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Modularity maximization is the most popular technique for the detection of community structure
in graphs. The resolution limit of the method is supposedly solvable with the introduction of
modified versions of the measure, with tunable resolution parameters. We show that multiresolution
modularity is not suitable to detect communities in networks. This is due to two opposite coexisting
effects: the tendency to merge small subgraphs, which dominates when the resolution is low; the
tendency to split large subgraphs, which dominates when the resolution is high. In benchmark
networks with heterogeneous distributions of cluster sizes, the simultaneous elimination of both
biases is not possible and multiresolution modularity is not capable to recover the planted community
structure, not even when it is pronounced and easily detectable by other methods, for any value of
the resolution parameter.
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I. INTRODUCTION

The detection and analysis of communities in
graphs [1, 2] is one of the most popular topics within the
modern science of networks [3–10]. In the latest years
an increasing number of large networked datasets includ-
ing millions or even billions of vertices and edges have
become available, and a traditional analysis based on lo-
cal network properties and their global statistics (e.g.,
degree distributions and the like) provides but a partial
description of the system and its function. Communities
(also called clusters or modules) are subgraphs including
vertices with similar features or function, and their iden-
tification may disclose not only such similarities among
vertices, which are often hidden, but also how the system
is internally organized and works.

Vertices belonging to the same community have a con-
siderably higher probability of being linked to each other
than vertices belonging to different clusters. Therefore
a community appears as a region of the network with a
high density of internal links, much higher than the aver-
age link density of the graph. The most popular method
to detect communities in graphs consists in the optimiza-
tion of a quality function, the modularity introduced by
Newman and Girvan [11, 12]. Modularity quantifies the
deviation of the internal link density of the clusters from
the density one expects to find within the same groups
of vertices in random graphs with the same expected de-
gree sequence of the network at study. The idea is that
vertices linked to each other in a random way should not
form communities, as high values of the link density can-
not be attained. Consequently, high values of modularity
are supposed to indicate “suspiciously” high values of in-
ternal link densities for the subgraphs, which are then
distinct from groups of randomly linked vertices and can
be deemed as true communities. While this is actually
not true [13, 14], the optimization of the measure has
been widely used in the past years.

Recently it has been pointed out that modularity opti-

mization is plagued by serious biases. In particular, it has
a resolution limit [15], that leads to the systematic merger
of small clusters in larger modules, even when the clus-
ters are well defined and loosely connected to each other.
A more recent analysis of the resolution limit has led to
the conclusion that the modularity landscape is “glassy”,
and includes an exponentially growing (with system size)
number of local maxima whose values are very close to
the absolute maximum of the measure, even if the corre-
sponding partitions may be topologically quite different
from each other [16]. This implies on the one hand that
it is not too difficult to find a good approximation of the
modularity maximum for many techniques, on the other
hand that the maximum is essentially unreachable. A
recent comparative analysis of community finding algo-
rithms has indeed revealed that modularity fails to prop-
erly identify clusters on benchmark graphs with built-in
community structure, and that other methods are much
more effective [17].

Nevertheless, modularity optimization is still being
used. The main reason is the claim that the resolution
limit can be removed by adopting suitable multiresolu-
tion versions of modularity, like those introduced by Re-
ichardt and Bornholdt [18] and by Arenas, Fernández
and Gómez [19]. In these variations, a tunable resolu-
tion parameter enables one to set the size of the clusters
to arbitrary values, from very large to very small. How-
ever, real networks are characterized by the coexistence
of clusters of very different sizes, whose distributions are
quite well described by power laws [20–22]. Therefore
there is no characteristic cluster size and tuning a reso-
lution parameter may not help. Indeed, in this paper we
show that multiresolution modularity is not capable to
identify the right partition of the network in realistic set-
tings and that therefore it does not solve the problems of
modularity maximization in practical applications. The
problem is that modularity maximization is not only in-
clined to merge small clusters, but also to break large
clusters, and it seems basically impossible to avoid both
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biases simultaneously.
The paper is structured as follows. In Section II we

present a general analysis of some relevant mathematical
properties of multiresolution modularity, with respect to
the merger or split of subgraphs, leading to the iden-
tification of a range of values of the resolution param-
eter where modularity should be safe from the above-
mentioned problems. In Section III we test the result on
realistic benchmark graphs with community structure,
showing that it is often impossible to find a value of the
resolution parameter that delivers the planted partition.
Conclusions are reported in Section IV.

II. THE PROBLEM OF MERGING AND
SPLITTING CLUSTERS

A. Multiresolution modularity

We do not expect that our results are significantly af-
fected by the specific modularity formula one chooses.
Here we adopt the generalized modularity Qλ proposed
by Reichardt and Bornholdt [18], which reads

Qλ =
∑
S

[
kSin
2M
− λ
(kStot

2M

)2]
, (1)

where the sum runs over all the clusters, 2M is the to-
tal degree of the network, kStot is the sum of the degrees
of vertices in module S and kSin is twice the number of
internal edges in module S. So, we have kStot = kSin only
if the module is disconnected from the rest of the graph.
Here λ works like a resolution parameter: high values of
λ lead to smaller modules because the term (kStot/2M)2

in the sum of Eq. (1) becomes more important and its
minimization, induced by the maximization of Qλ, favors
smaller clusters.

We ask when it is proficuous for modular-
ity to keep two subgraphs together or separate.
For this, we need to compute the difference
∆Qλ = Qλ(partition with merged subgraphs) −
Qλ(partition with separated subgraphs): if ∆Qλ > 0
modularity would be higher for the partition where the
subgraphs are merged, otherwise the split would be
more convenient.

We indicate with A and B the two subgraphs (see

Fig. 1). Let QA−Bλ and QAUBλ denote the value of mod-
ularity when A and B are kept separated and merged,
respectively.

QA−Bλ =
[ ∑
S 6=A,B

. . .
]

+
kAin
2M

+
kBin
2M

− λ
(kAin + l + v

2M

)2
− λ
(kBin + r + v

2M

)2
, (2)

where v denotes the number of links joining A with B, l
the number of links joining A with the rest of the network

l

r

v

A B

Figure 1: (Color online) Schematic representation of the prob-
lem of merging versus splitting subgraphs. Here A and B are
two subgraphs, the problem is whether one yields a higher
value for modularity by merging them in a single subgraph or
by keeping them separated. The parameters involved in the
decision are the number of internal links in A and B (mul-
tiplied by 2), kAin and kBin, the number of links v between A
and B (here v = 3), the number of links l between A and
vertices belonging neither to A nor to B (here l = 4), and its
equivalent r for B (here r = 2).

(excluding B) and r is the equivalent of l for B. For
QAUBλ we have:

QAUBλ =
[ ∑
S 6=A,B

. . .
]

+
kAin
2M

+
kBin
2M

+
2v

2M

− λ
(kAin + l + v + kBin + r + v

2M

)2
. (3)

The difference ∆Qλ = QAUBλ −QA−Bλ reads

∆Qλ =
2v

2M
− λk

A
ink

B
in + lkBin + rkAin + lr

2M2

− λ
v(kAin + kBin + l + r) + v2

2M2
. (4)

To simplify a little Eq. (4) we can define ∆ = 2M∆Qλ

∆ = 2v − λk
A
ink

B
in + lkBin + rkAin + lr

M

− λ
v(kAin + kBin + l + r) + v2

M
. (5)

Modularity is higher for A and B merged if and only if
∆ > 0.

Eq. (5) is rather general but we are just interested
in testing modularity for some special cases, for which
calculations are easy. Here in particular, we will consider
the case l = r = η and kAin = kBin = ξ. Eq. (5) becomes

∆ = 2v − λ (ξ + v + η)2

M
. (6)
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B. Splitting clusters

Despite the different approaches to the problem of de-
tecting clusters in networks, there are some general ideas
which are shared by most scholars. One of them is that
a random graph has no communities, so it should not be
split by an algorithm in smaller pieces. Another shared
belief is that a complete graph (or clique), i.e. a graph
whose vertices are all connected to each other, is a perfect
community (due to the fact that the internal link density
reaches the highest possible value of 1). So, if cliques are
just loosely connected to each other, one would expect
that a good method should detect them as separate clus-
ters. We would like to find the mathematical conditions,
in particular the choice of the resolution parameter λ,
that satisfy both requisites. In this subsection we search
for the condition to avoid the splitting of random sub-
graphs, while the condition to avoid the merger of cliques
will be given in the next subsection.

Let us consider a random subgraph S with total degree
2MS , which is part of a larger network with total degree
2M . The goal is to check under which condition S is split
by optimizing modularity. Here for simplicity we consider
only bi-partitions. The expected optimal modularity Q2

for the bipartition of a random graph has been computed
by Reichardt and Bornholdt [23]

QRB = 0.78
〈
√
k〉S
〈k〉S

, (7)

where the brackets indicate expectation values over the
ensemble of random graphs with the same expected de-
gree sequence of the subgraph at study.

We now express Q2 in terms of the number of edges
v between the clusters of the bipartition with optimal
modularity. We obtain

2MSQ2 = 2MS − 2v − k2A + k2B
2MS

=
2kAkB
2MS

− 2v, (8)

where kA (kB) is the total degree of module A (B). Since
modularity is optimal when the two modules are of about
equal size, i.e. when kA ≈ kB ≈MS , we have:

2MSQ2 = MS − 2v, (9)

from which we can derive v,

v = MS

(1

2
−Q2

)
. (10)

For Q2 = 0 we would have v = MS/2, which is the
expected average number of links joining two modules
of equal size, arbitrarily chosen. Eq. (10) implies that
optimizing modularity decreases the number of expected
links between the modules, with respect to arbitrary bi-
partitions, while it increases the internal density of links
of the modules. One also sees that, for v to be positive,
Q2 ≤ 0.5. Actually, in the calculation of Reichardt and
Bornholdt, this holds only if 〈k〉 is big enough. To give

1 2 3 4 5
 λ

0.24

0.26

0.28

0.3

0.32

0.34

0.36

α s

SF, SA
SF, RB
ER, SA
ER, RB

1 2 3 4 5

0.24

0.26

0.28

0.3

0.32

0.34

0.36
average degree <k>=20 average degree <k>=10

Figure 2: (Color online) The plot shows αS measured on
Erdös-Rényi and scale free graphs. For each type of graph
we plot the analytical estimate of Reichardt and Bornholdt
(RB) and a numerical estimate obtained by optimizing mod-
ularity with simulated annealing (SA) [13]. The minimum
cut v = αS ×MS was measured by optimizing modularity for
different values of λ. To optimize modularity, we are look-
ing for small values of v and equal values of kA and kB , so
tuning λ just controls the importance of either requirement.
However, simulations show that the dependence on λ is quite
weak, validating our approximation kA ≈ kB .

an idea of the numbers that one could have, Q2 ≈ 0.17
when all vertices have degree k = 20, so v ≈ 0.33 ×MS
which is actually a not too bad approximation also for
other degree distributions (for all vertices having degree
k = 10, v ≈ 0.25×MS). Let us call αS this proportion-
ality factor between v and MS ,

v = αSMS and kAin = kBin = (1− αS)MS . (11)

From Eqs. (7), (10) and (11) we get

αS =
1

2
− 0.78

〈
√
k〉S
〈k〉S

. (12)

In Fig. 2 we compare the values of αS from Eq. (12)
with numerical estimates derived by putting in Eq. (10)
the maximum modularity Q2, derived with simulated an-
nealing. The calculation of Q2 is carried out for different
values of λ, but the results seem to be essentially inde-
pendent of λ. We consider both Erdös-Rényi (ER) and
scale-free (SF) graphs, with 1000 vertices and average
degree 〈k〉 = 20 (left panel) and 10 (right panel). The
SF graphs have degree exponent 2. As we can see from
Fig. 2, the analytical estimate of Eq. (12) yields a good
approximation of αS .

Let us now consider our splitting-merging problem,
considering A and B as candidates. We set η = 1, which
means that only two links come out of S (ideally one
from A, the other from B). In this case, we would like to
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have ∆ > 0, to avoid the split of the random subgraph
S. From Eq. (6) and Eqs. (11) we get (remember that
ξ = kAin = kBin):

2αSMS >
λ(MS + 1)2

M
. (13)

If MS � 1, this becomes

λ <
2αSM

MS
. (14)

Alternatively, we can incorporate the correction factor
[MS/(MS + 1)]2 ≈ 1 in αS , so that we call αS what is
actually αS [MS/(MS + 1)]2. If the subgraph is a clique,
αS ≈ 0.5, and modularity can even split a clique when

λ >∼
M

MS
. (15)

C. Merging clusters

Let us now consider two equal sized subgraphs con-
nected with one edge (v = 1 and η = 1) and let
kAin = kBin = ξC . Eq. (6) becomes:

∆ = 2− λ (ξC + 2)2

M
. (16)

In this case we want ∆ < 0 (we wish to keep the two
subgraphs separated), which implies

λ > λC =
2M

(ξC + 2)2
. (17)

If ξC is very small, λ has to be very big (for λC > 1 the
subgraphs cannot be resolved by standard modularity,
which corresponds to λ = 1, and we recover the resolution
limit of Ref. [15]). On the other hand if ξC is large, the
subgraphs will be resolved for a large range of λ-values.

If the subgraphs are two cliques of nC nodes each, for
instance, ξC = nC(nC − 1).

D. Condition on the ineliminability of the bias

We now put together conditions (14) and (17). We
have that

λ2 < λ < λ1, (18)

where

λ1 =
2αSM

MS
and λ2 =

2M

(ξC + 2)2
. (19)

Above λ1, modularity splits random subgraphs, below λ2
it puts together subgraphs even if they are connected by
just one link (even in the case in which they are cliques).

In the range between λ1 and λ2 it should be possible to
avoid both biases. However, if

λ1 < λ2, (20)

the biases cannot be both simultaneously lifted. Eq. (20)
holds when, by setting MS/αS = βS ,

(ξC + 2)2 < βS . (21)

Note that Eq. (21) does not depend on the size of the
whole network, either in terms of vertices or edges.

To be more concrete we consider a simple example. We
examine a network made out of two identical cliques of nC
vertices each and an internally random subgraph of nS
vertices and average degree 〈k〉S . The three clusters are
all connected to each other by one edge only (see Fig. 3).
In Fig. 4 we plot the relation between nC and nS coming

Figure 3: (Color online) Schematic network with two cliques
and a random subgraph, which are the natural communities
of the network.

from the equality λ1 = λ2 (obtained turning the inequal-
ity of Eq. (21) to an equality) for some values of 〈k〉S .
We used Eq. (12) to evaluate αS , with the approxima-

tion 〈
√
k〉S =

√
〈k〉S and the relations ξC = nC(nC − 1)

and MS = nS〈k〉S/2. For any given value of 〈k〉S , the in-
equality of Eq. (21) holds above the corresponding curve.

In Fig. 5 we plot λ1 and λ2 as a function of nS , for
nC = 13 and 〈k〉S = 100. For λ1 we show two curves, one
corresponding to the exact function, determined numer-
ically, while for the other we have used the theoretical
approximation of αS described above. The lines divide
the λ−nS plane in four areas, characterized by the pres-
ence or absence of the two biases. As we can see, the
portion of the plane in which both biases are simultane-
ously absent (gray area) is quite small.
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<k>s=100
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No λ solves this region

Figure 4: (Color online) This plot shows Eq. (21) as a func-
tion of nS and nS for the simple network with three clusters
of Fig. 3 Above the curves modularity cannot find the right
partition for any value of λ.

100 200 300 400
ns

0.5

1

1.5

2

 λ

 λ2
 λ1 (numerical)
 λ1  (approximated)

Fusing cliques

Fusing and splitting

Spitting S

Correct

Figure 5: (Color online) Threshold parameters λ1 and λ2 as
a function of nS (nC = 13, 〈k〉S = 100). The theoretical
line for λ1 is obtained by approximating αS as described in
the text. We see that λ1 > λ2, up to nS ≈ 230, so that
no λ can eliminate the biases for bigger values of nS . When
nS <≈ 230, the biases can be both eliminated only in the
shadowed area between the curves.

III. TESTS ON BENCHMARK GRAPHS

We want now to check the practical consequences of the
limits of multiresolution modularity. For that we take the
LFR benchmark, a model of graphs with built-in commu-
nity structure that we have recently introduced [24]. It is
an extension of the planted `-partition model introduced
by Condon and Karp [25]. Each graph has power law

distributions of degree and community size, which are
common features of real graphs with community struc-
ture. The degree of mixture between clusters is measured
by the mixing parameter µ, expressing the ratio between
the number of neighbors of a vertex outside its commu-
nity and the total number of neighbors. So µ = 0 in-
dicates that clusters are topologically disconnected from
each other, as each vertex has neighbors within its com-
munity only, while µ = 1 indicates that vertices are con-
nected only to vertices outside their group, so the groups
are not communities. Vertices are linked to each other at
random, compatibly with the constraints on the distribu-
tions of degree and community size and to the fact that
µ has to be (approximately) the same for all vertices. So
the clusters are essentially random subgraphs.

We want to specialize Eq. (5) to the LFR benchmark
graphs. Let us consider a cluster S with nb nodes, total
degree 2mb and internal degree 2MSb. We split it into
two equal-sized subgraphs such that the internal degree
of either part is the same: kAin = kBin. Moreover, for
simplicity we assume that the split is done such to keep
an equal number of edges between each of the subgraphs
and the rest of the network: l = r. We have MSb =
(1 − µ)mb, l = r = µmb, v = αSbMSb = αSb(1 − µ)mb.
The condition of non-splitting is:

2v > λ
(MSb + l)2

M
, (22)

which is:

2αSb(1− µ)mb > λ
m2
b

M
. (23)

So,

λ < λ1 where λ1 = 2αSb(1− µ)
M

mb
. (24)

We now search for the condition that leads to the merger
of two clusters of an LFR benchmark graph. For that we
should know how many edges they share, which depends
on the graph size and the number of clusters. We call
vxy the number of edges between modules x and y and
2mx and 2my their total degrees. Eq. (5) becomes

∆ = 2vxy − λ
4mxmy

M
. (25)

The condition to keep the clusters separated is λ > λ2,
where

λ2 =
Mvxy

2mxmy
. (26)

So, the two biases can be simultaneously removed iff λ1 >
λ2, which amounts to

2αSb(1− µ)
M

mb
>

Mvxy
2mxmy

. (27)
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The inequality of Eq. (27) has to hold for all triples of
clusters x, y and b, and this is usually unlikely to hap-
pen. In order to show that, we check whether multireso-
lution modularity is able to deliver the planted partition
of the LFR benchmark graphs for any value of the res-
olution parameter λ. The results are shown in Figs. 6
and 7. We plot the fraction of vertices which are incor-
rectly classified by modularity as a function of λ. We just
consider misclassifications caused by merging (circles) or
splitting (squares) the clusters of the planted partition
of the graphs. We see that, for small values of λ, mod-
ularity merges many clusters and essentially splits none,
whereas for large λ there is a dominance of splitting over
merging. The plots clearly show that, for every value
of λ, there will be some misclassification due to cluster
merging, splitting or both. The fraction of affected ver-
tices does not go below 10% but it can be considerably
larger. Fig. 6 refers to graphs with 10000 vertices, but the
situation does not improve if we go to larger graph sizes
(50000 vertices for the benchmark graphs used for Fig. 7).
We point out that we have chosen low values of the mix-
ing parameter µ (0.1 and 0.3), corresponding to clusters
which are well separated from each other. Modern algo-
rithms for community detection (like Infomap [26] and
OSLOM [27]) would easily find the correct partitions in
the graphs we have used for the tests of Figs. 6 and 7
(see Ref. [17]). One may object that our estimate of
the modularity maximum for each graph is just an ap-
proximation of the actual result, whose search is an NP-
complete problem [28]. However, we have checked in each
case that the partitions found have a higher modularity
than the planted partition of the benchmark graphs.

IV. CONCLUSIONS

We have shown that the introduction of a resolu-
tion parameter does not solve the problems of Newman-
Girvan modularity pointed out in the last years. This is
due to the existence of two concurrent biases: the ten-
dency to merge small clusters and to split large ones.
We have seen that it is usually very difficult, and often
impossible, to tune the resolution such to avoid both bi-
ases simultaneously. Tests on artificial benchmark graphs
with community structure indeed show that a consider-
able fraction of vertices is misclassified, for any value of
the resolution parameter, even when clusters are well sep-
arated and easily identified by other methods. Since, in
practical applications, one knows very little about the
community structure of the graphs at study, it is impos-
sible a priori to quantify the systematic error induced
by the use of modularity. Moreover, it is very hard to
think of a possible way to “heal” the partition delivered
by modularity, just because there are two sources of er-
rors. If modularity simply combined smaller clusters in
larger ones, as people have been thinking until now, one
could hope to recover the real partition by looking in-
side the clusters delivered by modularity. Instead, since
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Figure 6: (Color online) Test of multiresolution modularity
on LFR benchmark graphs. Each panel shows the fraction
of misclassified vertices due to artificial mergers (circles) and
splits (squares) of clusters, as a function of the resolution
parameter λ. The panels correspond to different choices of
the exponent τ2 of the cluster size distribution of the graph
and of the mixing parameter µ. Each point represents an
average over 100 benchmark graphs. All graphs have 10000
vertices. The other parameters are: average degree 〈k〉 = 20;
maximum degree kmax = 100; minimum cluster size cmin =
10; maximum cluster size cmax = 1000; degree exponent τ1 =
2.
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Figure 7: (Color online) Same as Fig. 6, but for LFR bench-
mark graphs of 50000 vertices. All other parameters are the
same as for the graphs used in Fig. 6.

clusters can be both split and merged, the real partition
must be recovered by splitting some clusters and merging
others, and it is very difficult to understand which clus-
ters contain smaller ones and which others are parts of
larger clusters instead. These reasons suffice to be skep-



7

tical about the results obtained by using modularity in
practice, with or without resolution parameters.
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[21] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, Nature

435, 814 (2005).
[22] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and

D. Parisi, Proc. Natl. Acad. Sci. USA 101, 2658 (2004).
[23] J. Reichardt and S. Bornholdt, Phys. Rev. E 76, 015102

(R) (2007).
[24] A. Lancichinetti, S. Fortunato, and F. Radicchi, Phys.

Rev. E 78, 046110 (2008).
[25] A. Condon and R. M. Karp, Random Struct. Algor. 18,

116 (2001).
[26] M. Rosvall and C. T. Bergstrom, Proc. Natl. Acad. Sci.

USA 105, 1118 (2008).
[27] A. Lancichinetti, F. Radicchi, J. J. Ramasco, and S. For-

tunato, PLoS ONE 6, e18961 (2011).
[28] U. Brandes, D. Delling, M. Gaertler, R. Görke,

M. Hoefer, Z. Nikolski, and D. Wagner (2006), URL
http://digbib.ubka.uni-karlsruhe.de/volltexte/

documents/3255.

http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/3255
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/3255

	I Introduction
	II The problem of merging and splitting clusters
	A Multiresolution modularity
	B Splitting clusters
	C Merging clusters
	D Condition on the ineliminability of the bias

	III Tests on benchmark graphs
	IV Conclusions
	 Acknowledgments
	 References

