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Einstein’s ‘Zürich Notebook’ and his Journey
to General Relativity∗

Norbert Straumann
Institute for Theoretical Physics University of Zürich,
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Abstract
On the basis of his ‘Zürich Notebook’ I shall describe a particularly

fruitful phase in Einstein’s struggle on the way to general relativity. These
research notes are an extremely illuminating source for understanding Ein-
stein’s main physical arguments and conceptual difficulties that delayed his
discovery of general relativity by about three years. Together with the ‘Ent-
wurf’ theory in collaboration with Marcel Grossmann, thesenotes also show
that the final theory was missed late in 1912 within a hair’s breadth. The
Einstein-Grossmann theory, published almost exactly hundred years ago,
contains, however, virtually all essential elements of Einstein’s definite gravi-
tation theory.

1 Introduction

Einstein’s path to general relativity (GR) meandered steeply, encountered confus-
ing forks, and also included a big U-turn. Einstein’s own words to describe the
ambivalent feelings of the searching mind are unforgettable [3]:

In the light of knowledge attained, the happy achievement seems al-
most a matter of course, and any intelligent student can grasp it with-
out too much trouble. But the years of anxious searching in the dark,
with their intense longing, their alternation of confidenceand exhaus-
tion and the final emergence into light – only those who have experi-
enced it can understand it.

∗Invited talk at the conference “Cosmology since Einstein”,Hong Kong, 30 May – 1 June,
2011.
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This is not the place to give an account of the complex historythat led from
special relativity (SR) to general relativity in the courseof about eight years. What
I will do in this article is to discuss in some detail Einstein’s remarkable progress
beginning in August 1912, after his second return to Zürich, until Spring 1913.
Before I come to this, I should presumably indicate what he had already achieved
before this period.

In 1907, while writing a review article on SR, Einstein speculated – attempting
to understand the empirical equality of inertial and gravitational mass – on the
possibility of extending the principle of relativity to accelerated motion, and added
an important section on gravitation in his review [2].1 With this “basic idea”,
which he referred to asprinciple of equivalence, he went beyond the framework
of SR. Indeed, he did not seriously consider the possibilityof a special-relativistic
theory of gravity until presented with such a theory by Gunnar Nordström. Except
for his attempted rebuttals of Nordström’s theories, no notes appear to be extant
to document his own early attempts in this direction. But later recollections by
Einstein make it quite easy to more or less guess the essential steps (see [3]). His
(special formulation) of the equivalence principle – “the most fortunate thought
of my life” – became the guiding thread in his search for a relativistic theory of
gravitation.

Until 1911 Einstein worked apparently mainly on the quantumpuzzles and did
not publish anything about gravitation, but continued to think about the problem.
In [4] he writes: “Between 1909-1912 while I had to teach theoretical physics
at the Zürich and Prague Universities I pondered ceaselessly on the problem”.
When Einstein realized in 1911 that gravitational light deflection should be exper-
imentally observable [5], he took up the problem of gravitation again and began
to “work like a horse” in developing a coherent theory of the static gravitational
fields. Since he had found that the velocity of light depends on the gravitational
potential, he concluded that the speed of light plays the role of the gravitational
potential, and proposed a non-linear field equation, in which the gravitational en-
ergy density itself acts as a source of the gravitational potential. Therefore, the
field equation implied that the principle of equivalence is valid only for infinitely
small spatial regions. In the second of his Prague papers on “gravito-statics” [6]
he also showed how the equations of electrodynamics and thermodynamics are
modified in the presence of a static gravitational field. At this point he began to
investigate the dynamical gravitational field.

1References to papers that have appeared in theCollected Papers of Albert Einstein(CPAE)
[1] are always cited by volume and document of CPAE.
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2 Einstein’s Zürich Notebook

I come now to a detailed discussion of Einstein’s Zürich notebook [7]. It is really
fascinating to study these research notes, because one can see Einstein at work,
and theoretical physics at its best: A delicate interplay between physical reason-
ing, based on an intuitive estimate of the most relevant empirical facts, and –
equally important – mathematical structural aspects and requirements.

Soon after he returned to Zürich in August 1912, Einstein encountered (appar-
ent) tension between certain physical requirements and a satisfactory mathemati-
cal formulation, based on the work of Riemann, Christoffel,Ricci, and Levi-Civita
on differential covariants. We shall see that Einstein, in close collaboration with
the mathematician Marcel Grossmann, already late in 1912 came very close to
his final theory, but physical and conceptual arguments convinced him for a long
time that – with “heavy heart” – he had to abandon the general covariance of the
gravitational field equations. In a letter to Lorentz [8] he called this the “ugly dark
spot” of the theory. With this decision, based on erroneous judgement, Einstein
lost almost three years until physics and mathematics came into harmony in his
beautiful general theory of relativity.

Historians of science have, of course, studied the Zürich Notebook extensively
(see especially [9], [10]). What I will try to do is to presentthe main steps of Ein-
stein’s research during his time at the ETH in a way that is hopefully appealing to
active physicists with only a peripheral interest in the history of their field. In my
exposition I will always use modern notation and assume a working knowledge of
GR.

2.1 Starting point in August 1912

When Einstein arrived in Zürich in early August, he was convinced that a metric
field of spacetime, generalizing the Minkowski metric to a pseudo-Riemannian
dynamical metric, was the right relativistic generalization of Newton’s potential.
The main question was to find field equations for this field. Buthow to achieve
this was in the dark and he looked for mathematical help. Fortunately, Marcel
Grossmann, his old friend since his student time, was now also professor at the
ETH and Einstein succeeded in gaining him as a collaborator in his search to the
equations. In a 1955 reminiscence, shortly before his death, Einstein wrote [4]:

I was made aware of these [works by Ricci and Levi-Civita] by my
friend Grossmann in Zürich, when I put the problem to investigate
generally covariant tensors, whose components depend onlyon the
derivatives of the coefficients of the quadratic fundamental invariant.
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He at once caught fire, although as a mathematician he had a some-
what sceptical stance towards physics. (...) He went through the lit-
erature and soon discovered that the indicated mathematical problem
had already been solved, in particular by Riemann, Ricci andLevi-
Civita. This entire development was connected to the Gaussian the-
ory of curved surfaces, in which for the first time systematicuse was
made of generalized coordinates.

Louis Kollros, another student friend of Einstein, who was also mathematics
professor at the ETH during this time, remembered also in 1955 [11]:

[Einstein] spoke to Grossmann about his troubles and said one day:
“Grossmann, you must help me, otherwise I’ll go crazy ! ”.

Already on the first page of the Zürich Notebook Einstein derives the transfor-
mation law for the coefficientsgµν of the metric under general (smooth) coordinate
transformations. On the same page he also writes down the non-linear field equa-
tion he had obtained in Prague for static fields, assuming that the spatial metric is
flat. (This assumption will later play a crucial, but unfortunate role.) In the same
paper he had derived the equation of motion for a point particle from a variational
principle, which is now generalized in an natural manner to

δ

∫

ds = 0, ds2 = gµνdx
µdxν . (1)

2.2 Requirements to be satisfied by the future theory

The following mixture of physical and mathematical properties of a relativistic
theory of gravitation are among Einstein’s main guiding principles:

• The theory reduces to the Newtonian limit for weak fields and slowly moving
matter.

• Conservation laws for energy and momentum must hold.
• The equivalence principle must be embodied.
•The theory respects a generalized principle of relativity to accelerating frames,

taking into account that gravitation and inertia are described by one and the same
field gµν . Einstein expressed this by the requirement of general covariance of the
basic equations (to become a much debated subject).
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2.3 Energy-momentum conservation for dust

Early in the Zürich Notebook Einstein writes the geodesic equation of motion for
a point particle in the form

d

dτ

(

gµν
dxν

dτ

)

− 1

2
∂µgαβ

dxα

dτ

dxβ

dτ
= 0. (2)

Considering an incoherent dust distribution as an ensembleof particles, he guesses
that the energy-momentum conservation law of special relativity, ∂νT µν = fµ,
with the energy-stress tensorT µν = ρ0u

µuν , (ρ0 = rest mass matter density,uµ =
four-velocity field) and an external force densityfµ, should be replaced by

1√−g∂ν(
√
−ggµλT λν)− 1

2
∂µgαβT

αβ = 0 (3)

(g := det(gµν)). The details of Einstein’s considerations are described in his Part
I, Sect. 4 of the “Entwurf” paper by Einstein and Grossmann [12]. We know, of
course, that this is just an explicit form of the equation∇νTµ

ν = 0, and this is
also stated by Grossmann in his Part II of [12]. In his notes Einstein checks the
general invariance of (3). (Don’t forget, Einstein was at this point still a beginner
in the use of the absolute differential calculus.) He asks whether the left hand side
of the equation, generated from a symmetric contravariant tensor field, is always
a vector field. (I am simplifying things a bit.) If so, this would have to be the case
for the tensor fieldgµν . With a simple calculation he shows that for this example
he gets zero (metric condition); this is at least a consistency test.

What Einstein presents is not a derivation, but a natural guess.2 We would
now add that (3) implies that the integral curves of the four-velocity fielduµ are
geodesics for incoherent (pressureless) dust.

3 In search of the gravitational field equations

Soon, Einstein begins to look for candidate field equations.The pages before 27
of the Zürich Notebook show that he was not yet acquainted with the absolute
calculus of Ricci and Levi-Civita. On p. 26 he considers for the case−g = 1 the
equation

gαβ∂α∂βg
µν = κT µν , (4)

2A modern author might translate Einstein’s reasoning usingkinetic theory. If the distribution
function satisfies the collisionless Boltzmann equation, Einstein’s formula (3) follows. This is, for
instance, shown in Chap. 7 of [13]. The simple formT µν = ρ0u

µuν requires, however, additional
assumptions:T µν is given by a second moment, while the right hand side is a product of first
moments. For a different extensive discussion of Einstein’s guess, see [14], especially Appendices
B and C.
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and substitutes the left hand side forT µν in (3), but that produces third derivatives
and leads to nowhere.

3.1 Einstein studies the Ricci tensor as a candidate

On p. 27, referring to Grossmann, Einstein writes down the expression for the
fully covariant Riemann curvature tensorRαβγδ. Next, he forms by contraction
the Ricci tensorRµν . The resulting terms involving second derivatives consist,
besidegαβ∂α∂βgµν , of three additional terms. Einstein writes below their sum:
“should vanish” [“sollte verschwinden”]. The reason is that he was looking for
field equations of the following general form:

Γµν [g] = κT µν , (5)

with

Γµν [g] = ∂α(g
αβ∂βg

µν) + terms that vanish in linear approximation. (6)

On the next page he considers the curvature scalarR, and writes it out explicitly
in terms of the metric. This calculation goes on for several pages. The final
expression forR assumes that the coordinate system is unimodular (−g = 1).
Then Einstein starts again in writing outRµν explicitly in terms ofgµν (inserting
the expressions for the Christoffel symbols), and runs for the non-linear terms into
a mess, commented as “too complicated” [“zu umständlich”]. On p. 37 he begins
with a new attempt, but simplifies this time the result forRµν in coordinates that
satisfy theharmonic condition

�xα = 0, � :=
1√−g∂µ(

√
−ggµν∂ν) (7)

or Γα = 0, where

Γα := gµνΓα
µν = −∂µgµα − 1

2
gαβgµν∂βgµν . (8)

Einstein notes that with this coordinate choice the only term with second deriva-
tives is now−(1/2)gαβ∂α∂βgµν , and therefore the result is of the desired form (5,
6): In harmonic coordinates3:

(h)Rµν = −1

2
gαβ∂α∂βgµν +Hµν(g, ∂g), (9)

3In general coordinates the Ricci tensor is given by

Rµν = (h)Rµν +
1

2
(gαµ∂νΓ

α + gαν∂µΓ
α).
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whereHµν(g, ∂g) is a rational expression ofgµν and∂αgµν (with denominator
g) that vanishes in the linear approximation. This is, of course, a familiar result
for us which plays an important role in GR (for instance, in studying the Cauchy
problem).

This seems to look good, and Einstein begins to analyse the linear weak field
approximation of the field equations4

Rµν = κTµν . (10)

(We know, of course, that he has to run into problems, becauseof the contracted
Bianchi identity.)

3.2 The weak field approximation

The linearized harmonic coordinate condition becomes forhµν := gµν − ηµν (ηµν :
Minkowski metric)

∂µ(h
µα − 1

2
ηµαh) = 0 (11)

(h := hµµ, indices are now raised and lowered by means of the Minkowskimet-
ric). This is nowadays usually called theHilbert condition, but Einstein imposed
it already in 1912. The field equations become

�hµν = −2κTµν . (12)

Einstein takes forTµν his earlier expression for dust.
But now he runs into aserious problem:
From∂νTµν = 0 in the weak field limit, it follows that�(∂νhµν) = 0, hence

the harmonic coordinate condition requires�(∂νh) = 0, and therefore the trace
of the the field equations implies�h = −2κT = const., T := T µ

µ. For dust this
requires thatT = −ρ0 = const. This is, of course, unacceptable. One would not
even be able to describe a star, with a smooth distribution ofmatter localized in a
finite region of space.

It may be helpful, to point out the non-linear version of thisdifficulty. Equa-
tion (10) together with∇νTµν = 0 imply, using the contracted Bianchi identity
∇νRµν = 1

2
∂µR, thatR = const., thus the trace of (10) leads again toT = const.

4Never before had Einstein used in his work such advanced and complex mathematics. This
is expressed in a letter to Arnold Sommerfeld on 29 October 1912 (CPAE, Vol. 5, Doc. 421):
“But one thing is certain: never before in my life have I toiled any where near as much, and I have
gained enormous respect for mathematics, whose more subtleparts I considered until now, in my
ignorance, as pure luxury. Compared with this problem, the original theory of relativity is child’s
play.”
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Einstein discovered this, without knowing the Bianchi identity, in the fall of 1915,
when he reconsidered the candidate field equations (10).

Remark. From his studies of static gravity in Prague, Einstein was convinced
that in the (weak) static limit the metric must be of the form(gµν) = diag(g00(x), 1, 1, 1),
thusspatially flat. But then�h = const. would imply that△g00 = const. If the
functiong00 is bounded onR3 (in the weak field approximation the absolute value
of this function should be close to 1), theng00(x) would have to be a constant.5

(Use the fact that a bounded harmonic function onR
3 is constant.)

3.3 Einstein’s modified linearized field equations

Now, something very interesting happens. Einstein avoids the first problem by
modifying the field equations (12) to

�(hµν −
1

2
ηµνh) = −2κTµν . (13)

Then the harmonic coordinate condition (11) is compatible with ∂νT µν = 0. Re-
markably, (13) is the linearized equation of the final theory(in harmonic coordi-
nates). One wonders why Einstein did not try at this point theanalogous substitu-
tionRµν −→ Rµν− 1

2
gµνR orTµν −→ Tµν− 1

2
gµνT in the full non-linear equation

(10). Before we discuss the probable reason for this, we go onwith his research
notes.

3.3.1 Energy-momentum conservation for weak fields

In linearized approximation (3) becomes

∂νTµ
ν − 1

2
∂µhαβT

αβ = 0. (14)

Einstein replaces in the second termT αβ by (−1/2κ) times the left hand side
of the modified field equations (13). The resulting expression is proportional to

5A non-linear version of this remark may be of some interest. If the metric is assumed to be
static with flat spatial sections, then we obtain in coordinates adapted to the static Killing field for
the curvature scalar

R = − 2

ϕ
△ϕ,

with g00 =: −ϕ2 (see [15], Sect. 2.1). SinceR is constant, we obtain the equation△ϕ = Λϕ,
where the constantΛ is equal to−κT/2. For ‘normal’ matterΛ is non-negative. IfΛ > 0 (T 6= 0)
we conclude thatϕ = 0. Sinceϕ must be everywhere positive, it follows that a boundedϕ has
to be a constant, hence only the Minkowski metric remains. (In the non-linear case unbounded
harmonic functions are, a priori, allowed.)
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the left hand side of the next equation. This is rewritten as atotal divergence by
performing several partial integrations:

�(hµν −
1

2
ηµνh)h

µν
,σ = −4κtσ

λ
,λ, (15)

where

tσ
λ = − 1

4κ

[

hµν
,λhµν ,σ −

1

2
δλσhµν,ρh

µν,ρ − 1

2
(h,λh,σ −

1

2
δλσh,ρh

,ρ)
]

. (16)

With this identity Einstein obtains theconservation law

∂ν(Tµ
ν + tµ

ν) = 0. (17)

Remember that this holds only in harmonic coordinates. (We would now add
that tµν is not gauge invariant, i.e., not invariant under the substitution hµν −→
hµν + ξµ,ν + ξν,µ.)

An analogous procedure to establish energy-momentum conservation is also
adopted in the “Entwurf” theory (see Sect. 4).

3.3.2 The problem with the Newtonian limit

The problem with the Newtonian limit was, it appears, one of the main reasons
why Einstein abandoned the general covariance of the field equations. Apparently,
(13) did not reduce to the correct limit. That it leads to the Poisson equation for
g00(x) is fine, but because of the harmonic coordinate condition themetric can
not be spatially flat. (The almost Newtonian approximation of (11) and (13)
is derived in textbooks on GR; see, e.g., [15], Sect. 4.2.) Einstein found this
unacceptable. He was convinced, I recall, that for (weak) static gravitational fields
the metric must be of the form(gµν) = diag(g00(x), 1, 1, 1), as he already noted
on p. 1 of his research notes. I wonder why he did not remember his cautious
remark in one of his Prague papers [16] on static gravitational fields, in which –
while assuming spatial flatness – he warned that thismay very well turn out to
be wrong, and says that actually it does not hold on a rotating disk. Since a non-
flatness would not affect the geodesic equation in the Newtonian limit, there is
actually, as we all know, no problem. But Einstein realized this only three years
later6. Well(!): “If wise men did not err, fools should despair” (Wolfgang Goethe).

6In his calculation of the perihelion motion (on the basis of the vacuum equationsRµν = 0) it
became clear to him that spatial flatness did not hold even forweak static fields.
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4 The Einstein-Grossmann field equations

Einstein’s difficulties, discussed previously, were amongthe reasons that he aban-
doned general covariance for the field equations. Another argument had to do with
energy-momentum conservation. Generalizing the argumentof Sect. 3.3.1 to the
full theory, i.e., replacingT αβ in the second term of the conservation law (3) for
matter should lead to a conservation law for matter plus gravity of the form

∂ν [
√
−g(Tµν + tµ

ν)] = 0. (18)

Now, Einstein thought at the time that the gravitational part tµν in a covariant
theory should also be a tensor under general coordinate transformations.7 This
is, however, impossible, since then (18) could not hold in all coordinate systems.
(We know that Einstein obtained equation (18) also for the final theory, buttµν is
then Einstein’spseudo-tensor, as an expression of the equivalence principle. This
caused, as is well-known, lots of discussions over decades.Energy-momentum
conservation is really a delicate subject in GR, and has onlya restricted meaning
for isolated systems.)

Later, by August 1913, Einstein came up with yet another general argument,
related to causality (‘hole’ argument). I shall discuss this in Sect. 7.

Having said this, I indicate now how Einstein arrived at the field equations of
the ‘Entwurf’ theory [12]. The starting point is again energy-momentum conser-
vation, which we repeat

1√−g∂ν(
√
−ggµλT λν)− 1

2
∂µgαβT

αβ = 0.

The field equations are assumed to be of the form (5), (6), but now the covariance
group is a priori not known. We only assume that it contains the general linear
group. Therefore, covariance arguments do not much constrain the functional
Γ[g]. Einstein hoped, of course, that some larger covariance group would emerge,
which contains at least the non-linear transformations to uniformly accelerated
frames.

Einstein makes an ansatz equivalent to (6):

Γµν [g] =
1√−g∂α(

√
−ggαβ∂βgµν) +Hµν(g, ∂g), (19)

7This is my interpretation of a statement by Einstein in a lecture given to the Annual Meeting of
the Swiss Naturforschende Gesellschaft on September 1913 (CPAE, Vol. 4, Doc. 16), in which he
says in connection of equation (18) that the quantitiesTµ

ν andtµν should have the same invariant-
theoretical character. A similar statement is contained ina letter to Lorentz from August 16, 1913
(CPAE, Vol. 5, Doc. 470) and later in Sect. 6 of [17].
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because the first term would lead in linearized approximation to�hµν . The prob-
lem, discussed in Sect. 3.2, disappears if the coordinate condition ∂νhµν = 0 is
imposed. (Since the Ricci tensor is abandoned, the harmoniccoordinate condition
is no more needed.)

Einstein replaces, as before, in the second term of the energy-momentum
conservation lawT αβ by Γαβ[g], and tries to determineHµν(g, ∂g) such that
∂µgαβΓ

αβ becomes a total divergence. He finds such an object by applying several
partial integrations for the contribution of the first term in (19). These manipula-
tions are worked out on two pages of the research notes (pp. 51-52; see [7], pp.
262-263). The details are also presented by Grossmann in [12], Sect. 4.3. Ein-
stein gives the resulting identity in equation (12) of his part, and then writes down
the corresponding “Entwurf” field equations and conservation laws. One of two
equivalent forms given in the paper reads

Γµν [g] =
1√−g∂α(

√
−ggαβ∂βgµν)− gαβgσρ∂αg

µσ∂βg
νρ − κtµν , (20)

with

− 2κtµν = gαµgβν∂αgσρ∂βg
σρ − 1

2
gµνgαβ∂αgσρ∂βg

σρ. (21)

The conservation law (18) holds with this expression fortµν .8

Contrary to what Einstein and Grossmann claim in their jointpaper, their pro-
cedure of constructing the field equations doesnot lead to a unique result.

Einstein showed explicitly only later in 1913 in his famous Vienna lecture
[17] that the Newtonian limit in his sense (with a flat spatialmetric) is indeed
recovered.

In collaboration with his lifelong friend Michele Besso, Einstein studied the
perihelion motion of Mercury on the basis of the “Entwurf” theory. The result
was 5/12 of what Einstein found later (1915) for GR (CPAE, Vol. 4, Doc. 14).

8In GR − 1
2∂µgαβG

αβ = 1√
−g

∂ν(
√−gκtµ

ν), wheretµν is Einstein’s pseudo-tensor. The
resulting conservation law (18) is compatible with Einstein’s field equations, because the following
identity holds:∂ν [

√−g(Gµ
ν + κtµ

ν)] = 0. This is actually equivalent to the contracted Bianchi
identity ∇νGµ

ν = 0, which Einstein did not yet know at the time when he arrived athis final
field equations. In passing we recall that Einstein’s pseudo-tensor is not symmetric. A useful
symmetric pseudo-tensor was introduced by Landau and Lifshitz (see, e,g. [15], Sect. 2.7). The
use of pseudo-tensors has often be criticized, but at least mathematically these correspond to well-
defined global geometrical objects on the frame bundle.
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5 Further remarks on the two Einstein-Grossmann
papers

5.1 Interaction of matter with (external) gravitational fie lds

In Sect. 6 of [12] Einstein discusses the influence of (external) gravitational fields
on matter. Beside the examples treated already earlier (geodesic equation of mo-
tion for point particles, energy-momentum balance of material systems), he gener-
alizes Maxwell’s equations to the generally covariant equation we all know. This
part has survived in GR. The procedure is not yet formalized to the “∂ −→ ∇”
rule, as an expression of a local version of the equivalence principle.

5.2 Is a scalar theory of gravity possible?

In the final Sect. 7 of [12], entitled as “Can the gravitational field be reduced to
a scalar?”, Einstein presents an ingenious Gedankenexperiment, which allegedly
demonstrates that a Poincaré-invariant scalar theory of gravity, with a coupling
of the scalar field to the trace of the energy-momentum tensorof matter, violates
energy conservation. This can hardly be the case, because energy in such a theory
has to be conserved, thanks to Noether’s theorem. This general argument was
not available to Einstein, since Noether’s seminal paper appeared in 1918. For
a careful critical analysis of Einstein’s repeated reasoning against scalar gravity
theories, proposed in particular by Nordström, I refer to [18]. Since Einstein’s
scalar theory, in collaboration with Fokker, will later be discussed, I leave it with
that.

5.3 Variational principle and covariance group for the “Ent -
wurf” equations

In a second paper by Einstein and Grossmann [19], the authorsinvestigate the
covariance properties of their field equations, and show that the covariance group
is larger than the linear group. As a tool they establish the following variational
principle for their field equations:

δ

∫

L[g]
√
−g d4x = κ

∫

Tµνδg
µν
√
−g d4x , (22)

with

L[g] = −1

2
gαβ∂αgµν∂βg

µν . (23)
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In later developments on the way to GR, variational principles were often used
by Einstein, but – before Hilbert – he did not consider the curvature scalar.9

6 The Einstein-Fokker theory

During the Winter semester of 1913-1914, Adriaan D. Fokker,a student of Lorentz,
visited Einstein in Zürich. The two collaborated on a non-linear generalization of
Nordström’s theory, and came up with a consistent theory ofgravity [20] that em-
bodies the equivalence principle (actually the strong version, see [21]). Although
it turned out that it is not viable empirically, the Einstein-Fokker theory is still
interesting, mainly for pedagogical reasons.

In a non-geometrical (flat-spacetime) formulation the Lagrangian is given by

L = −1

2
∂µϕ∂

µϕ+ Lmat

[

ψ; (1 + kϕ)2ηµν
]

(1 + kϕ)4; (24)

in particular, the flat metricηµν in Lmat is replaced by(1 + kϕ)2ηµν , k2 = κ/2.
One can replace the Minkowski metric by the “physical metric”:

gµν = (1 + kϕ)2ηµν . (25)

For example, only relative to this metric the Compton wave length is constant, i.e.,
not spacetime dependent.

Einstein and Fokker gave a geometrical formulation of the theory. This can be
summarized as follows:

(i) spacetime is conformally flat: Weyl tensor= 0;

(ii) field equation:R = 24πGT ;

(iii) test particles follow geodesics.

In adapted coordinates, withgµν = φ2ηµν , one finds

R = −6φ−3ηµν∂µ∂νφ, (26)

and the field equation becomes

ηµν∂µ∂νφ = −4πGφ3 T. (27)

9Einstein gave the correct action for GR, that includes the boundary terms, in his 1916 paper
“Hamiltonian Principle and the General Theory of Relativity” (CPAE, Vol. 6, Doc. 41). The
surface terms are nowadays attributed to Gibbons-Hawking-Perry-York, etc. .
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The Einstein-Fokker theory is generally covariant (as emphasized in the orig-
inal paper), however,not generallyinvariant. I use this opportunity to point out
the crucial difference of the two concepts. For a long time people (including Ein-
stein) were not fully aware of this, which caused lots of confusion and strange
controversies. (See, e.g., the preface of Fock’s book on GR.)

The invariancegroup of a theory is the subgroup of the covariance group
that leaves the absolute, non-dynamical elements of the theory invariant. (For
a definition of this concept, see [15], Sect. 2.5.) In the Einstein-Fokker theory
the conformal structure is anabsoluteelement: The object̃gµν = gµν/(−g)1/4
is an absolute tensor density, in that it is diffeomorphic (as a tensor density) to
ηµν . Therefore, the invariance group is theconformal group, which is a finite
dimensional Lie group. In GR, on the other hand, the metric isentirely dynamical,
and therefore the covariance group is, at the same time, alsothe invariance group.
In this sense, “general relativity” is an appropriate naming, never mind Fock and
others.

Since the scalar theory of Nordström and the generalization by Einstein and
Fokker predict no global light deflection10, Einstein urged in 1913 astronomers
to measure the light deflection during the solar eclipse in the coming year on
the Crimea. Moreover, both predict -1/6 the Einsteinian value for the perihelion
advance, in contrast to observation.

For an extensive historical account of scalar gravitational theories, I refer to
[23].

7 The ‘hole’ argument against general covariance

At the time when he finished the paper with Grossmann, Einstein wrote to Ehren-
fest on May 28, 1913: “The conviction to which I have slowly struggled through
is thatthere are no preferred coordinate systems of any kind. However, I have only
partially succeeded, even formally, in reaching this standpoint.” (CPAE, Vol. 5,
Doc. 441.) In a lecture given to the Annual Meeting of the Swiss Naturforschende
Gesellschaft in September 1913, Einstein stated: “It is possible to demonstrate by
a general argument that equations that completely determine the gravitational field
cannot be generally covariant with respect to arbitrary substitutions.” (CPAE, Vol.
4, Doc. 16.) He repeated this statement shortly afterwards in his Vienna lecture
[17] of September 23, 1913.

10Einstein’s equivalence principle implies that locally there is always light deflection, but as
the Einstein-Fokker theory shows, this does not imply bending of light rays from a distant source
traversing the gravitational field of a massive body and arriving at a distant observer. (For a detailed
discussion of how this comes about, see [22].)

14



The so-called “hole” (“Loch”) argument runs as follows (instead of coordi-
nate transformations, I use a more modern language): Imagine a finite regionD
of spacetime – the ‘hole’ – in which the stress-energy tensorvanishes. Assume
that a metric fieldg is a solution of generally covariant field equations. Apply
now a diffeomorphismϕ ong, producingϕ∗g (push-forward), and choose the dif-
feomorphism such that it leaves the spacetime region outsideD pointwise fixed.
Clearly,g andϕ∗g are different solutions of the field equations that agree outside
D. In other words, generally covariant field equations allow huge families of so-
lutions for one and the same matter distribution (outside the hole). At the time,
Einstein found this unacceptable, because this was in his opinion a dramatic fail-
ure of what he called the law of causality (now usually calleddeterminism). He
then thought that the energy-momentum tensor should (for appropriate boundary
or initial conditions) determine the metricuniquely.

It took a long time until Einstein understood that this non-uniqueness is an
expression of what we now callgauge invariance, analogous to the local invari-
ance of our gauge theories in elementary particle physics. On January 3, 1916
he wrote to Besso: “Everything in the hole argument was correct up to the final
conclusion”.

The role of diffeomorphism invariance of GR, especially forthe Cauchy prob-
lem, was first understood by Hilbert. Being here at a cosmology conference, I do
not have to explain that gauge invariance and gauge conditions play an everyday
role in our theoretical studies, for example in cosmological perturbation theory
(see, e.g., [13]).

8 Final remarks

I must break off my historical sketch at a point about two years before “the final
emergence into the light”. In an appendix I give a streamlined version of the argu-
ments that led Einstein to modify the field equations (10), which he reconsidered
in November 1915, by the famoustrace term.

When Einstein was finishing his work on GR under great stress and was sus-
pending all correspondence with colleagues, he still foundtime to communicate
with Michele Besso. On November 17, 1915 he mailed a postcardfrom Berlin,
that contains the great news:

I have worked with great success during these months.General co-
variant gravitational equations.Motions of the perihelion quantita-
tively explained. Role of gravitation in the structure of matter [im
Bau der Materie]. You will be amazed. I worked horribly strenuously
[schauderhaft angestrengt], [it is] strange that one can endure that.
(...) (CPAE, Vol. 8, Part A, Doc. 147).
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Besso passed this card on to Zangger: “I enclose the historical card of Einstein,
reporting the setting of the capstone of an epoch that began with Newton’s ‘ap-
ple’.”

In a particularly instructive detailed technical letter ofNovember 28, 1915 to
Arnold Sommerfeld, Einstein summarizes his final struggle.Here just two crucial
sentences from this important document [24]:

I realized ... that my previous gravitational equations were completely
untenable. (...) After all confidence thus had been lost in the results
and methods of the earlier theory, I saw clearly that only through a
connection with the general theory of covariants, i.e., with Riemann’s
covariant [tensor], could a satisfactory solution be found. (...)

The discovery of the general theory of relativity has often been justly praised
as one of the greatest intellectual achievements of a human being. At the ceremo-
nial presentation of Hubacher’s bust of A. Einstein in Zürich, W. Pauli said:

The general theory of relativity then completed and - in contrast to
the special theory - worked out by Einstein alone without simultane-
ous contributions by other researchers, will forever remain the classic
example of a theory of perfect beauty in its mathematical structure.

Let me also quote M. Born:

[The general theory of relativity] seemed and still seems tome at
present to be the greatest accomplishment of human thought about
nature; it is a most remarkable combination of philosophical depth,
physical intuition and mathematical ingenuity. I admire itas a work
of art.

A How Einstein found the trace term in his field
equations

In connection with the Einstein-Hilbert relation there have been lots of discussions
and controversies on the famous trace term in the final field equations of GR. It
may be of some interest if I present an abbreviated version ofEinstein’s reasoning
that is easy to grasp by a modern reader. In what follows, I will rewrite Einstein’s
arguments, presented in CPAE, Vol. 6, Doc. 30, without changing the content.
(Recall that he did not yet know the contracted Bianchi identity.)
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We begin with a well-known identity between the Einstein tensorGµ
ν and

Einstein’s pseudo-tensortµν in unimodular coordinates (always used in this Ap-
pendix):

Gµ
α + κ tµ

α =
1

2
Uµ

αβ
,β , (28)

where
Uµ

αβ = gµσH
σραβ

,ρ , Hσραβ = gσαgρβ − gσβgρα . (29)

(It is not complicated to derive this identity with the toolsdeveloped in Sect. 15
of the cited document.)

From this it follows that the vacuum equationRµν = 0 can be written as

1

2
Uµ

αβ
,β = κ tµ

α . (30)

This is equivalent to what Einstein does in a first step. The obvious identity
Uµ

αβ
,βα ≡ 0 implies thattµα,α = 0, whencetµα is interpreted by Einstein as

the energy-momentum complex (pseudo- tensor) of the gravitational field.
In the presence of matter, Einstein replacestµ

α by the sumtµα+Tµα, obtaining
the field equations

1

2
Uµ

αβ
,β = κ (tµ

α + Tµ
α) . (31)

These guarantee the conservation law(tµ
α + Tµ

α),α = 0. By the identity (28)
this form is equivalent toGµ

α = κTµ
α, with the correct trace term. We also note

that the identityUµ
αβ

,βα ≡ 0 is equivalent to the contracted Bianchi identity. To
see this, one must also use the relationκ tµ

ν
,ν = 1

2
gαβ,µGαβ (= 1

2
gαβ,µRαβ in

unimodular coordinates).
His successful explanation of Mercury’s perihelion precession had convinced

Einstein that his gravitational vacuum equations were definite. It is, therefore,
natural that he began his reasoning with a physical interpretation of this solid
basis.
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