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Abstract: The batch splitting scheduling problem has recently become a major target in manufacturing systems, and the researchers
have obtained great achievements, whereas most of existing related researches focus on equal-sized and consistent-sized batch splitting
scheduling problem, and solve the problem by fixing the number of sub-batches, or the sub-batch sizes, or both. Under such
circumstance and to provide a practical method for production scheduling in batch production mode, a study was made on the batch
splitting scheduling problem on alternative machines, based on the objective to minimize the makespan. A scheduling approach was
presented to address the variable-sized batch splitting scheduling problem in job shops trying to optimize both the number of sub-bathes
and the sub-batch sizes, based on differential evolution(DE), making full use of the finding that the sum of values of genes in one
chromosome remains the same before and after mutation in DE. With considering before-arrival set-up time and processing time
separately, a variable-sized batch splitting scheduling model was established and a new hybrid algorithm was brought forward to solve
both the batch splitting problem and the batch scheduling problem. A new parallel chromosome representation was adopted, and the
batch scheduling chromosome and the batch splitting chromosome were treated separately during the global search procedure, based on
self-adaptive DE and genetic crossover operator, respectively. A new local search method was further designed to gain a better
performance. A solution consists of the optimum number of sub-bathes for each operation per job, the optimum batch size for each
sub-batch and the optimum sequence of sub-batches. Computational experiments of four test instances and a realistic problem in a
speaker workshop were performed to testify the effectiveness of the proposed scheduling method. The study takes advantage of DE's
distinctive feature, and employs the algorithm as a solution approach, and thereby deepens and enriches the content of batch splitting
scheduling.
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Notations
i—Job index, S, —Batch size of the kth sub-batch for the jth
Jj—Operation index, operation of job i,
k—Batch index, M, —Processing machine of the kth sub-batch for the
[—Machine index, Jjth operation of job i,
N—Total number of jobs, 70" —Start time for set-up procedure of the kth
S—Original batch size of job i, sub-batch for the jth operation of job i,
n;—Total number of operations of job i, 7,°” —Finish time for set-up procedure of the kth
M—Total number of machines, sub-batch for the jth operation of job i,
b;—Total number of alternative machines for the jth Tl.j.SkPP —Start time for processing procedure of the ith
operation of job i, sub-batch for the jth operation of job i,
T .;P —Unit processing time for the jth operation of job i on T .;PP —Finish time for processing procedure of the kth
machine /, sub-batch for the jth operation of job i,
T, .;U —Set-up time for the jth operation of job i on machine T,(NM) —Time when the number of parts that
l, accomplish the processing procedure for the
Jjth operation of job i reaches NM,
* Corresponding author. E-mail: zyw@zjut.edu.cn Py —Need of set-up procedure on machine / for the
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and machine /,

—Processing sequence between the kth sub-batch
for the jth operation of job i and the £'th
sub-batch for the j'th operation of job i’,

Ng—Total number of sub-batches,

0,

ifk ik’

1 Introduction

Under the batch production mode in a real manufacturing
environment, a job consists of a batch of identical parts in
the production scheduling problem, and there may exist
alternative machines for operations. By splitting the
original batch into many smaller sub-batches, these smaller
sub-batches can be processed on different machines
simultaneously, with all parts in one sub-batch processed
altogether and the processing time of a sub-batch defined to
be the sum of processing time of each part in that sub-batch,
sharing only one set-up time, so that a faster completion
can be obtained. That’s how batch splitting, also called lot
streaming in many researches, arises.

Batch splitting in flow shops can be equal (all
sub-batches of a given job are of equal size), consistent
(sub-batch sizes vary within a job but are the same for all
machines), or variable (sub-batch sizes can change from
machine to machine)'. And these three types of batch
splitting can be applied to job shops too. Most of the
existing researches on the batch splitting scheduling
problem concerns the former two kinds of batch splitting.
PAN, et al® studied the equal-sized batch splitting
scheduling problem with set-up time and alternative
machines, with the batch size for each sub-batch fixed in
advance. SUN, et al®), adopted a novel encoding method in
genetic algorithm(GA) to optimize both the number of
sub-batches for each job and the sub-batch processing order
simultaneously when solving the equal-sized batch splitting
job shop scheduling problem with set-up time and
alternative machines. LOW, et al'*! performed comparisons
between equal-sized batch splitting and consistent-sized
batch splitting in the batch splitting scheduling problem
with the number of sub-batches and the sizes of
sub-batches fixed beforchand. MARTIN'! proposed a
heuristic to get the number of sub-batches for each job and
the size of sub-batches in the consistent-sized batch
splitting scheduling problem in flow shops. Although most
of these researches solved the batch splitting scheduling
problem by fixing the number of sub-batches, or the
sub-batch sizes, or both, their achievements still provided
important basis for a further study.

On the basis of the above resecarches, we focus our
attention on variable-sized batch splitting, trying to obtain
both the optimum number of sub-bathes for each operation
per job and the optimum batch size for each sub-batch in
the batch splitting scheduling problem with set-up time.

There is much scope for evolutionary algorithms for
batch splitting scheduling problems. Among all kinds of

L—TLength of the chromosome,
N,—Population size,
CR—Crossover probability,

N —The maximal iteration number.

evolutionary algorithms, DE is a newly-developed simple
and efficient population-based heuristic, introduced by
STORN, et al®!, and has been extensively investigated and
improved to solve flow shop scheduling problems and job
shop scheduling problems!®), but not including the batch
splitting scheduling problem yet. Considering that the sum
of values of genes in one chromosome remains the same
before and after mutation in differential evolution (DE),
when chromosomes are of equal length and have the same
total value of genes, this paper adopts DE to solve the batch
splitting problem, so that the sum of the batch sizes of all
the sub-batches for any operation of any job remains the
same as the original batch size of that job when values of
genes in chromosomes represents batch sizes of
sub-batches.

The paper is organized as follows. The formulation for
the variable-sized batch splitting scheduling problem with
alternative machines is established in section 2. In section 3,
a new hybrid parallel algorithm, with a global search
procedure, based on self-adaptive DE and genetic crossover
operator, and a problem-dependent local search procedure,
is brought forward to solve both the batch splitting problem
and the batch scheduling problem. Simulation and results
are presented and comparisons are drawn in section 4,
followed by conclusions in section 5.

2 Problem Description and Formulation

Consider N jobs in a scheduling system. Each job
consists of a batch of identical parts, and is planed to be
processed in its predefined operation sequence. And there
may exist alternative machines for operations.

To simplify the problem and make full use of alternative
machines, we assume that jobs are all available at time zero,
and the batch number of sub-batches for the jth operation of
job i is equal to the total number of alternative machines for
that operation, so that chromosomes in the algorithm can be
of equal length. Each sub-batch requires one machine out
of a set of its alternative machines, and a machine should
be set up before it starts a processing procedure for a

sub-batch.
A mathematical model for the variable-sized batch

splitting scheduling problem is developed in this paper.

Values of ¢, ¢, and 6, ., arelisted as follows:

1, if the kth sub-batch for the jth operation of job i
needs set-up procedure on machine /,

Pij =
0, otherwise.
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1, if the kth sub-batch for the jth operation

¢ijkl =1 of jobi is assigned to machine /,
0, otherwise.
1, if the kth sub-batch for the jth operation
s | of jobi precedes the k'th sub-batch
ik _i''k" T

for the j'th operation of job i,

0, otherwise.

The mathematical model is established as follows:

b,

N ing
min Z = mglx{nggf({z,iip}}a (1)
[J,/
ZSijk:Si’ Vi, J, SijkEZ’ )
k=1

k
SSU > SU
ka - 73(/‘—1) [;«1 S,-jk/] ~ Pk )ZJ'(M,W
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T,yisu = Tijisu + (/)Uk(M,,A)TZJs(lfJ‘M )’ Vi jik, ®)

TFPP — T.SPP +TPP

ijk ijk (M)

S,

ijk > Vi,j, k: (7)
iai/zlaza”'aN; j:1:2:”':ni; j/zlaza”'an,‘/;
k=1,2,,b,5 k' =12, b,. (8)

g

Eq. (1) specifies the objective to minimize the makespan,
defined by the maximum finish time of processing
procedures for the latest operations. Eq. (2) ensures that the
sum of the batch sizes of all the sub-batches for an
operation of a job remains the same as the original batch
size of that job. Eq. (3) shows that a machine is allowed to
be set up for a sub-batch for an operation of a job before all
the parts in the sub-batch finish the processing procedure
for its predecessor operation of the same job, so that when
all the parts in the sub-batch are ready, the machine can
start processing procedure immediately. Note that there is
an add-up notation in Eq. (3), owing to the rule presented in
section 3.1 that all sub-batches within an operation of a job
are sequenced in an increasing order of batch index.
However, the machine starts the set-up procedure for a
sub-batch only after, at least, it finishes the processing
procedure for the predecessor sub-batch in the processing
sequence on that machine, as is shown in Eq. (4). If the
predecessor and successor sub-batches in the processing
sequence on a machine are to deal with the same operation

of the same job, the successor sub-batch does not need
set-up procedure on that machine. Eq. (5) describes that
when a sub-batch for an operation of a job needs set-up
procedure, the set-up procedure couldn’t be interrupted
once started. Eq. (6) provides the relationship between the
start time of processing procedure and the finish time of
set-up procedure for a sub-batch, which certainly specifies
the sequence between the set-up procedure and the
processing procedure for any given sub-batch. Eq. (7)
shows that processing procedure for a sub-batch couldn’t
be interrupted once started.

3 New Hybrid Parallel Algorithm

Since the batch number for an operation of a job is equal
to the total number of alternative machines for that

N
operation, there are N, :ZZZ)U. sub-batches in all.
i=1 j=1
Sizes and sequence of these sub-batches and machines
allocated for these sub-batches are to be determined
through algorithm. The proposed algorithm is detailed as
follows, and the framework is illustrated in Fig. 1.

| Set the algorithn parameters. Set 7= 1 |

‘ Randomly generate the imtial population with N, mdividuals

Output

N (Global gearch)

Perform block mutation and block crossover in DE for batch
sphitting chromosomes and genetic crossover operator for
batch gcheduling chromosomes in the current population, and
save the N, new individuals into the temporary population

Select V, individuals from the current population and
the temporary population into the next generation
through the roulette wheel selection and elitist model

(Local search)

Perform local search for the best individual
and other 20% indivicualg in the population

Seti=1¢+1

Framework of the proposed algorithm

Fig. 1.

3.1 Individual representation

Parallel chromosome coding method is adopted to
represent an individual, one called batch splitting
chromosome, composed by batch sizes of Ng sub-batches,
and the other called batch scheduling chromosome,
containing sequence information of Ny sub-batches.

Randomly generate b;; integers within the range [0, S;]
that satisfy Eq. (2) as S for the jth operation of job i,
where i=1,2,---,N, j=12,---,n, and k=12,---,b,.
All the batch sizes of these Ng sub-batches constitute the
batch splitting chromosome, denoted by chromosomel,
with its length L = N, is shown as follows:
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where Sjj stands for the batch size of the kth sub-batch for
the jth operation of job i. We denote Sy Sjyo S, on
chromosomel as the sub-batch size array for the jth
operation of job i, where i=12,---,N and
j=L2,---,n.Values of zero are allowed in the batch
splitting chromosome. The sequence of these N
sub-batches in chromosomel constitutes the batch
scheduling chromosome, denoted by chromosome2, with
the length L. For the batch splitting scheduling problem
listed in Table 1, Fig. 2 and Fig. 3 are examples for the
batch splitting chromosome and the batch scheduling
chromosome for the problem respectively. Genes on
chromosome2 are in “jj” format, referring to the jth
operation of job 7, and gene “ij” appears b;; times overall.
We specify the batch index to gene “i/” according to the
time “jj” appears from left to right on chromosome2, which
infers that all sub-batches within an operation of a job are
sequenced in an increasing order of batch index. For
example, the third gene “21” on chromosome2 in Fig. 3
form left to right represents the second sub-batch for the
first operation of job 2, since the gene appears the second
time from left to right, and the size is 4, which can be seen
from chromosomel in Fig. 2.

Table 1. Batch splitting scheduling problem
Job  Original batch size Operat10121
Jl 20 b11:2 b12:3
JZ 15 b21:3 b22:2
13 7 1100 10 | 5 46 | 7 8

Fig. 2. Batch splitting chromosome
for the problem in Table 1

11 21 21 11
Fig. 3.

12 21 22 12 12 22

Batch scheduling chromosome
for the problem in Table 1

All the sub-batches for the jth operation of job i are
required to be sequenced ahead of any sub-batch for the j th
operation of job i when j<j’, which means that all the
sub-batches for all previous operations of a job are
scheduled before any sub-batch for the current operation of
that job. Then the time when parts with certain size
accomplishes the processing procedure for the predecessor
operation of a job can be obtained according to the
completed arrangement of all the sub-batches for the
predecessor operation of the job, which is needed in Eq. (3),
when handling a sub-batch for the current operation of the
same job.

A schedule can be obtained by decoding genes on
left to
chromosomel: If the gene on chromosome2 represents the

chromosome2  from right, combined with

kth sub-batch for the jth operation of job i, get the size for
the sub-batch from chromosomel, and calculate the time

k
when parts with size ZS,.jk/ accomplishes the processing
k'=1

procedure for the (j—1)th operation of the job if j>1.

According to the tasks that are already allocated to
alternative machines for the jth operation and constraints
Egs. (3)—(8), we select a machine as M that finishes the
processing procedure with the earliest finish time and
arrange the set-up procedure and the processing procedure
for the sub-batch on machine M.

3.2 Fitness function
Eq. (1) is the objective to minimize the makespan. The
fitness function is designed as

max f = %, )

N [Jm’
where Z = max {ng)({ljiip 3L

3.3 Global search procedure

An individual is composed of a batch splitting
chromosome and a batch scheduling chromosome, due to
the finding that the sum of values of genes in one
chromosome remains the same before and after mutation in
DE and powerful optimization ability of GA for scheduling,
they evolve using DE and genetic crossover operator
respectively. We denote chromosomel, and chromosome?2,,
as the batch splitting chromosome and the batch scheduling
chromosome from individual / respectively.

3.3.1 Evolution procedure for the batch splitting
chromosome

A self-adaptive DE-based evolution procedure is
designed for the batch splitting chromosome in this section.

(1) Evolution procedure. A DE with block mutation and
block crossover is adopted for the batch splitting
chromosome, and the current population evolves according
to the following steps in one cycle.

Step 1: Set individual index /= 1.

Step 2: For individual % in the current population,
randomly generate three integers within [1, N,], denoted by
d,, d, and ds, where N, represents the population size. d;, d,
and d; are different from each other, and different from /.
Carry out the evolution procedure for chromosomel from
individual % according to the following sub-steps:

Step 2.1: Randomly generate an integer within [1, N]
as r and another integer within [1, n, ] as r», and set job

index i=1 and operation index j=1.

Step 2.2: If i=r, and j=r,, execute step 2.3. Otherwise,
execute step 2.4.
Step 2.3: Carry out block mutation and block
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crossover for the sub-batch size array for the jth operation
of job i on chromosomel;

S, =S G =S80, k=12, by, (10)

ik

+K,(S

where S refers to the kth gene in the sub-batch size array

for the jth operation of job i on chromosomel from
individual g (it further represents the batch size of the kth
sub-batch for the jth operation of job i on chromosomel,),

where g=d,, dp, ds. S, refers to the kth gene in the new
array obtained through mutation. Kj; is the mutation
probability for the sub-batch size array for the jth operation
of job i on chromosomel,,.

To make sure that S,-j/-k is within [0, S;], the value of Kj;
has to satisfy the following two equations. And we

randomly choose a value that satisfies these two equations
as Kj;:

b _ d, _ d,
= v . Si Sijk Sijk
K;; = max {0, max {min (11)
ij nin g _gh ’ g _ g ’
ik Rk Pijk T Pk
b, _ d, _ d,
< i " S,‘ Sijk Sijk
K;; < min {2, min{max{— > v . (12)
k=1 S 2 _S 3 S 2 _S 3
ijk ijk ijk ijk

Since batch sizes in this paper are integer numbers, S,-j/-k
needs a delicate modification. Set SUM=0, and from k=1
to k=by;, perform S;, =[S, 1and SUM = SUM + [S,, ]if
k<by, and if k=by, perform S =S,— SUM. “[+]” means to
get the nearest integer number. In this way, all the S,-j/-k in
the new array is adjusted to integer numbers, and still

satisfy Eq. (2), where k=1, 2,", b;;. Select the new array

into a temporary chromosome, denoted by newchrol,.
Execute step 2.5.

Step 2.4: Randomly generate a real number within [0,
1] as r3. If s<<CR, return to step 2.3. Otherwise, select the
sub-batch size array for the jth operation of job i on
chromosomel, into newchrol,, and execute step 2.5.

Step 2.5: If j<n;, perform j=j+1. Otherwise, perform
i=i+1.

Step 2.6: If i< A, return to step 2.2. Otherwise,
newchrol, now is a complete batch splitting chromosome.
Put newchrol, into the temporary population.

Step 3: if A<N,, perform h=h+1, return to step 2.

(2) Adaptive crossover probability CR. To improve the
performance of the algorithm, we introduced the
distribution variance of fitness value € in Ref. [10] that
reflects the diversity of population to adjust the probability
of crossover adaptively. Q is defined as

2=7t (13)
1 - t TN\2
Dz _Vp;(fh _f ) ’ (14)

where D, represents the variance of fitness value, and
f, stands for the fitness value of individual % in the #th
generation, while }7‘ refers to the average fitness value in

the rth generation. Dy,=max{D,,t=1, 2,*, ¢}, meaning
the maximum variance of fitness value across generations.

We can see from Eq. (13) that the value of Q varies from
0 to 1, and the higher @ is, the better for the population in
terms of the diversity of population. The adaptive crossover
probability is designed in this paper as follows:

CR,, t=1,
CR = o
CR,277,t>1.

(15)

The value of CR is adjusted adaptively within [CR,,
2CRy] according to different value of © when evolving.
When the diversity of population degrades, meaning that
the value of © grows lower, CR is adjusted to a higher
value to raise the exploration ability of the algorithm.
Otherwise, when the diversity of population upgrades,
meaning that the value of ©Q grows higher, CR is then
adjusted to a lower value to improve the exploitation ability
of the algorithm.

3.3.2  Evolution procedure for the batch scheduling

chromosome
Randomly divide the current population into N,/2
groups in one cycle, with two batch scheduling

chromosomes in each group, and genetic crossover operator
is performed for two chromosomes in each group. Assume
that two parent chromosomes in a group are denoted as
chromosome2, and chromosome2,, respectively. Perform
the following steps.

Step 1: Randomly generate an integer within [1, N] as r,
and another integer within [1,n, ] as r,. Find two blocks on
chromosome2, and chromosome2, that have least number
of genes but contain all the sub-batches for the rth
operation of job ry. For the problem in Table 1, if parent
chromosomes are shown in Fig. 4 and » =1 and rn=2,

blocks covered with shadow in Fig. 4 are the blocks that
have least number of genes but contain all the sub-batches
for the second operation of job 1.

chromosome2, 11 21 21 11
12 21

12 21 22 12
12 21 21 22

12 22

chromosome2, 11 11 12 22

Fig. 4. Parent chromosomes for the problem in Table 1

Step 2: Exchange two blocks on chromosome2, and
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chromosome2,, and two offspring chromosomes are

obtained, denoted by chromosome2!, and chromosome2; ,

respectively. Offspring chromosomes generated from the
parent chromosomes in Fig. 4 are shown in Fig. 5.

12 21 21 22
12 22

chromosome2’, 11 21 21 11 12 21 12 22

chromosome2’; 11 11 12 21 22 12

Fig. 5. Offspring chromosomes for the parent

chromosomes in Fig. 4

Step 3: Delete redundant genes and insert missing genes
within the newly inserted blocks on chromosome2; and

chromosome2; . When inserting a missing gene, insert the

missing gene before the genes that represent any following
operations of the same job and behind the genes that
represent any previous operations of the same job within
the block if those genes exist in the block. The revised
offspring chromosomes, denoted by newchro2, and
newchro2, respectively, are selected into the temporary
population. The revised offspring chromosomes for
chromosomes in Fig. 5 are presented in Fig. 6, where genes
with underlines stand for the missing genes.

newchro2, 11 21 21 11 12 12 21 22
12 21 21 21 22 12

12 22

newchro2, 11 11 12 22

Fig. 6. Revised offspring chromosomes
for chromosomes in Fig. 5

3.3.3  Selection procedure

After evolution procedures are performed for the current
population, newchrol, and newchro2, construct a new
individual %, and there are N, new individuals in the
temporary population. Select A, individuals out of 2N,
individuals from the current population and the temporary
population into the next generation through the roulette
wheel selection and elitist model").

3.4 Local search procedure

An Insert-based local search method based on the
individual representation proposed in this paper, is brought
forward to gain a better performance. Suppose that
individual % in the current population is selected to perform
the local search, execute the following steps:

Step 1: Randomly generate an integer within [1, L] as
pos and a natural number within [0, 1] as r;, where L stands
for the length of chromosome. Assume that the posth gene
on chromosome2, from left to right represents the kth
sub-batch for the jth operation of job i. Set g=k,
chromosomel, = chromosomel, and chromosome2) =
chromosome2,,.

Step 2: If =1, execute step 3. Otherwise, 3 must be
zero. Perform the forward search procedure:

Step 2.1: If j>1, find the gene that representing the
bi;-nth sub-batch for the (j—1)th operation of job i on

chromosome?2, , and denote the position as posl. Else, if
j=1, set posl= —1.

Step 2.2: If the (pos—1)th gene on chromosome2;
from left to right refers to a sub-batch for the jth operation
of job i, exchange the values of §j, and S, on
and execute g=g—1. Execute
chromosome?2, =Insert( chromosome2, , pos, pos—1).

Step 2.3: If f{ chromosomel, & chromosome2; )>
flchromosomel,, & chromosome2;), set chromosomel; =
chromosomel, and chromosome2,= chromosome2, .

Step 2.4: Execute pos=pos—1. If pos>(posl+1),
return to step 2.2. Otherwise, stop the local search for
individual A.

Step 3: Perform the backward search procedure:

Step 3.1: If j<n, find the gene that representing the
first sub-batch for the (j+1)th operation of job i on
chromosome?2, , and denote the position as pos2. Else, if
j = n,, set pos2=L +1.

Step 3.2: If the (pos+1)th gene on chromosome2;
from left to right refers to a sub-batch for the jth operation
of job i, exchange the values of Sy, and Sj.1) on
and execute g=g+1. Execute
chromosome?2, =Insert(chromosome2, , pos, pos+1).

Step 3.3: If f{ chromosomel, & chromosome2; )>
flchromosomel,, & chromosome2;), set chromosomel; =
chromosomel), and chromosome2,= chromosome2, .

Step 3.4: Execute pos=pos+1. If pos<(pos2—1),
return to step 3.2. Otherwise, stop the local search for
individual A.

In the above steps, Insert(chromosome, u, v) means to
insert the gene at the wth position in the vth position on
chromosome from left to right.

/
chromosomel, ,

!/
chromosomel, ,

3.5 Analysis of the complexity of the proposed
algorithm

Consider a batch splitting scheduling problem, with
N . In
the proposed algorithm, decoding procedure, calculation
procedure for adaptive crossover probability CR, evolution
procedure for the batch splitting chromosomes, evolution
procedure for the batch scheduling chromosomes, selection
and local search are concerned in one cycle, and their time
complexities are o(N,L), o(N,), o(N,L), 0(0.5N,L?), o(2N,’)
and o0(0.2N,L) respectively. Therefore, the total time
complexity for the proposed algorithm is:

population size N, and maximal iteration number

o(N,, Ny ,L)= N (o(N, L)+ o(N,) +
o(N,L)+0(0.5N,L*) + 02N *) +
0(0.2N,L)) ~ 0.5N;"™ o(N,L*). (16)

From Eq. (16), we can see that the maximal iteration
number and population size, especially the length of
chromosome affects the computational burden of the
algorithm greatly.
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4 Experiments and Analyses

4.1 Application of the proposed algorithm
to test instances

To evaluate the performance of the proposed algorithm,
we adopt scheduling data in Refs. [2, 12—13] to construct
the following four test problems:

Problem 1 (denoted by P1): The problem is composed of
4 jobs and 6 machines, and the original batch size for each
job is 8. The unit processing time for operations on
alternative machines is shown in Table 2, and set-up time
for an operation of a batch on a machine is equal to its unit
processing time on the same machine.

Problem 2 (denoted by P2): The problem is composed of

4 jobs and 6 machines, and the original batch size for each
job is 20. The unit processing time for operations on
alternative machines is shown in Table 2, and set-up time
for an operation of a batch on a machine is equal to its unit
processing time on the same machine.

Problem 3 (denoted by P3): The problem is composed of
6 jobs and 6 machines, and the original batch size for each
job is 10. The unit processing time and set-up time for
operations on alternative machines is shown in Table 3.

Problem 4 (denoted by P4): The problem is composed of
6 jobs and 6 machines, and the original batch size for each
job is 20. The unit processing time and set-up time for
operations on alternative machines is shown in Table 3.

Table 2. Unit processing time for operations on alternative machines S

Job Operation Machinel Machine2 Machine3 Machine4 Machine5 Machine 6
1 2 3 4 - - -
Ji 2 - 3 - 2 4 -
3 1 4 5 - - -
1 3 - 5 - 2 -
J 2 4 3 - - 6 -
3 - - 4 7 11
1 5 6 - - - -
J3 2 - 4 - 3 5 -
3 - - 13 - 9 12
1 9 - 7 9 - -
J4 2 - 6 - 4 - 5
3 3 - - 3

Some related achievements concerned with these
problems can be found in Refs. [2, 12—13]. The optimum
makespan for Pl obtained in Ref. [12] was 87, and the
optimum numbers of sub-batches were 1, 3, 5 and 4 for Jj,
Jy, J3 and J, respectively, using the proposed algorithm that
first optimized the number of sub-batches for each job, and
then scheduled those sub-batches based on equal-sized
batch allocation method (PS: the optimum makespan in Ref.
[12] for the problem with no batch splitting should be 141
instead of 140, as is shown in its gannt chart). In Ref. [2],
the obtained optimum makespans for P2 were 345, 216,
196 and 194 when the number of sub-batches for each job
was fixed to 1, 2, 4 and 5, respectively, using equal-sized
batch allocation method. P3 was solved in Ref. [13] based
on the genetic algorithm and the simulated annealing
algorithm, with the number of sub-batches and the sizes of
sub-batches fixed in advance, and the optimum makespan
was 243 for P3 with no batch splitting.

To evaluate the performance of the proposed algorithm
and confirm the effectiveness of the local search procedure
and the adaptive crossover operator, we set N = 200,
N,=50 and CR(,=0.3, and solve the four test problems. The
proposed algorithm has been coded with Visual C++ .NET
2003 and runs on a PC with a Pentium 2.53 GHz processor
and a 1.00 GB RAM under Windows XP 2002. The results
obtained over 20 runs are shown in Table 4, where BMN,
WMN, No.BMN and AvT.CPU denote the best makespan,

the worst makespan, the number of the best makespan
obtained among 20 runs and the average computational
time in seconds over 20 runs respectively. “4LGRM1” in
Table 4 refers to the hybrid parallel algorithm proposed in
this paper. And “4LGRM?2” is the algorithm as same as
ALGRM]1, except that the local search procedure is not
included. “4LGRM3” is the algorithm as same as ALGRM2,
except that the crossover probability CR in ALGRM3 is
fixed to CR, throughout evolution.

The increase of the size of problem from P1, P2 to P3,
P4 adds to the complexity of the batch scheduling problem,
while the increase of the original batch size for each job
adds to the complexity of the batch splitting problem. It can
be observed that the variable-sized batch splitting technique
provides considerable makespan reduction, compared with
results without batch splitting in Refs. [2, 12-13]. All these
three algorithms can obtain excellent optimization
outcomes, especially ALGRM1 and ALGRM?2 that even
surpass, or at least are not worse than the existing
achievements in Refs. [2, 12—13]. From Table 4, we can see
that ALGRM1 can always outperform the other two
algorithms for all test problems in terms of optimization
power, and ALGRM3 consumes least computation effort.
Apparently, ALGRM1 derives great benefit from the local
search procedure and the adaptive crossover operator, and
provides better solutions within reasonable time limit,
compared with ALGRM?2 and ALGRM3.
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Table 3. Unit processing time/set-up time for operations on alternative machines s

Job Operation Machinel Machine2 Machine3 Machine4 Machine5 Machine 6
1 2/1 - - - - -
2 - - 32 2/1 - -
3 - 2/1 - 2/2 32 2/1
/ 4 - 5/3 - 6/2 - -
5 - - 2/1 - - 2/1
6 - 171 - - 171 -
1 - 2/1 - 171 - -
2 - - 4/2 - - -
3 8/2 - - - 7/2 7/3
/2 4 - 412 5/1 512 - -
5 - - 171 - - 171
6 - 4/2 - - 5/1 -
1 4/2 - 52 - - -
2 - 5/3 - 52 - -
Js 3 - - 171 - 171 -
4 - 6/3 - - 7/2 -
5 - 2/2 2/1 - - 3/1
1 4/2 - - 4/1 - -
2 - - 2/1 - - -
Ji 3 - 4/1 - 3/1 - 3/1
4 - - 6/2 - 52 -
5 6/1 - - - - -
6 - 3/1 - 2/2 2/1 -
1 2/1 - - 3/1 - -
2 - 5/1 - - 4/1 -
3 - - 171 171 - -
’s 4 - - 31 - - 21
5 - 3/1 2/2 - - -
6 - - - - 2/2 -
1 2/1 - 3/1 - 2/2 -
2 - 4/1 - - 32 -
Je 3 - - - 6/2 - 6/1
4 - 2/1 - 2/1 - -
5 - - 172 - - -
6 2/2 - - 3/1 2/2 -

Table 4. Results for these four test problems through three algorithms

Problem ALGRM1 ALGRM?2 ALGRM3
BMN WMN No.BMN AvI. CPU BMN WMN No.BMN AT CPU BMN WMN No.BMN AvI CPU
P1 85 92 11 10.25 85 91 7 3 85 92 6 2.82
P2 183 196 8 12.3 185 203 5 3.84 188 210 3 3.65
P3 213 239 5 22.35 218 254 3 6.74 223 253 1 6.05
P4 415 464 4 31.8 431 485 2 8.1 432 491 1 7.48

The batch splitting approach in this paper tends to split
the original batches into sub-batches of variable size, and
compared with Ref. [2] and Ref. [12], we can get that
variable-sized batch splitting is better than equal-sized
batch splitting. This is probably because the variable-sized
batch splitting in this paper takes care of different
processing capabilities of alternative machines sufficiently,
and the tradeoff between minimizing the total set-up time
(achieved by reducing the number of sub-batches) and
minimizing the idle time on machines (achieved by
reducing batch sizes, or by increasing the number of
sub-batches) is well dealt with. We consider that the
conclusion acquired by LOW, et al*! with the number of
sub-batches and the sizes of sub-batches fixed in advance

for experiment (five instances were prepared in advance
covering these two batch allocation methods) is not suitable
for general situations.

Optimum solutions to batch splitting for these four test
problems through ALGRM]1 are presented in Table 5, and
the corresponding Gantt charts are shown in Figs. 7-10.
From Table 5, we can see that the original batch of J; in Pl
is split into 3, 3, 2 and 3 sub-batches for the four operations
respectively, and the optimum batch sizes for the respective
three sub-batches for the first operation are 0, 1 and 7,
which means that the actual optimum batch number for the
first operation of J; is 2. Sub-batches with size 0 are not
displayed in Gantt charts.
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Table S. Solutions to batch splitting for these four test problems through ALGRM1

Optimum solutions to batch splitting

Problem  Operation

Jl Jz J3 J4 J5 J6
1 0,1,7 3,0,5 5,3 1,2,5 - -
P1 2 5,0,3 2,2,4 0,1,7 2,3,3 - -
3 3,1,4 4,0,4 2,3,3 1,6,1 - -
1 6,9,5 4,3,13 11,9 13,4,3 - -
P2 2 3,8,9 2,4,14 4,9,7 3,3,14 - -
3 9,6,5 7,5,8 4,10,6 7,10,3 - -
1 10 9,1 6,4 8,2 3,7 0,6,4
2 6,4 10 2,8 10 4,6 5,5
” 3 0,0,1,9 4,3,3 4,6 5,1,4 7,3 8,2
4 4,6 6,0,4 4,6 7,3 4,6 9,1
5 3,7 9,1 1,0,9 10 4,6 10
6 7,3 6,4 - 1,0,9 10 4,0,6
1 20 11,9 5,15 13,7 15,5 1,15,4
2 11,9 20 8,12 20 13,7 10, 10
P4 3 0,2,1,17 13, 1,6 14,6 7,10,3 5,15 13,7
4 15,5 11,4,5 9,11 12,8 8,12 6,14
5 0,20 12,8 0,2,18 20 1,19 20
6 10, 10 12,8 - 7,8,5 20 7,2,11
Ef g 421 g 332
E5 [sf 211 213 s |32 s 33 333
E4 g M2 g 323 ] 422 s 121
Ei| = 411 413 5 231 433
1
E2 | = 312 s| 221 | 2221 = 423 s 123
2
11
El | = i a 223 3 113 R RN
1|3
1] 10 20 20 40 30 al 70 20 20
(Titne &xiz: second)
Fig. 7. Gantt chart for P1
s 431 422 s 33 333
212 213 s 22 222 s KEY)
42 E 3 322 s 423 E 122
411 s 231 232 233
312 S 323 s 223 s 121 123
4
i s 413 s 111 112 H 431 |s| 113 g 432 %s 131
10 20 30 40 0 é0 70 20 o0 100 110 120 130 140 130 160 170

(Titne Axis: second)

Fig. 8. Gantt chart for P2
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Fig. 10. Gantt chart for P4

E1 in Gantt charts means machine 1, and E£2 means
machine 2, etc. Panes labeled with “s” in Gantt charts stand
for set-up procedures, while those labeled with notations in
“abc” format represent processing procedures, where “a”
refers to a job index, “b” refers to an operation index, and
“c” represents a sub-batch. Take Fig. 7 for example. The
pane that labeled with “311” on machine 1 in Fig. 7 stands
for the processing procedure for the first operation of the
first sub-batch of J;, and the front pane labeled with “s”
adjacent to it stands for the set-up procedure for the same
operation. Combined with Table 5 and the time axis, we
can get that the processing machine for the first operation
of the first sub-batch of J;, with sub-batch size 5, is
machine 1 after machine allocation, and the set-up
procedure starts at time 0 and ends at time 5, and the
processing procedure starts at time 5 and ends at time 30.
As for the pane labeled with “213” on machine 5 in Fig. 7,
there is no front pane labeled with “s” adjacent to it,
meaning that the third sub-batch for the first operation of J,
dose not need set-up procedure on machine 5, since the
predecessor sub-batch in the processing sequence on that
machine is of the same job and the same operation.

4.2 Application of the proposed algorithm to the batch
splitting scheduling problem in a speaker
workshop

To evaluate the performance of the proposed algorithm

in a realistic problem, we adopt a batch splitting scheduling
problem in a speaker workshop. The scheduling data is
listed in Table 6. Set parameters the same as ALGRM1’s in
section 4.1 and solve the problem through ALGRM1. We
can obtain that BMN=43 256, WMN=48 151, No.BMN=5
and AvT.CPU=37.9 over 20 runs. The optimum solution to
batch splitting for the realistic problem through ALGRM1 is
presented in Table 7, and the corresponding Gantt charts
are shown in Fig. 11. Since the set-up time consumed for a
sub-batch is relatively short compared with the processing
time of the whole sub-batch in this peoblem, set-up
procedures are no longer illustrated with separate panes in
Gantt chart. Panes labeled with “s” in Gantt chart stand for
processing procedures together with set-up procedures.

The results of all the five problems above confirm the
validity of the model established in this paper for the
variable-sized batch splitting scheduling problem in job
shops, as well as the excellent performance of the proposed
algorithm. From the data analysis for all test problems,
there are several important findings. First, a schedule can
be greatly improved through the wvariable-sized batch
splitting technique. Second, the local search procedure and
the adaptive crossover operator designed in this paper work
effectively to gain a better performance, and our algorithm
is capable of providing desirable solution within reasonable
time limit. Third, variable-sized batch splitting performs
better than equal-sized batch splitting in batch splitting

220
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scheduling problem with alternative machines.

Table 6. Scheduling data in the batch splitting scheduling problem in a speaker workshop

Unit processing time / set-up time for operations on alternative machines

S

Job Original batch size Operation
El E2 E3 E4 ES E6 E7 E8 E9 E10 Ell E12
1 Coat - - - - - 5/5 7/5 8/5 - - - -
Cloth-edged 2 Stuff - - - - 102 - - - - - - -
paper cone 600 3 Heat-compress - - - 2/4 - - - - - - - -
) 4 Diecut - - - - 5/2 - - - - - - -
5 Final check - - - - - - - - - - 12/0  14/0
1 Paintinternal circle ~ — - - - - 5/5 9/4  6/7 - - - -
2 Interim check - - - - - - - - 3/0  4/0 - -
Foam-edged 3 Built paper cone - 48 43 - - - - - - - - -
paper cone 500
) 4 Seal obversely - 154 77 - - - - - - - - -
5 Seal reversely - 53 53 - - - - - - - - -
6 Final check - - - - - - - - - - 10/0  8/0
1 Paintinternal circle ~ — - - - - 5/4 7/6  8/6 - - - -
2 Coat - - - - - 6/6 6/8 10/6 - - - -
Rubber-edged 3 Interim check - - - - - - - - 4/0  5/0 - -
paper cone 1800 .
) 4 Built paper cone - 15/5 143 - - - - - - - - -
5 Seal reversely - 513 3/1 - - - - - - - - -
6 Final check - - - - - - - - - - 10/0  11/0
1 Make brass net - - - - 6/2 - - - - - - -
2 Shapeup withpulp ~ 4/2 - - - - - - - - - - -
Paper (??-cone 2000 3 Tnterim check - - - - - - - = 30 50 - -
! 4 Diecut - - - - 5/3 - - - - - - -
5 Final check - - - - - - - - - - 6/0  9/0
1 Paintinternal circle ~ — - - - - 5/4  6/4 6/5 - - - -
2 Coat - - - - - 5/6 5/6  6/6 - - - -
Paper cap 3 Interim check - - - - - - - - 5/0  5/0 - -
) 500 4 Heat-compress - - - 6/4 - - - - - - - -
5 Seal obversely - 9/2 10/4 - - - - - - - - -
6 Seal reversely - 52 412 - - - - - - - - -
7 Final check - - - - - - - - - - 9/0  10/0
Table 7. Optimum solution to batch splitting for the realistic problem through ALGRM1
Job Operation
1 2 3 4 5 6 7
Ji 120, 99, 381 600 600 600 177,423 - -
Jo 266,79, 155 307,193 371,129 330,170 115, 385 283,217 -
J3 855,431,514  944,764,92 1323477 674,1126 992, 808 930, 870 -
Ja 2 000 2 000 1162, 838 2 000 947,1 053 - -
Js 72,264, 164 125,187, 188 312,188 500 143,357 224,276 426,74
3
ElZ %61 | 262 ‘ 361 ‘ 362 ‘ 7 ‘
Bl ‘ 151 ‘ 152 H ast ‘ a5z ‘ 571 ‘
ELD 332 | 51| 3
Bp % ‘ 331 ‘ a1 433
oz HESEIR! 3
i %‘1 s 313 Hs% s2 sl |52 Hlm‘
B k32 F 11 s 113 ‘
515
Bs kil 3 a3z )51 2
B5 atl )s 121 Lo | e 41 ‘
B4 Skl ]
B3 F 341 )s 351 ‘ 352 % ;‘
EZ )s 342 5551‘ 552
Bl )s 411 ‘

o1

203 4 5 8 7 89

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 20 30 31 32 33 34 35 36 37 33 39 40 41 42 43 44
(Time axis: #1000, second)

Fig. 11. Gantt chart for the realistic problem
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5 Conclusions

(1) A variable-sized batch splitting scheduling problem
model with alternative machines, on the basis of predefined
batch numbers of sub-batches for each operation per job, is
established.

(2) A new hybrid parallel algorithm is proposed to solve
both the batch splitting problem and the batch scheduling
problem, based on DE and genetic crossover operator. A
problem-dependent local search procedure and an adaptive
crossover operator are further designed for a better
performance.

(3) The experiments of batch splitting job shop
scheduling are performed, and the results confirm the
validity of the problem model and the excellent
performance of the proposed algorithm.

(4) Though the objective in this paper is to minimize the
makespan, other objectives are also easily addressed by our
approach.

(5) The proposed algorithm could also be used to solve
batch splitting scheduling problems with bounded batch
sizes by adjusting Eq. (11) and Eq. (12) to get batch sizes
within bounds.
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