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1 Cold collisions of an open-shell S-state atom with a2Π molecule:

N(4S) colliding with OH in a magnetic field

Wojciech Skomorowski,a Maykel L. González-Martı́nez,b Robert Moszynski,∗a

and Jeremy M. Hutson∗b

We present quantum-theoretical studies of collisions between an open-shell S-state atom and a2Π-state molecule in the presence
of a magnetic field. We analyze the collisional Hamiltonian and discuss possible mechanisms for inelastic collisions insuch sys-
tems. The theory is applied to the collisions of the nitrogenatom (4S) with the OH molecule, with both collision partners initially
in fully spin-stretched (magnetically trappable) states,assuming that the interaction takes place exclusively on the two high-spin
(quintet) potential energy surfaces. The surfaces for the quintet states are obtained from spin-unrestricted coupled-cluster cal-
culations with single, double, and noniterative triple excitations. We find substantial inelasticity, arising from strong couplings
due to the anisotropy of the interaction potential and the anisotropic spin-spin dipolar interaction. The mechanism involving the
dipolar interaction dominates for small magnetic field strengths and ultralow collision energies, while the mechanisminvolving
the potential anisotropy prevails when the field strength islarger (above 100 G) or the collision energy is higher (above1 mK).
The numerical results suggest that sympathetic cooling of magnetically trapped OH by collisions with ultracold N atomswill not
be successful at higher temperatures.

1 Introduction

The first experimental realization of Bose-Einstein conden-
sation in a dilute gas in 19951 opened up a novel and fast-
growing field of research on cold and ultracold matter. At
temperatures below about10−6 K, novel properties emerge
in which the quantum nature of atoms and molecules is cru-
cial. Although the original experiments involved quantum-
degenerate states in atomic systems, it was soon realised that
molecules, especially those with a permanent dipole moment,
offer an additional range of applications in physics and chem-
istry. These include development of new frequency standards,
tests of fundamental physical concepts such as parity and
time-reversal violation2,3, spectroscopic measurements of un-
precedented accuracy4,5, quantum information processing,6,7,
and control of chemical reactions with state-selected reagents
and products8–10.

In contrast to atoms, which nowadays can be cooled rela-
tively easily by laser Doppler cooling and evaporative cool-
ing11, molecules are incomparably more challenging because
of their complicated internal structure. Two main classes of
methods have been established to produce cold molecules: di-
rect methods, in which molecules are cooled from high tem-
perature by means of a buffer gas or external fields, and indi-
rect methods, in which cold molecules are formed from pre-
cooled atoms by photoassociation or magnetoassociation.
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Indirect methods can now produce ground-state molecules
at temperatures below 1µK 12–14. It has been shown recently
that, for KRb, the rates of chemical reactions change spectac-
ularly between different nuclear spin states and can be dramat-
ically affected by applied electric fields10. However, indirect
methods are so far restricted to alkali-metal dimers and it will
be challenging to extend them to other regions of the periodic
table15.

Direct cooling methods can be applied to a much larger va-
riety of chemically interesting molecules, including OH, NH3,
CO and LiH16–19. Stark deceleration, pioneered by Meijer
and coworkers16, can be applied to polar molecules with large
Stark effects, while helium buffer-gas cooling20 has been par-
ticularly successful for paramagnetic species. However, the
temperatures so far achieved with direct methods are limited to
tens of millikelvin, which is not cold enough to achieve quan-
tum degeneracy. The development of a second-stage cooling
method for such molecules is the biggest current challenge in
the field. One of the most promising proposals is to usesym-
pathetic cooling, which is based on the conceptually simple
idea of bringing cold molecules into thermal contact with a
bath containing ultracold atoms. So far sympathetic cooling
has been successfully realized for ions21,22 and some neutral
atoms23,24, but not for neutral molecules.

Linear molecules in spatially degenerate electronic states
(Π, ∆, etc.) are particularly attractive for Stark deceleration,
as they exhibit first-order Stark effects at moderate electric
fields (in contrast to molecules inΣ states, which exhibit only
second-order Stark effects). After deceleration, the molecules
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can be loaded into traps where they are confined by static elec-
tric or magnetic fields. Such static traps are not the only way
to confine cold molecular species25, but they are experimen-
tally the most accessible. In addition, atoms in open-shellS
states (such as alkali-metal atoms, H(2S), N(4S), He(3S), and
Cr(7S)), can be held in magnetic traps and may be suitable as
coolants.

Trapping with a static field is possible only if the atom or
molecule is in a low-field-seeking state. However, the abso-
lute ground state is always high-field-seeking. Thus, in addi-
tion to the elastic collisions that lead to thermalization of the
sample, there is always the possibility of inelastic collisions
that transfer the colliding partners to a lower state and release
kinetic energy. Inelastic collisions eject molecules fromthe
trap and may lead to the heating of the sample. The success
of sympathetic cooling therefore depends on the ratio of elas-
tic to inelastic events, which should preferably be as largeas
possible.

Molecular sympathetic cooling was first suggested for
Rb+NH(3Σ−)26. Subsequently, potential energy surfaces
and the appropriate collision cross sections have been
calculated for a variety of candidate systems, includ-
ing Mg+NH(3Σ−)27, Li+LiH( 1Σ+)28,29, Rb+NH3

30 and
He+CH2(3B1)31. Rb+ND3 has also been explored experi-
mentally32, though the inelastic collision rate in an electric
field turned out to be too high for cooling. Studies of cold
collisions with linear molecules in aΠ state in the presence of
external fields have mostly been limited to cases when the sec-
ond colliding partner is closed-shell. In particular, Tscherbul
et al.33 have investigated OH+He collisions and have shown
how the inelastic cross sections can be reduced by combin-
ing electric and magnetic fields to eliminate certain inelastic
channels. Collisions of rotationally excited OH with He in the
presence of electromagnetic field were analyzed by Pavlovic
et al.34, while Bohn and coworkers35 studied cold collisions
between two OH molecules with long-range dipole-dipole in-
teractions and concluded that the evaporative cooling of OH
would be challenging. Laraet al.36 carried out theoretical
studies of cold collisions of OH with Rb, taking account of
multiple potential energy surfaces and including the hyperfine
structure of OH. However, they did not include external field
effects.

There is thus a need for rigorous quantum studies of colli-
sions between aΠ-state molecule and an open-shell S-state
atom in the presence of external fields. In this paper, we
extend the theory presented in Refs.36,37 to handle this case.
This theory will be applicable to a broad set of experimen-
tally important systems, including interactions of molecules
such as OH, NO, ClO, and CH with alkali-metal and other
magnetically trappable atoms. As an example, we present
numerical results for collisions between OH(2Π) and N(4S)
in a magnetic field, with both colliding species initially in

their fully spin-stretched low-field-seeking states. OH was
one of the first molecules to be decelerated and trapped19,38,
and many pioneering experiments with it have been reported.
Gilijamseet al.19 carried out a crossed-beam experiment, col-
liding velocity-controlled OH molecules with Xe atoms; they
were able to resolve state-to-state inelastic cross sections as a
function of the collision energy. Similar experiments withim-
proved sensitivity have recently been performed for OH col-
liding with Ar, He, and D2 39–41. An experiment to collide
two velocity-controlled beams, of OH and NO, is in prepara-
tion42. Sawyeret al.38 have measured energy-dependent cross
sections for collisions between magnetically trapped OH and
slow D2 molecules.

Tscherbul et al.43 have recently suggested that spin-
polarized nitrogen atoms are a promising coolant for sympa-
thetic cooling experiments. N atoms atT >1 mK are stable
against collisional relaxation between different Zeeman lev-
els for a wide range of magnetic field strengths. Moreover,
the low polarizability of the N atom leads to potential energy
surfaces with an anisotropy much smaller than is usually en-
countered for interactions with alkali-metal atoms. Theoret-
ical and experimental studies for collisions of magnetically
trapped N(4S) and NH(3Σ−) have been reported44,45, showing
that the trap loss in this system is fairly small and is caused
mostly by the anisotropic magnetic dipole-dipole interaction
between the atomic and molecular spins.

This paper is organized as follows. In Sec. II we describe
calculations of the high-spin (quintet) potential energy sur-
faces resulting from interaction of the N(4S) atom with the
OH(2Π) molecule. In Sec. III we describe the effective Hamil-
tonian used in the dynamical calculations and give the expres-
sions for the matrix elements of the Hamiltonian. In Sec. IV
we discuss the results of the scattering calculations and their
implications for sympathetic cooling of OH by N atoms. Fi-
nally, Sec. V summarizes and concludes the paper.

2 Potential energy surfaces

The interaction between the N(4S) atom and the OH(2Π)
molecule occurs on four adiabatic surfaces:3A′, 3A′′, 5A′,
and5A′′. The triplet surfaces have been studied extensively
to investigate the reaction N+OH→NO+H that can take place
on the3A′′ surface46–51. This reaction is the major source of
the NO radical in the interstellar medium and is one of the
key elementary processes in nitrogen chemistry. Formationof
NO is barrierless, via a stable intermediate complex NOH, and
is highly exothermic with 1.83 eV energy release. The other
possible reaction channel N+OH→NH+O is energetically for-
bidden for low-energy collisions. If we neglect minor spin-
orbit coupling effects between the triplet and quintet states,
the quintet surfaces are non-reactive. To our knowledge, the
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Fig. 1 Contour plots of the quintet interaction potentials for N+OH: 5A′ (left-hand panel) and5A′′ (right-hand panel). Energies are in cm−1.

quintet surfaces of N+OH have not been reported in the liter-
ature thus far.

We have carried out calculations of the quintet sur-
faces using the unrestricted version of the coupled-cluster
method with single, double, and noniterative triple excitations
[UCCSD(T)]. The unrestricted version was chosen to circum-
vent the problem of the lack of size-consistency for the in-
teraction between two open-shell systems in spin-restricted
coupled-cluster calculations52. The highly accurate aug-cc-
pV5Z basis set of Dunning53 was employed for all atoms and
the counterpoise procedure54 was used to correct the com-
puted interaction energies for basis-set superposition error.
TheMOLPROsuite of codes55 was used in the electronic struc-
ture calculations.

Both the5A′ and5A′′ potential energy surfaces were com-
puted on a grid of points in Jacobi coordinates (R, θ), where
R is the intermolecular distance measured from the centre of
mass of16OH to the14N atom andθ is the angle between the
vector pointing from O to H in the OH molecule and the vec-

Table 1Characteristic points of the interaction potentials for the
quintet states of N(4S) + OH(2Π).

R / a0 θ / degrees V / cm−1 Surface
Global minimum 6.55 0.0◦ –120.9 5A′, 5A′′

Local minimum 6.36 180.0◦ –71.5 5A′, 5A′′

Saddle point 6.56 97.2◦ –61.0 5A′

Saddle point 6.66 100.1◦ –45.8 5A′′

tor pointing from the centre of mass of OH to the N atom. The
angleθ = 0◦ thus corresponds to the linear O–H—N arrange-
ment. The distanceR was varied from 4.0 to 12.0a0 with an
interval of 0.5a0 and from 12.0 to 20.0a0 with an interval of
1.0a0. The angular grid points was chosen as the set of points
for 11-point Gauss-Lobatto quadrature, which include points
at θ = 0 and180◦. The OH bond length was kept fixed at the
monomer equilibrium value of 1.834a0.

Contour plots of the5A′ and5A′′ potential energy surfaces
are shown in Fig. 1. The shapes of the two quintet potentials
are quite similar. The global minima appear for the linear ge-
ometry O–H—N and have a depth of 120.9 cm−1. There are
also local minima 71.5 cm−1 deep, which occur at the linear
N—O–H configuration. Note that for linear geometries the
5A′ and5A′′ states are degenerate, so these minima are com-
mon to the two surfaces. The set of stationary points of the
potentials is completed by saddle points between the two min-
ima, which are located at slightly different positions for the
5A′ and5A′′ states. Table 1 gives the positions of the station-
ary points on the surfaces and the corresponding interaction
energies. The shapes of the quintet potential energy surfaces
for N+OH closely resemble the high-spin (quartet) surface for
N+NH reported byŻuchowski and Hutson44, although the
global minimum for N+OH is about 30 cm−1 deeper than for
N+NH.

To perform quantum scattering calculations, it is necessary
to expand the5A′ and5A′′ surfaces in terms of angular func-
tions. We adopt the convention of Alexander37 and use spheri-
cal harmonics in the Racah normalizationCk,q(θ, φ) (with an-
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gleφ = 0) for angular representation of the potential. For the
interaction of an S-state atom with aΠ-state molecule, there
are nonvanishing terms withq = 0 andq = 2. The sum of the
5A′ and5A′′ potentials is expanded in terms of functions with
k = 0,

1

2
[VA′(R, θ) + VA′′(R, θ)] =

∞
∑

k=0

Ck,0(θ, 0)Vk0(R), (1)

while the difference between the5A′ and 5A′′ potentials is
expanded in terms of functions withk = 2,

1

2
[VA′(R, θ)− VA′′(R, θ)] =

∞
∑

k=2

Ck,2(θ, 0)Vk2(R). (2)

Note that the definition of the difference potential, either
VA′ − VA′′ or VA′′ − VA′ , depends in general on the sym-
metry of the electronic wave functions of the interacting sub-
systems56,57. The radial functionsVkq(R) are obtained by
projecting the sum or difference onto the appropriate angu-
lar function, using Gauss-Lobatto quadrature to perform the
numerical integration. Prior to this projection, the interpola-
tion to obtainVA′(R, θ) andVA′′ (R, θ) at an arbitrary value
of R is done for each value ofθ using the reproducing ker-
nel Hilbert space (RKHS) procedure58. For the quintet states
of N(4S)+OH(2Π), the dominant anisotropic term in the ex-
pansion (1) isV20(R) with a well depth of approximately 28
cm−1, while the dominant term in the expansion (2) comes
from V22(R).

To improve the description of the potential at largeR, we
use an analytic representation in this region. Each radial com-
ponentVkq(R) is expanded at long range in terms of Van der
Waals coefficients,

Vkq(R) = −
∑

n=6

Ckq
n /Rn. (3)

The expressions for theCkq
n coefficients have been given by

Skomorowski and Moszynski57, though with a different nor-
malisation forq > 0 from the one used here. We calculated
the Van der Waals constants up to and includingn=8, using
the method described in Ref.57. The results are listed in Table

Table 2Long-range coefficients (in atomic units) for
N(4S)+OH(2Π).

k → 0 1 2 3 4
Ck0

6 27.84 4.92
Ck2

6 1.23
Ck0

7 51.60 24.61
Ck2

7 –6.38
Ck0

8 583.34 312.00 48.29
Ck2

8 159.09 31.42

2. For a weakly polarizable system such as N+OH, the neglect
of higher-order coefficients withn > 8 is fully justified. We
used the switching function of Janssenet al.52, with parame-
tersa = 15 a0 andb = 25 a0, to join the asymptotic form
based on the long-range coefficients and the RKHS interpola-
tion of theab initio points.

3 Collision Hamiltonian

3.1 Effective Hamiltonian

We consider the case of an atom A(2s1+1S), interacting with
a diatomic molecule BC(2Π), in the presence of an external
magnetic fieldB. The direction of the field defines the labo-
ratory (space-fixed)Z-axis. The system A–BC is described in
Jacobi coordinates, with ther vector connecting the heavier
and lighter of the atoms B and C, andR connecting the cen-
tre of mass of BC and the atom A. By convention, lower-case
and capital letters are used to represent the quantum numbers
of the monomers and of the complex as a whole, respectively.
The subscripts 1 and 2 refer to the monomers A and BC, re-
spectively. For simplicity, the diatom will be treated as a rigid
rotor in vibrational statev, although generalization to include
its vibrations is straightforward.

The Hamiltonian describing the nuclear motions of A+BC
in the presence of magnetic fieldB can be written

Ĥ = − h̄2

2µ
R−1 d2

dR2
R +

L̂2

2µR2
+ Ĥmon + Ĥ12, (4)

whereL̂ is the space-fixed angular momentum operator de-
scribing the end-over-end rotation of A and BC about one
another andµ is the reduced mass of the complex.̂Hmon

contains all terms describing theisolated monomers, i.e.
Ĥmon = Ĥ1 + Ĥ2. Ĥ12 describes the interaction between
the monomers:

Ĥ12 = Ĥs1s2 + V̂ (R, θ). (5)

Here,Ĥs1s2 accounts for the direct dipolar interaction between
the magnetic moments due to the unpaired electrons of the
monomers, and̂V is the intermolecular interaction potential.

If s1 6= 0 and hyperfine terms are neglected, the Hamil-
tonian for an isolated atom in the state2s1+1S is fully deter-
mined by the Zeeman interaction between the electron spin
and the external magnetic field,

Ĥ1 = gSµB ŝ1 · B̂, (6)

wheregS is the electrong-factor,µB is the electron Bohr mag-
neton, and̂s1 is the spin operator.

The analogous Hamiltonian for a2Π molecule can be writ-
ten59

Ĥ2 = Ĥrso + ĤZ,2 + Ĥλ, (7)
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where the rotational and spin-orbit contributions within theΠ
state are collapsed into the first term,

Ĥrso ≡ Bv n̂
2 +Av l̂ · ŝ2. (8)

Bv andAv are the molecular rotational and spin-orbit con-
stants, respectively, and̂n is the operator of the mechanical
rotation of BC, which can be expressed aŝ− l̂− ŝ2, wherê,
l̂ andŝ2 are the operators for the rotational, electronic orbital
and spin angular momenta, respectively.Ĥrso can be rewritten

Ĥrso = (Av + 2Bv) l̂z ŝ2z

+Bv

[

̂2 + l̂2 + ŝ22 − 2̂ · ŝ2 + l̂2z − 2̂z l̂z

]

. (9)

The termŝl2, ŝ22 andl̂2z simply shift all the levels by a constant
amount and are omitted below. The term̂Hλ, responsible for
theΛ-doubling of the rotational levels of BC, is represented
by the effective Hamiltonian

Ĥλ =
∑

q=±1

e−2iqφr
[

−qvT
2
2q(̂, ̂) + (pv + 2qv)T

2
2q(̂, ŝ2)

]

,

(10)
whereφr is the azimuthal angle associated with the electron
orbital angular momentum about the molecular axis defined
by r, while pv andqv are empirical parameters. In Eq. (10),
the second-rank tensor T2q that couples two vectorsk1 andk2

is defined as

T2
q(k1,k2) =

∑

q1,q2

〈1, q1; 1, q2|2, q〉T1
q1(k1)T1

q2(k2), (11)

where〈1, q1; 1, q2|2, q〉 is a Clebsch-Gordan coefficient and
the first-rank tensor components are T1

0(k) = kz and
T1
±1(k) = ∓(kx ± i ky)/

√
2. If only the electron spin and

orbital contributions are taken into account, the Zeeman term
is

ĤZ,2 = gSµB ŝ2 · B̂ + g′LµB l̂ · B̂, (12)

whereg′L is the orbitalg-factor. For diatomic molecules of
multiplicity higher than 2 (for example3Π), an additional term
describing the intramolecular spin-spin interaction mustbe in-
cluded in the monomer Hamiltonian (7).

The spin-spin dipolar interaction can conveniently be writ-
ten59:

Ĥs1s2 = −g2Sµ
2
B(µ0/4π)

√
6
∑

q

(−1)q T2
q(ŝ1, ŝ2)T

2
−q(C),

(13)
with T2

q(C) = C2,q(θ, φ)R
−3, whereC2,q(θ, φ) is a spherical

harmonic function in the Racah normalization and (R, θ, φ)
is the set of relative spherical coordinates of the ‘composite’
atomic and diatomic electronic spins in the space-fixed frame.
µ0 is the magnetic permeability of the vacuum.

3.2 Basis sets and matrix elements

The state of the BC molecule can conveniently be described
using Hund’s case(a) basis functions|λ; s2σ2; jωmj〉, where
s2 is the electron spin with projectionσ2 onto the molecular
axis (body-fixedz axis), λ is the (signed) projection of the
electronic orbital angular momentum onto the molecular axis,
andj is the angular momentum of BC with projectionsω onto
the molecular axis andmj onto the space-fixedZ-axis. For
the body-fixed projections we haveω = λ + σ. The state
of the atom is characterized by the electronic spin function
|s1ms1〉. The basis set used here for the A–BC collision sys-
tem is constructed as|s1ms1〉 |λ; s2σ2; jωmj〉 |LML〉, where
|LML〉 are functions describing the relative motion of A and
BC in the space-fixed reference frame.

In the presence of a magnetic field, the conserved quanti-
ties are the projectionMtot of the total angular momentum,
Mtot = ms1 +mj +ML, and the total parityP . An electric
field would mix states of different total parity. In the absence
of an electric field it is most efficient to use a parity-adapted
basis set,|s1ms1〉 |s2; jω̄mjǫ〉 |LML〉, with

|s2; jω̄mjǫ〉 ≡
1√
2

[

|1; s2σ2; jω̄mj〉

+ ǫ(−1)j−s2 |−1; s2 −σ2; j −ω̄mj〉
]

,

(14)

whereω̄ ≡ |ω|, σ2 = ω̄ − 1 andǫ = ±1. In this basis set,
the parity of BC isp2 = ǫ(−1)j−s2 , and that of the triatomic
system isP = p1p2(−1)L. The matrix elements of̂L2 and
Ĥ1 are diagonal, and given bȳh2L(L + 1) andgSµBms1 B,
respectively.

We next give the matrix elements of all terms in the Hamil-
tonian of Eq. (4), although only those involving the atomic
spin are new in the present work. The terms that do not in-
volve atomic spin are the same as for collisions with a closed-
shell atom and were previously given by Tscherbulet al.33.
However, the published version of Ref.33 contains a number
of typographical errors, so we report the correct expressions
here.

The matrix elements of the molecular rotation/spin-orbit
operator are

〈s2; jω̄mjǫ| Ĥrso |s2; jω̄′mjǫ〉
= δω̄ω̄′

{

(Av + 2Bv)(ω̄ − 1) +Bv

[

j(j + 1)− 2ω̄2
]

}

−Bv

[

δω̄ω̄′−1α−(j, ω̄
′)α−(s2, ω̄

′ − 1)

+δω̄ω̄′+1α+(j, ω̄
′)α+(s2, ω̄

′ − 1)
]

, (15)

where we useα±(j,m) ≡
√

j(j + 1)−m(m± 1) both to
simplify the equations and to ease comparison with Ref.33.
The off-diagonal terms on the right-hand side connect differ-
ent spin-orbit manifolds related bȳω′ = ω̄ ± 1.
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TheΛ-doubling matrix elements are

〈s2; jω̄mjǫ| Ĥλ |s2; jω̄′mjǫ〉 =
1

2
ǫ(−1)j−s2α−(j, ω̄

′)

×
[

δω̄2−ω̄′qvα−(j, ω̄
′ − 1)− δω̄1−ω̄′(pv + 2qv)α+(s2, ω̄

′ − 1)
]

(16)

and also couple states with differentω̄. For a2Π molecule, the
first factor inside the square brackets mixes the1/2 and3/2
states, while the second is non-zero only forω̄ = ω̄′ = 1/2.

The matrix elements of the Zeeman interaction for the
molecule BC are

〈s2; jω̄mjǫ| ĤZ,2

∣

∣s2; j
′ω̄′mjǫ

〉

= µBB(−1)mj−ω̄′ [

(2j + 1)(2j′ + 1)
]1/2

(

j 1 j′

mj 0 −mj

)

×
[

gS
α+(s2, ω̄

′ − 1)√
2

(

j 1 j′

ω̄ −1 −ω̄′

)

− gS
α−(s2, ω̄

′ − 1)√
2

×
(

j 1 j′

ω̄ 1 −ω̄′

)

+
[

gS(ω̄ − 1) + g′L
]

(

j 1 j′

ω̄ 0 −ω̄′

)

]

,

(17)

and mix both different rotational and different spin-orbit
states.

To determine the matrix elements of the spin-spin dipo-
lar interaction it is natural to expand the second-rank ten-
sor T2(ŝ1, ŝ2) as a linear combination of the products of
the space-fixed components of first-rank tensorsT1

p1
(ŝ1) and

T1
p2
(ŝ2). The matrix elements ofT1

p1
(ŝ1) can be calculated

directly in our basis set, while forT1
p2
(ŝ2) we first need to

transform from the space- to the body-fixed frame,

T1
p2
(ŝ2) =

∑

q

D(1)∗
p2q (Ω)T

1
q(ŝ2), (18)

whereDJ
KM is a Wigner rotation matrix andΩ represents the

Euler angles for the transformation. The matrix elements in
the primitive basis set are

〈LML;λ; s2σ2; jωmj ; s1ms1|Ĥs1s2

∣

∣s1m
′

s1 ;λ; s2σ
′

2; j
′ω′m′

j ;L
′M ′

L

〉

= −
√
30λs1s2(R)(−1)s1−ms1

+s2−σ2+mj−ω−ML

×
[

s1(s1 + 1)s2(s2 + 1)(2s1 + 1)(2s2 + 1)(2j + 1)(2j′ + 1)
]1/2

×
[

(2L+ 1)(2L′ + 1)
]1/2

(

L 2 L′

0 0 0

)

×
∑

p1,p2,q

(

1 1 2
p1 p2 −p

)(

s1 1 s1
−ms1 p1 m′

s1

)

×
(

s2 1 s2
−σ2 q σ′

2

)(

j 1 j′

−mj p2 m′

j

)

×
(

j 1 j′

−ω q ω′

)(

L 2 L′

−ML −p M ′

L

)

,

(19)

and the corresponding matrix elements in the parity-adapted
basis set are

〈LML; s2; jω̄mjǫ; s1ms1 | Ĥs1s2

∣

∣s1m
′

s1 ; s2; j
′ω̄′m′

jǫ;L
′M ′

L

〉

=
√
30λs1s2(R)(−1)s1−ms1

+s2+mj+2ω̄−ML

×
[

s1(s1 + 1)(2s1 + 1)s2(s2 + 1)(2s2 + 1)(2j + 1)(2j′ + 1)
]1/2

×
[

(2L+ 1)(2L′ + 1)
]1/2

(

L 2 L′

0 0 0

)

×
∑

p1,p2,q

(

1 1 2
p1 p2 −p

)(

s1 1 s1
−ms1 p1 m′

s1

)

×
(

s2 1 s2
−ω̄ + 1 q ω̄′ − 1

)(

j 1 j′

−mj p2 m′

j

)

×
(

j 1 j′

−ω̄ q ω̄′

)(

L 2 L′

−ML −p M ′

L

)

,

(20)

wherep ≡ p1 + p2, λs1s2(R) = Eha
3
0α

2/R3 is theR-
dependent spin-spin dipolar coupling constant andα ≈ 1/137
is the fine-structure constant.

Finally, the matrix elements of the interaction potential are

〈LML; s2; jω̄mjǫ| V̂
∣

∣s2; j
′ω̄′m′

jǫ
′;L′M ′

L

〉

= (−1)mj−ω̄′
−ML [(2j + 1)(2j′ + 1)(2L+ 1)(2L′ + 1)]

1/2

×
∑

k,mk

1

2

[

1 + ǫǫ′(−1)k
]

(−1)mk

(

j k j′

mj mk −m′
j

)

×
(

L k L′

0 0 0

)(

L k L′

−ML mk M ′
L

)

×
[

(

j k j′

ω̄ 0 −ω̄′

)

Vk0(R)

− (1 − δω̄ω̄′)ǫ′
(

j k j′

ω̄ −2 ω̄′

)

Vk2(R)
]

,

(21)

whereVk0(R) andVk2(R) are the radial strength functions of
Eqs. (1) and (2). It is readily seen that states belonging to the
same spin-orbit manifold are coupled through the ‘average’
of theA′ andA′′ potential surfaces, while those of different
manifolds are connected through their difference. In addition,
the factor12

[

1 + ǫǫ′(−1)k
]

guarantees that states of thesame
monomer parity are connected by termsVkq(R) with even k,
while those withodd k couple rotational levels ofopposite
parity. It follows from this that a strong parity-conserving
propensity rule for transitions involving different spin-orbit
manifolds can be expected.
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4 Dynamical calculations

4.1 Computational details

Expanding the Schrödinger equation with the Hamiltonian of
Eq. (4) in the parity-adapted basis set (14) yields a set of
coupled differential equations. We have written a plug-in for
the MOLSCAT general-purpose quantum molecular scatter-
ing package60 to implement the matrix elements described
above for collisions between an open-shell S-state atom anda
2Π-state molecule in a magnetic field. We solved the coupled
equations numerically using the hybrid propagator of Alexan-
der and Manolopoulos61, propagating fromRmin = 4 a0 to
Rmid = 25 a0 using a fixed-step log-derivative propagator
with interval size 0.02a0 and fromRmid to Rmax = 800 a0
using a variable-step log-derivative propagator based on Airy
functions. MOLSCAT applies scattering boundary condi-
tions atRmax to extract scattering S-matrices, which are then
used to calculate elastic and inelastic cross sections.

Values of the OH molecular constants in the monomer
Hamiltonian were taken from Refs.62,63. After performing nu-
merous test calculations, we decided to include basis functions
with j ≤ 9/2 andL ≤ 8, which gives convergence of the cross
sections to within approximately 1%.

4.2 Results

The lowest rotational state of OH in its groundX2Π state at
zero field is aΛ doublet withj = 3/2. The doublet con-
sists of two states, referred to ase andf , which have opposite
parity and are separated by 0.059 cm−1, with |j = 3/2, e〉
being the ground state. A magnetic field splits each compo-
nent of the doublet into four states differing by the projec-
tion of the angular momentummj on the field axis (mj =
3/2, 1/2,−1/2,−3/2). For the N atom in its4S ground state,
a magnetic field produces four Zeeman levels, with spin pro-
jectionsms1 = 3/2, 1/2,−1/2 and−3/2. The combination
of 8 Zeeman levels of OH with 4 of the N atom yields 32
asymptotic levels (thresholds), as shown in Fig. 2. In princi-
ple, even at zero field each of the levels is further split due to
hyperfine interactions, although in the present work hyperfine
effects are neglected for simplicity.

N and OH can both be magnetically trapped in their spin-
stretched states, withms1 = 3/2 andmj = 3/2, respec-
tively. There are two such states for OH, originating from the
e andf components of theΛ doublet. We choose the initial
state to be|ms1 = 3/2〉|mj = 3/2, e〉, shown with a red
line in Fig. 2. This is likely to be more favourable for sympa-
thetic cooling than|ms1 = 3/2〉|mj = 3/2, f〉 (shown with
a solid blue line in Fig. 2), because there are fewer inelastic
channels open for Zeeman relaxation at low collision ener-
gies. In particular, we avoid transitions between the two fully
spin-stretched states, from|ms1 = 3/2〉|mj = 3/2, f〉 to
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Fig. 2 Energy levels of noninteracting N(4S)+OH(X2Π, j = 3/2)
in a magnetic field. The solid red and blue lines indicates the
spin-stretched low-field-seeking states|ms1 = 3/2〉|mj = 3/2, e〉
(red) and|ms1 = 3/2〉|mj = 3/2, f〉 (blue). The dotted blue line
shows state|ms1 = 3/2〉|mj = 1/2, f〉.

|ms1 = 3/2〉|mj = 3/2, e〉, at collision energies below about
85 mK. The only centrifugal suppression in such a process,
even for an incomings wave (Li = 0,ML,i = 0) is due to a
p-wave barrier in the outgoing channel (Lf = 1,ML,f = 0)
with a height of only 11 mK, necessitated by the change in OH
monomer parity.

The interaction between collision partners that are initially
in fully spin-stretched states takes place almost entirelyon
the quintet (high-spin) potential energy surfaces. A full de-
scription of exit channels in whichms1 +mj has changed re-
quires triplet surfaces, but including these explicitly would be
computationally prohibitively expensive. In the present work,
we effectively approximate the triplet potential surfaceswith
the corresponding quintet ones. This approximation is closely
analogous to that used for N+NH in ref.44.

In a low-energy inelastic collision, the quantum state of
at least one of the colliding species changes and kinetic en-
ergy is released. There are two main mechanisms that pro-
duce inelasticity in ultracold collisions of an open-shellS-
state atom with a molecule in a2Π state. The first is direct
coupling through the anisotropy of the interaction potential,
which drives transitions to states with the molecular quantum
numbermj reduced by at least 1 and the atomic spin projec-
tion ms1 unchanged. This mechanism is also present in col-
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Fig. 3 Elastic and total inelastic cross sections for N+OH scattering
at different magnetic field strengthsB. The elastic cross section is
almost unaffected by the field strength and is shown only for
B = 10 G.

lisions between a closed-shell atom and a2Π molecule and
has been described by Tscherbulet al.33. The second mech-
anism arises from coupling by the spin-spin dipolar interac-
tion Ĥs1s2 . Here, the final Zeeman state may have quantum
numbersmj andms1 reduced by at most one. Such pro-
cesses are also present in collisions of an open-shell S-state
atom with2Σ or 3Σ molecules, or indeed between two alkali-
metal atoms. Collisions of spin-polarized S-state atoms with
2Π molecules thus combine two direct mechanisms for cou-
pling between different Zeeman levels.

The most important contribution to coupling by the interac-
tion potential comes from the anisotropic termV20(R), which
induces direct transitions from the OH state|mj = 3/2, e〉
to |mj = 1/2, e〉 and |mj = −1/2, e〉. This occurs even in
the s-wave regime (Li = 0). An s-wave collision in which
ms1 +mj decreases requiresML,f > 1 to conserveMtot. If
the monomer parity is unchanged, conservation of total par-
ity then requiresLf ≥ 2. There is thus a centrifugal barrier in
the outgoing channel, which suppresses the inelastic crosssec-
tions for low collision energies and low fields. For N+OH, the
centrifugal barriers are relatively high due to the low reduced
mass and smallC00

6 coefficient: the height of thed-wave bar-
rier is 71 mK.

Fig. 3 shows the cross sections for Zeeman relaxation in col-
lisions of OH(X2Π, |mj = 3/2, e〉) with N(4S, |ms1 = 3/2〉)
for magnetic field strengthsB = 10, 100, 500 and 1000 G.
At low collision energies (below 0.1 mK), the cross sections
behave according to the Wigner threshold laws64: the elastic
cross section is constant, while the total inelastic cross section
grows with decreasing energy asE−1/2. The elastic cross sec-

tion is almost unaffected by the magnetic field. At ultralow
collision energies, the inelastic cross sections are suppressed
due to centrifugal barriers in the outgoing channels, and the
total inelastic cross section grows with increasing field be-
cause the increasing kinetic energy release helps overcome
these barriers. For example, the energy released by relaxation
to the state|ms1 = 3/2〉|mj = −1/2, e〉 at a field of 560 G
is sufficient to overcome thed-wave barrier, and Fig. 3 shows
how the inelastic cross section is enhanced for fields of 500
G and higher in thes-wave regime. For collision energies be-
tween 4 mK and 80 mK, both the elastic and inelastic cross
sections feature numerous resonances, mostly Feshbach reso-
nances due to coupling with higher-energy closed channels.

As discussed above, there are two mechanisms driving
transitions between different Zeeman levels, one driven by
the spin-spin dipolar term̂Hs1s2 and the other driven by the
anisotropy of the intermolecular potentialVkq(R). The mech-
anism involvingĤs1s2 dominates for low fields (10 G and be-
low) and in thes-wave regime. For higher fields (100 G and

10−2

10−1

100

101

102

103

10−5 10−4 10−3 10−2 10−1 100

σ 
/ Å

2

Collision energy / K

Included Hs1s2
,  B=10 G

Neglected Hs1s2
, B=10 G

Included Hs1s2
, B=100 G

Neglected Hs1s2
, B=100 G

10−3

10−2

10−1

100

101

102

103

10−5 10−4 10−3 10−2 10−1 100

σ 
/ Å

2

Collision energy / K

Included Hs1s2
,  B=10 G

Neglected Hs1s2
, B=10 G

Included Hs1s2
, B=100 G

Neglected Hs1s2
, B=100 G

Fig. 4 Comparison of the total inelastic cross sections (upper panel)
and thes-wave contributions to them (lower panel) for N+OH,
obtained with the spin-spin dipolar interaction included or neglected
in the Hamiltonian, for magnetic fieldsB = 10 and 100 G.
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Fig. 5 Comparison of thes wave total inelastic cross sections for N+OH with those obtained with either the spin-spin dipolar term or the
anisotropy of the interaction potential neglected. Left-hand panel:B = 10 G; right-hand panel:B = 100 G.

above), the opposite is true and the relaxation is driven by
Vkq(R). Fig. 4 shows the integral cross sections and thes-
wave contribution for the two lowest fields (10 and 100 G),
with theĤs1s2 term in the Hamiltonian included or neglected.
Fig. 5 compares thes-wave contributions for the same two
fields with those obtained by neglecting either the spin-spin
dipolar termĤs1s2 or all the anisotropic termsVkq(R). At 10
G, Ĥs1s2 greatly enhances inelastic processes in the ultracold
regime: at10−5 K, the enhancement is almost two orders of
magnitude. However, forB = 100 G, Vkq(R) is dominant
over the whole range of energies.

The way in which the spin-spin dipolar interaction induces
transitions between different Zeeman levels is exactly par-
allel to that described by Janssenet al.65,66. It is a purely
long-range effect caused by narrowly avoided crossings be-

|ms1 = 3/2〉|mj = 3/2, e〉

|ms1 = 3/2〉|mj = 1/2, e〉

|ms1 = 3/2〉|mj = −1/2, e〉

|ms1 = 1/2〉|mj = 3/2, e〉

|ms1 = 1/2〉|mj = 1/2, e〉

V20Ĥs1s2
N(4S) OH(2Π, j = 3/2, e)

❄

❄

❄

❄

❄

Fig. 6 Pattern of first-order couplings between different Zeeman
levels of N(4S)+OH(X2Π, j = 3/2) through the spin-spin dipolar
interaction and the anisotropy of the interaction potential, for
incomings wave (Li = 0) and outgoingd wave (Lf = 2).

tween the potential adiabats at very long range, which enable
transitions between Zeeman levels without the need to pene-
trate centrifugal barriers. In the present case, avoided cross-
ings due to the dipolar term are present between the adia-
bat asymptotically correlating with the incidents-wave chan-
nel |ms1 = 3/2〉|mj = 3/2, e〉 and other adiabats corre-
lating with the states|ms1 = 3/2〉|mj = 1/2, e〉, |ms1 =
1/2〉|mj = 3/2, e〉, and |ms1 = 1/2〉|mj = 1/2, e〉. The
p-wave and higher-L contributions to the total inelastic cross
sections are almost unaffected by the inclusion ofĤs1s2 for
any field and collision energy. This arises because the long-
range avoided crossings for incident channels with centrifugal
barriers are energetically inaccessible at low energies.

Channels corresponding to different Zeeman levels are also
directly coupled by the anisotropy of the intermolecular po-
tential Vkq(R). Fig. 6 shows a schematic illustration of the
first-order couplings byĤs1s2 andVkq(R) for collisions in-
volving an incomings wave and outgoingd waves. Because
of this, long-range avoided crossings are present even if we
neglectĤs1s2 . However, the effect of the avoided crossings
on collision outcomes is much more pronounced for crossings
due toĤs1s2 than for those due toVkq(R). The latter dies off
much faster withR thanĤs1s2 , and is one or two orders of
magnitude weaker at the positions of the long-range avoided
crossings. The ratio of the coupling strengths is approximately
Ĥs1s2(R)/V20(R) = Ehα

2/C20
6 (R/a0)

−3. The avoided
crossings forB = 10 G occur at distances ranging from 159
to 342a0, corresponding to a ratiôHs1s2(R)/V20(R) between
10 and 100. It follows from an approximate Landau-Zener
model67 that the probability of ending in a different asymp-
totic level after a nonadiabatic transition is proportional to the
square of the coupling between the diabats if the coupling is
relatively small.
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Fig. 7 State-to-state inelastic cross sections (s-wave contribution
only) for fields of 10 G (upper panel) and 100 G (lower panel).

The interplay between the spin-spin dipolar term and the
intermolecular potential terms is also manifested in the state-
to-state cross sections. Fig. 7 shows state-to-state crosssec-
tions (s-wave contributions only) forB = 10 G and 100 G.
At B = 10 G, in the region where thêHs1s2 term dominates
(below 1 mK), the most important transitions are to states with
mj or ms1 quantum numbers reduced by 1, which are those
coupled to the incident channel|ms1 = 3/2〉|mj = 3/2, e〉
by Ĥs1s2 , while for collision energies above 1 mK the dom-
inant inelastic channels become|ms1 = 3/2〉|mj = 1/2, e〉
and|ms1 = 3/2〉|mj = −1/2, e〉, which are those coupled by
Vkq(R). At B = 100 G, only channels coupled byVkq(R) are
important.

Thes-wave cross sections atB = 10 G exhibit two distinct
resonant structures: a strong feature near 15 mK and a weaker
one around 41 mK. Both are Feshbach resonances caused by
coupling to closed channels arising from thef component of
theΛ doublet of OH. The coupling arises almost exclusively
from theV10(R) term in the intermolecular potential, which
couples states of different monomer parity. The Feshbach res-
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Fig. 8 The lowest adiabatic potential energy curves forMtot = 3
andLmax = 2 correlating with thresholds with the state of the N
atom unchanged (|ms1 = 3/2〉), atB = 10 G. Two solid horizontal
lines indicates the position of the bound states responsible for the
two sharp Feshbach resonances in thes andd-wave contribution to
the inelastic cross sections.

onance near 15 mK can be attributed to a bound state on thep-
wave adiabat correlating with the|ms1 = 3/2〉|mj = 1/2, f〉
threshold, as shown in Fig. 8. This resonance moves to smaller
energies with increasing field, because the energy difference
between the|mj = 3/2, e〉 and |mj = 1/2, f〉 states (red
and dotted blue lines in Fig. 2, respectively) decreases as the
field increases. For sufficiently large field (B > 1200 G),
this resonance will disappear as the|mj = 1/2, f〉 level drops
below |mj = 3/2, e〉. The second Feshbach resonance near
41 mK can be attributed to a bound state on thep-wave adi-
abat correlating with the|ms1 = 3/2〉|mj = 3/2, f〉 thresh-
old. The position of this resonance is almost unaffected by
the field strength since the energy difference between the two
spin-stretched states,|mj = 3/2, e〉 and |mj = 3/2, f〉, is
independent of magnetic field.

The fact that these are Feshbach (rather than shape) res-
onances is confirmed by several observations. First, thed-
wave contributions to the inelastic cross sections show reso-
nant structures at exactly the same energies as thes-wave con-
tribution. Secondly, the positions and shapes of the Feshbach
resonances can be reproduced using even the smallest possi-
ble basis set that allows inelastic transitions, withj ≤ 3/2,
L ≤ 2, and potential termsVkq(R), k ≤ 2. Thirdly, the pres-
ence of theV10(R) term, which does not couple the incident
and outgoing channels directly, is crucial for the existence of
the resonances. It is worth noting that no such structure dueto
Feshbach resonances would be present for collisions involving
the initial state|ms1 = 3/2〉|mj = 3/2, f〉, with OH in the
upper component of itsΛ doublet, since no low-lying closed
channels are present in that case. However, molecules in the

10 | 1–13



0.1

1

10

100

1000

10−5 10−4 10−3 10−2 10−1 100

R
at

io
 σ

el
as

/σ
in

el

Collision energy / K

B=10 G

B=100 G

B=500 G

B=1000 G
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f state are likely to undergo fast relaxation to thee state in
collisions driven directly byV10(R).

Fig. 9 shows the ratio of the elastic to total inelastic cross
sections as a function of collision energy. The ratio is not
favourable for sympathetic cooling of OH by collision with
ultracold N atoms, except at fields below 10 G and collision
energies below 1 mK. The cross sections presented here may
be compared to those for N(4S)+NH(3Σ−) by Żuchowski and
Hutson44. The ratio of the elastic to inelastic cross sections
is at least an order of magnitude lower for N+OH than for
N+NH. Two main reasons for this can be identified. First,
the spin-stretched component of the rotational ground state of
NH (3Σ−, n = 0) is not directly coupled by the potential
anisotropy to any other accessible Zeeman level, whereas such
a coupling does exist for the ground state of OH(2Π, j = 3/2)
(or any other molecule withj ≥ 1). Secondly, there are low-
lying states arising from thef component of theΛ doublet
in the OH radical that create many Feshbach resonances and
increase the inelasticity. Both effects are particularly strong
for collision energies above 10 mK, where the contributions
from p andd incoming waves to the inelastic cross sections
are dominant. For all field strengths, the ratio of elastic to
inelastic cross sections at collision energies above 1 mK is
more than 10 times larger for N+NH than for N+OH.

4.3 Potential dependence

The results of scattering calculations at ultralow collision en-
ergies are in general very sensitive to the details of interaction
potentials. To estimate the accuracy of the calculated poten-
tial energy surfaces for N+OH, we have carried out additional
electronic structure calculations for the geometry correspond-
ing to the global minimum of the potentials at the linear N–OH

geometry. In the aug-cc-pV5Z basis set, the global minimum
has a well depth of 120.9 cm−1, while in the aug-cc-pV6Z ba-
sis set this shifts to 121.8 cm−1. Based on these two results,
we can estimate the complete basis set limit of the CCSD(T)
method to be 122.9 cm−1, using the extrapolation formula for
correlation energy as given in Ref.68. This corresponds to an
error estimate of 1.7% for our full potential surfaces usingthe
aug-cc-pV5Z basis set. To estimate the error in the correla-
tion energy obtained from the CCSD(T) method, we have per-
formed full configuration-interaction (FCI) calculationswith
eight electrons correlated in the cc-pVDZ basis set. The rela-
tive contribution of the FCI correction to the CCSD(T) result
should only be weakly dependent on the basis set used, so even
in the small cc-pVDZ basis set we should obtain a reliable es-
timate of the FCI valence-valence correlation correction.The
FCI correction to the CCSD(T) result accounts for approxi-
mately 1.5% of the interaction energy at the global minimum.
We can thus estimate the uncertainty of our potential energy
surfaces to be 4% at worst.
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Fig. 10Cross sections obtained with the interaction potential scaled
by a constant factor,V (R) → λ · V (R), for magnetic fieldB = 10
G and collision energies of 10µK (upper panel) and 1 mK (lower
panel).
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To assess the sensitivity of the scattering results to the un-
certainty in the interaction potential, we have carried outcal-
culations with the interaction potential scaled by a constant
factorλ in the range0.96 ≤ λ ≤ 1.04, corresponding to the
estimated error bounds in the calculated potential energy sur-
faces. The results atB = 10 G are shown in Fig. 10 for
collision energies of 1 mK and 10µK. The weak dependence
of the cross sections on the potential scaling is disturbed by
the presence of sharp resonances, which occur when bound
states of the N-OH complex cross the incoming threshold (or
more precisely the collision energy) as a function ofλ. Two of
the peaks in the inelastic cross sections, nearλ = 1.010 and
λ = 1.026, can be attributed to the Feshbach resonances in
the s andd partial-wave contributions discussed above. The
two additional peaks atλ = 0.97 and λ = 1.017, which
broaden substantially with collision energy, are due to shape
resonances in thep-wave partial cross section. If the true po-
tential happens to bring one of these resonances close to zero
energy, it may change the ratio of elastic to inelastic crosssec-
tions quite dramatically. However, Fig. 10 shows that the reso-
nances occur in quite narrow ranges ofλ, so that there is a low
probability that the true potential will be such that the ratio of
elastic to inelastic cross sections is seriously affected by reso-
nances for collision energies below 1 mK. It may also be noted
that the numerical results obtained with the unscaled potential
(λ = 1) are fairly typical of the range expected for N+OH
on plausible interaction potentials, in the sense that the low-
energy elastic cross section (around 1000Å2) is close to the
valueσ = 4πā2 = 712 Å2 obtained from the mean scattering
lengthā defined by Gribakin and Flambaum69.

5 Summary and conclusions

We have presented a theoretical study of the relaxation pro-
cesses in collisions between an atom in an open-shell S state
and a molecule in a2Π state, in a magnetic field, using the
example of N(4S)+OH(2Π). The transitions between dif-
ferent Zeeman levels in such collisions are driven by two
mechanisms: coupling through the spin-spin dipolar term
and through the anisotropy of the interaction potential. Both
mechanisms are present in first order. The spin-spin dipolar
term dominates when both the collision energy and the mag-
netic field are low, while the anisotropy of the interaction po-
tential dominates at higher energies or fields. In the latter
regime, the spin-spin dipolar term can be neglected. Neglect-
ing the dipolar interaction is equivalent to treating the atom as
closed-shell, which dramatically reduces the cost of the scat-
tering calculations.

An important general point is that spin relaxation collisions
can be driven directly by the anisotropy of the interaction po-
tential for any molecule that has rotational angular momen-
tum. Since the anisotropies of atom-molecule and molecule-

molecule interaction potentials are typically quite large, this
will often provide an important trap loss mechanism for such
states. For molecules in2Π states, this is true even for the
molecular ground state.

For the case of N+OH, the spin-spin dipolar term dominates
at collision energies below about 1 mK and magnetic fields of
10 G or less. In this regime, the ratio of elastic to inelastic
cross sections is greater than 100 and thus favourable for sym-
pathetic cooling. However, if either the collision energy or the
magnetic field is significantly above this, inelastic processes
due to the potential anisotropy dominate and the ratio of elas-
tic to inelastic cross sections falls. This suggests that sympa-
thetic cooling of OH by collisions with N atoms is unlikely to
be successful except at collision energies below 1 mK.

Acknowledgments

The authors are grateful to the Polish Ministry of Science and
Higher Education (project N N204 215539) and to the UK
Engineering and Physical Sciences Research Council for fi-
nancial support. The collaboration was supported by the Eu-
roQUAM Programme of the European Science Foundation.

References

1 M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman andE. A.
Cornell,Science, 1995,269, 198–201.

2 E. R. Hudson, H. J. Lewandowski, B. C. Sawyer and J. Ye,Phys. Rev.
Lett., 2006,96, 143004.

3 M. R. Tarbutt, J. J. Hudson, B. E. Sauer and E. A. Hinds,Faraday Dis-
cuss., 2009,142, 37–56.

4 S. Tojo, M. Kitagawa, K. Enomoto, Y. Kato, Y. Takasu, M. Kumakura and
Y. Takahashi,Phys. Rev. Lett., 2006,96, 153201.

5 K. Enomoto, M. Kitagawa, S. Tojo and Y. Takahashi,Phys. Rev. Lett.,
2008,100, 123001.

6 P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. J. Schoelkopf and
P. Zoller,Phys. Rev. Lett., 2006,97, 033003.

7 D. DeMille, Phys. Rev. Lett., 2002,88, 067901.
8 R. V. Krems,Phys. Chem. Chem. Phys., 2008,10, 4079–4092.
9 J. M. Hutson,Science, 2010,327, 788–789.

10 S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis,
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