA in terms of ρ and e.)

d) Use Eqs. (B1) and (B2) to prove that the inequality ν2 (= 2E/m+ 2γ/r) > 2E/m

reduces to e cosφ > −1.

(3) The polar reciprocal of an elliptical orbit (of the Kepler problem) must be a complete
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FIG. 3. The polar reciprocal k∗ of the hyperbolic orbit k of Fig. 4. The point B∗ is the image

under polar reciprocation of point B in Fig. 4; P±∞
∗ are the images of the two points at infinity

P±∞ = limt→±∞ P (t) on the in/out asymptotes. Like k, k∗ is symmetric about the principal axis

of k (the line through O and O∗).

circle (as opposed to only an arc of a circle) because of the periodicity of the motion. Show

that this circle has radius

ρ =
1

2

(
1

rp
+

1

ra

)
, (B3)

where rp and ra are the distances (from the force center O) of the periapse and apoapse,

respectively, and that the distance of its center O∗ from O is

OO∗ =
1

2

(
1

rp
−

1

ra

)
. (B4)

Infer from Eqs. (B3) and (B4) an expression for the eccentricity of the orbit.

(4) Figure 3 depicts the polar reciprocal k∗ of the hyperbolic orbit k in Fig. 4. Prove that

OP−∞
∗ is tangent to the circle in Fig. 3 of which k∗ is a part by showing that ∠OP±∞

∗ O∗ =

90◦. By appealing to the “tangent-secant theorem”,22 deduce that OA∗ = rB/b
2. Hence,

conclude that, in Fig. 3, the circle has radius

ρ =
1

2rB

(
1−

r2B
b2

)
(B5)

and

OO∗ =
1

2rB

(
1 +

r2B
b2

)
. (B6)
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FIG. 4. A hyperbolic orbit k of the Kepler problem.

Use Eqs. (B5) and (B6) to justify the assertion that results appropriate to parabolic orbits

can be obtained by taking the limit b → ∞, keeping rB fixed.

(5) Many spacecraft maneuvers involve short firings of high-thrust rockets, which can be

modeled as resulting in instantaneous changes ∆⇀ν in velocity with no change in position.

The important Hohmann transfer (depicted in Fig. 5) requires two such impulsive thrusts:

the first (at Pi) places the vehicle on the semi-elliptical trajectory hif , and the second (at

Pf) puts the vehicle into the circular orbit cf .
23

O
P f Pi

ci

c f
hif

FIG. 5. The Hohmann transfer trajectory hif between coplanar circular orbits ci and cf in the

field of a spherical mass centered on O; hif is tangent to ci at Pi and tangent to cf at Pf .
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a) Show that, provided ∆⇀ν is tangential to the spacecraft’s orbit and the direction of motion

of the spacecraft is not reversed, ⇀r∗ = ⇀ν × ⇀C/C2 is unchanged by an impulsive thrust.

b) Find the polar reciprocal representation of the Hohmann transfer in Fig. 5, i.e. draw (in

one diagram) the polar reciprocals of ci, cf , and hif .

c) Generalize the result of part b) to the case of two counter-clockwise non-intersecting co-

planar and co-axial elliptical orbits about the force center O. The transfer trajectory must

connect the periapse of the inner orbit to the apoapse of the outer orbit.
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