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Comment on “Nuclear structure corrections in muonic deuterium”

A recent letter [1] investigated the effects of deuteron
polarizability in the µD atom. The importance of un-
derstanding this atom has been heightened because of
the possible light it could shed on the proton radius
puzzle [2]. Here we confirm, clarify, and emphasize the
significance of the result [1] that the effects of the third
Zemach moment are canceled by part of the deuteron
polarizability effects.
We focus on Coulomb effects and take the Hamilto-

nian to be the sum of muon kinetic energy Tµ , eval-
uated using the muon-deuteron reduced mass mr, the
muon-proton Coulomb interaction VC and the nuclear
Hamiltonian HN with H = Tµ + VC +HN . We set up
perturbation theory such that excitation of the deuteron
is not included in first order. Thus define the one-body
central interaction U(r)

U(r) ≡ 〈D|VC |D〉 =

∫

d3R|ΦD(R)|2
α

|r−R|
, (1)

where r(R) is the muon (proton) coordinate.
Friar [3] derived a well-organized perturbation theory

to treat the difference between the potential U and the
Coulomb interaction between point particles. This gives
the well-known term dependent on the proton mean-
square charge radius and also the effects of the third
Zemach moment:

δEZ = −
π

3
α2φ2(0)R3

2mr, (2)

R3
2 ≡

∫

d3Rd3R′|φD(~R)|2|φD(~R′)|2|~R− ~R′|3. (3)

We shall show that this is the term that is canceled by
part of the effects of the deuteron polarizability.
To do this, split the Hamiltonian into a dominant term

H0 and a perturbative term H1, with H0 ≡ Tµ+U(r)+
HN , H1 ≡ VC − U,H = H0 + H1. The lowest-energy
eigenstates of H0 are product states of Tµ+U, (φn) and
the deuteron. The label n represents both discrete and
continuum states. The ground state is defined to have
n = 0, with energy −E0 ≡ ǫ0 + ED > 0.
The energy shift δE caused by H1 is given by

δE = −〈φ0, D|H1
Λ

E0 +H0
H1|φ0, D〉 (4)

where Λ is the projection operator excludes the
ground state of H0. Furthermore, the matrix ele-
ments of H1 vanish unless the deuteron is excited:

〈φ0, D|H1|φn, D〉 = 0, so the deuteron can not appear
in the intermediate states.
To isolate the term that cancels δEZ , neglect the op-

erator U in the energy denominator of Eq. (4), and use
the plane wave representation for the intermediate muon
states to obtain

δE =

∫

∞

0

dE

∫

d3Rd3R′φ∗

D〈~R|E〉〈E|~R′〉PE(~R, ~R′)φD(~R′),(5)

where the states |E〉 are the neutron-proton continuum
states and [1]

PE(~R, ~R′) ≡ −α2φ2(0)

∫

d3q

(2π)3

(

4π

q2

)2 (

E + E0 +
q2

2mr

)−1

×[ei~q·(
~R−~R′) − 1− q2

(~R− ~R′)2

6
]. (6)

The integral over q can be done analytically, and
the result expanded in the small parameter β ≡
√

2m(E + E0)|~R− ~R′|. Keeping only the lowest-order

term which is independent of energy, we find [1]

P (~R, ~R′) ≈
−π

3
mr|~R− ~R′|3α2φ2(0). (7)

The influence of this energy independent (EI) term is
obtained by using Eq. (7) in Eq. (5). The evaluation
is simplified by using the completeness relation in the
form

∫

∞

0 dE|E〉〈E| = I − |D〉〈D|. Using I in Eq. (5)

forces ~R = ~R′ and the resulting term vanishes. Thus the
integral over continuum states is replaced by −|D〉〈D|
yielding

δEEI =
π

3
mrα

2φ2(0)R3
2 = −δEZ . (8)

The influence of the third Zemach moment is canceled
by a term arising from the deuteron polarizability! All
remaining terms in the deuteron polarizability lead to
reducing the energy of the 2S state by -1.60 meV [1].
Using the ANL V18 potential gives δEZ ≈

−0.37 meV, so the total deuteron polarizability correc-
tion in [1] is actually -1.23 meV. The difference between
-1.23 meV and -1.60 meV would have substantial impact
on µD experiments that seek to measure the deuteron
radius and possibly resolve the proton radius puzzle.
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