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Abstract: As the dynamic equations of space robots are highly nonlinear, strongly coupled and nonholonomic constrained, the
efficiency of current dynamic modeling algorithms is difficult to meet the requirements of real-time simulation. This paper combines an
efficient spatial operator algebra(SOA) algorithm for base fixed robots with the conservation of linear and angular momentum theory to
establish dynamic equations for the free-floating space robot, and analyzes the influence to the base body’s position and posture when
the manipulator is capturing a target. The recursive Newton-Euler kinematic equations on screw form for the space robot are derived,
and the techniques of the sequential filtering and smoothing methods in optimal estimation theory are used to derive an innovation
factorization and inverse of the generalized mass matrix which immediately achieve high computational efficiency. The high efficient
SOA algorithm is spatially recursive and has a simple math expression and a clear physical understanding, and its computational
complexity grows only linearly with the number of degrees of freedom. Finally, a space robot with three degrees of freedom manipulator
is simulated in Matematica 6.0. Compared with ADAMS, the simulation reveals that the SOA algorithm is much more efficient to solve
the forward and inverse dynamic problems. As a result, the requirements of real-time simulation for dynamics of free-floating space
robot are solved and a new analytic modeling system is established for free-floating space robot.
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systems. Currently, there are three main methods for
1 Introduction mechanical multibody dynamic modeling, one is
Newton-Euler algorithm based on vector mechanics,
another is Lagrange algorithm based on analytical
mechanics, and the third one is Kane algorithm based on
vector mechanics and analytical mechanics both. But these
traditional algorithms are not efficient enough, the numbers
of arithmetical operations of the Newton-Euler algorithm
and Lagrangian algorithm grow as the cube of the number
of degrees of freedom known aso(»’), and the numbers of
arithmetical operations of the Kane algorithm is o(»?) . As in
highly complex and interactive space robotic systems, it is
required that the algorithms should be quickly reconfigured
in response to configuration changes. In this paper, the
SOA algorithm®® is proposed for space robots and it
provides a high level architectural understanding of the
mass matrix not readily apparent from detailed algorithm,
and it is very propitious to develop computer programs for
real-time simulation.

The remainder of this paper is presented as follows: In
section 2, the recursive Newton-Euler kinematic and
dynamic equations on screw form are presented. In section
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Dynamic modeling and simulation have played a very
important role in the design and control of the multibody
systems such as spacecraft, robot and automobile,
especially in the more complex system, the free-floating
space robot. The motion control of the free-floating robot is
not like the terrestrial robot, and one mainly difference is
that the base body of the free-floating robot has six degrees
of freedom that the control methods for terrestrial robot can
not be easily applied to free-floating space robot directly!'l.
The free-floating space robot is also an underactuated robot
that has fewer actuators than degrees of freedom, in which
the six base body degrees of freedom are passive and other
degrees of freedom are active”. In recent years, the
development of the science and technology, especially the
robotics and astronavigation technology, has brought a
great challenge to the dynamic modeling and simulation of
systems which have a large number of degrees of
freedom!®. Therefore, it is necessary to establish a high
efficient modeling algorithm for complex mechanical
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simulation of three degrees of freedom manipulator
respectively, followed by conclusions.

2 Recursive Newton-Euler Equations

A serial manipulator with #» rigid body links is
considered as a robot. The links and joints in a manipulator
are numbered in an increasing order from tip to base. This
is different from the common numbering approach in which
the numbers increase toward the tip that this order allows
one to consider sequentially moving from joint 1 to joint n
as going “forward” and moving form joint z to joint 1 as
going “backward””!. The base body denotes link 7, and the
joint n—1 connects link #n—1 to the base body. In this model
all the joints of the space robot are rotational joints.

2.1 Kinematic relations between adjacent links

In order to establish dynamic equations for the multibody
dynamic systems, we should first analyze the kinematic
relations of the adjacent rigid bodies. As illustrated in Fig. 1,
joint k connects the adjacent link £+1 and link %, and the
motion of link & is defined as the motion of frame
O(k)with respect to frame O(k+1) . This scheme can be
considered to be a modified Denavit-Hartenberg with
reversed link numbering.

link(k+1)

link(£)

Fig. 1. Adjacent links in a manipulator

The kinematic equations of adjacent link 4+1 and link &
can be found in Ref. [9], and the symbol definitions used in
the following paragraphs are as follows:

O(k)—Fixed point on joint axis k, that can be viewed as
the origin of a frame fixed in link £;

m(k) —Mass of link £;

M (k)—Mass center of link £;

p(k)—Vector from point O(k) to point M (k) ;

I(k+ 1,k) —Vector from point O(k +1) to point O(k) ;

h(k) —Unit vector along joint axis k;

6(k) —Angle of link & with respect to link k+1 about joint
axis k;

w(k)—Angular velocity of link £;

v(k) —The velocity of link k at point O(k) of joint k;

v, (k)—Velocity of link k at point M (k) ;

F (k) — Constraint force on link & at point O(k) ;

F.(k)— Net force at link £ mass centre;

N (k)— Constraint moment on link £ at joint ;

T (k) —Actuated torque at joint ;
I(k) —Inertia tensor of link £ at the point O(k) ;
I.(k) —Inertia tensor of link k at the mass center.

2.2 Recursive Newton-Euler equations
on screw form

The spatial velocity V' (k) ofthe link £ is defined as

Vi) = w(k)

v(k) ) M

with w(k) and v(k) denoting the angular and linear
velocity of the link k& respectively. The advantage of using
spatial velocity is to decrease the computational complexity
and unify the two vectors in one vector. Similarly, the
spatial acceleration and spatial force are defined as

_(w(k)

W= ) @
(N

f(k)—(F(k) 3)

The spatial inertia M (k) of link & is defined as

I(k)

—m(k) p(k)

k)p(k
M(k) _ [ m’(n()kl;(l )J c R n

The quantities defined above in the screw form are quite
significant, as they imply that only the rules of ordinary
matrix algebra are needed here. Also we define

. h(k
H@h[g@

Bk + 1k = I [(k+1k) RS ©)
o I '

I denotes the identity operator, and with the matrix
identity Xy = xx y , the kinematic equations of adjacent
link &+1 and link £ in Ref. [9] can be rewritten as follows.

For k=n,n-1, --- , 1 loop:

Vky=¢ (k+1kW(k+1)+H (k)0(k),
a(k)=¢ (k+1,k)ak+1)+H (k)0(k)+a(k). ©

Fork=1,2, --- , nloop
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3.

S (k) =@k, k=1) f(k=1)+ M (k)a(k)+ b(k),
T (k)= H (k) f (k).

Where

(i) = ok +1)x h(k)0(k)
ok +)x[@k +D)xI(k+1k)])

®)
b(k):( o(k)x I(k)-o(k) j
m(k)w (k) x[w(k)x p(k)]

a(k) denotes the Coriolis and centrifugal spatial

acceleration at point O(k) . b(k) denotes the gyroscopic
spatial force at point O(k). H(k) is used to project the
spatial force to the vector of the joint axis, and H (k)is
used to project the spatial velocity and spatial acceleration
to the joint axis. Similarly, @(k,k—1)is used for spatial
force projection from joint k1 to joint & and its transpose
matrix ¢ (k+1,k) is used for spatial velocity and spatial
acceleration projection in the opposite direction. If joint & is
a sliding joint, some quantities should be redefined as

. 0
H (k):[h(k)]’

©)

(k)= 0
O =] otk +1) <[k + D Ik + 1K) + (k)] )

Form Egs. (6) and (7) we could find that recursive
Newton-Euler equations on screw form are much more
simply than the expressions in Ref. [9], and the calculation
of the dynamic equations would change into the matrix
calculation that would be a great advantage for matrix
factorization and computer simulation.

3 Forward Dynamic Equations Based
on Spatial Operators

The spatial velocity vector is defined as
V =[V(),---,V(N)]". The quantity referred to as V is also
quite significant that it unifies all the spatial velocities of
the link in one vector which is beneficial to velocity
recursion of the whole system that results in the high
computation efficiency. Similarly, define quantities 8 ,
T.a,f, @,and b. With the above definitions, Egs.
(6), (7) become

V=¢HP,

a=¢'HO+¢a,

f=d(Ma+b), (10)
T = Hf.

Where the spatial operators¢g, H and M are given by

1 0 .. 0

ey 1

¢ = (I_gq))_l

~

$(n.1) $(n,2)

H =diag[H(1), HQ),--, H®)], (11)

M = diag[M (1), M(2),--, M(n)].

€, is a shift operator whose elements are all zero, except
along its lower subdiagonal. @ denotes the rigid recursive
operator that is used to implement the force recursion form
tip to base that it is the most fundamental operator in this
paper, and some other operators mentioned latter all have
been derived based on this operator. The transpose
matrix ¢ is used to implement the velocity and acceleration
recursion. Matrix @(i, j) is the Jacobian which relates the
spatial velocity at point i to spatial velocity at point j, and it
obeys the “group properties”. By using the quantities
defined above, Eq. (10) can be rewritten as follows

T=M#+C,
M_=HpM¢ H",
C=H¢(M¢@ a+Dh).

(12)

M, denotes the generalized mass matrix and is referred to
as Newton-Euler factorization of the mass matrix!”, and
these results may be the simplest proof that reflects the
equivalence of Lagrangian and Newton-Euler manipulator
dynamics'”. Vector C contains the velocity dependent
Coriolis and centrifugal hinge force. Then the forward
dynamic equations are obtained in much more simply
forms.

4 Factorization Expression for Generalized
Mass Matrix

As the operators Hg¢ and ¢ H in Eq. (12) are not
square matrix, the inverse matrix of generalized mass
matrix can not be expressed by operators Hg andg H .
But with the sequential filtering and smoothing methods in
optimal estimation theory!'' '*, the generalized mass matrix
can be factorized into an innovation factorization form:

M.=(1+H@¢K)D(I1+H@K) . (13)
Immediately, the inverse of generalized mass matrix can be
easily obtained

M, ' =(I-HyK) D '(I-HyK). (14)
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Operators P , D , K and ¥ can be obtained from the
following iteration.

For k=1, 2, ---, nloop:

P(k) =y (k,k-1)P(k—Dy (k. k—1)+ M(k),
D(k) = H (k)P(k)H " (k),

G(k)=P(k)H (k)D ' (k), (15)
&, =&~ K(k+1,k)H(k),

K(k+1,k) =¢€,G(k).
Where i is derived from Egs. (11), (15). We could obtain

1 0 ... 0

v(2,]1) 1

y=(I-g,) =

vn) wn?2) ... I

(16)

&, is similar to &,, except that it produces articulated
shifts instead of rigid shifts. P(k) denotes the sequence of
spatial inertia which is the discrete Riccati equation driven
by the link mass M, . It is easy to seen that P(k) >0, that
makes sure D '(k) exists. D(k) denotes the projection of
the articulated body inertia, and it is memoryless and
invertible. G(k) denotes the Kalman gains that is computed
from the articulated body inertia and appears as a key
element in the recursive Kalman filtering algorithm.
w denotes the spatial Kalman filter transition operator, and
its elements y(k+1,k) govern the transition of force from
one link to the next that has the same properties with the
operator @(k+1,k) . Also, define these quantities in block
diagonal matrix form as

P =diag[ P(l),--, P(n)],
D = diag[D(1),--, D(n)],

. (17)
G = diag[G(1),--, G(n)],
K =diag[K(1),---, K (n)].
Then, Eq. (18) is
D=HPH',
G=PH'D ', (18)
K = 8¢G.

With the quantities and equations defined above, we have
the following identities.

Identity | gy '=1+@KH .

Proof: From Egs. (15), (16) we have that

~1
v'=I-¢,=1-(¢,—-KH)
=(I-¢)+KH=9¢"+KH

Identity2 (I +H@K)'=1-HyK .
Proof: Using Identity 1 and a standard matrix identity

(I+AB)’l = I—A(I+BA)’1B,
we have that

(I+H¢K)'=I-H(I+¢KH) '¢K

=1-H(gy ') '¢K
=I-HyK

Identity 3 gM¢@’ =P +$P+ Py +pKDK ¢’ .
Proof: From Eq. (15), we have that
M =P-¢ Pg,
=P-¢g,Ps +KDK"

And multiplying by operator ¢ from right and multiplying

by operator ¢ from left, we have

¢My" = (P +&,Pe, + KDK )¢’
=P+¢P+P§ +¢KDK'¢'

where @ is equal to ¢—1I and ¢6'¢.
With Identity 3 above, the generalized mass matrix can
be rewritten as

M_=H¢M¢ H’
—H(P+@P+P@ +3KDK ¢’ \H'
~D+HJKD+DK'¢'H + HJKDK' ¢’ H'
=(I+H@¢K)D(I + HpK)'

(19)

This is a new operator factorization of the generalized mass
matrix, and easily with Identity 2, the inverse of
generalized mass matrix can be derived:

M. '=(I-HyK)D'(I-HyK). (0

This leads to relatively easy recursive solutions to inverse
dynamics problem that implements the O(n) high efficient

computational complexity.

5 Dynamics of Free-Floating Space Robot

The model of free-floating space robot can be considered
as a number of links connecting by the hinge joints attached
to a base body, and it is very similar to the terrestrial
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manipulator, but the free-floating space robot has a few
features that the terrestrial manipulators do not have. The
base body of the terrestrial manipulator is immobile, and
the position and posture of the base body would change
when the free-floating space robot is moving its
manipulator to the position to capture a target. As
illustrated in Fig. 2, the base body is considered as link #,
and an assumptive six degrees of freedom joint is used to
attach the base body to the inertial reference frame. The
manipulator of the free-floating space robot is considered
as link 1 to link »—1 connecting by rotational joints.

The whole system follows the momentum conservation
theory when no external force acts on the spacecraft, so the
system’s mass center will not change during the
free-floating robot capturing a target. In the space
multibody dynamics the system’s mass centre is often taken
as the origin of inertial reference frame. For the purpose of
analyzing the coupling problem of the free-floating space
robot with its base body, the SOA algorithm is used to
establish dynamic equations of the free-floating space robot
that is relative to the base body. Then the action and
reaction theory and momentum conservation theory are
used to analyze the influence of the position and posture of
the base body. The velocity and acceleration of the base
body''* are given by

V(I’Z) = Mlile,
w(n)=M, 'H,,
y(n)= M, 'F,, @l
@(n)=M, 'F,,
where
Ml = diag(mc’mc’mc)’
M= 3 (RIOR-mi),
i=1,j=1
n-1
H,=- % R mp(k),
i=1,j=1
> [RLoG)+rxRmi)], 2

T
I
|

™M

i=1, /=1

n—1

F,=— Y R/F.(i),
i=1,j=1
n—1

[R,N.(i)+r x(R,F.(i))].

i=1, /=1

r, denotes the vector of the link 7 in inertia reference frame,
r’ the vector of the link i in reference frame j, m, the
total mass of the system, R, the transformation matrix
from reference framej to inertia frame. With Egs. (21), (22)
the velocity and acceleration of the base body could be
obtained, so the position and posture of the base body
would be known in time.

base body
\ n
| 6 dof joint
\

Inertial reference
Fig. 2. Spacecraft with a manipulator

6 Simulation

In order to verify the algorithm above to be correct, the
motions of the free-floating space robot and the influence
to the base body were simulated by computer program in
Mathematica 6.0, and the results were compared with
ADAMS results. A manipulator with three degrees of
freedom is taken, and Fig. 3 is the illustration of the
physical model of simulation.

Fig. 3.

Physical model of simulation

In the simulation, the integral step takes 0.001 s, and the
actuated torques 7'(1) , 7(2) and T7(3) take —0.5 N-m ,
—0.3N-mand 0.1 N-m respectively. The quantities of
the model are as illustrated in Table.

Table. Quantities of the physical model

Link number 0 1 2 3
Inertia tensor

) 8.33 0.84 0.84 0.11
I./(kg * m?)
Inertia tensor

) 8.33 0.84 0.84 0.11
L/(kg » m?)
Inertia tensor

) 8.33 0.013 0.013 0.006 3
IL./(kg * m”)
Mass m/kg 50.0 10.0 10.0 5.0
Initial angle

0 /2 0 /2

O/rad

Fig. 4 is the displacement in x direction, and Fig. 5 is the
displacement in y direction. Fig. 6 is the angular velocity of
link. From the figures, we can find that the simulation



. 6.

TIAN Zhixiang, et al: Spatial Algebra for Free-Floating Space Robot Modeling and Simulation

results are consistent with the ADAMS results, so the SOA
algorithm is obvious correct. The simulation time in
Mathematical 6.0 and ADAMS for 5 s actually need real
time 20.2 s and 31.5 s respectively, indicating that the SOA
algorithm is  much more efficiency than ADAMS
algorithm.
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Fig. 5. Displacement in y direction
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Time t/s

Fig. 6. Angular velocity of link

7 Conclusions

(1) In order to control the free-floating space robot well,
it is very important to establish dynamic equations with
high computational efficiency to analyze the dynamic
characteristics. The high efficient SOA algorithm with the
conservation of linear and angular momentum theory is
combined to establish dynamic equations for the
free-floating space robot.

(2) The universal dynamic equations with the SOA
algorithm are derived for a serial manipulator with » rigid

body links. Recursive Newton-Euler equations on screw
form and the spatial operators are used to develop the
factorizations and the inverse of the generalized mass
matrix which results in the high computational efficiency.

(3) A manipulator with three degrees of freedom is taken
into simulation. The simulation results reveal that the SOA
algorithm is more efficiency than ADAMS. In the
simulation the base body’s posture and position are
analyzed when the manipulator is moving.

(4) The free-floating space robot is a kind of
underactuated system which must have nonholonomic
characteristics. The nonholonomic characteristics bring a
great challenge to control system that the nonlinear control
must be applied. Techniques of the sequential filtering and
smoothing methods in optimal estimation theory are used in
the SOA algorithm and that will be easy to design the
control system.
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