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Abstract. In their study of fundamental groups of one-dimensional path-

connected compact metric spaces, Cannon and Conner have asked: Is there a

tree-like object that might be considered the topological Cayley graph? We
answer this question in the positive and provide a combinatorial description

of such an object.
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1. Introduction

Fundamental groups of one-dimensional Peano continua are notoriously difficult
to analyze [10, 11, 12, 1]. They are free if and only if the underlying space is
locally simply-connected [8, Theorem 2.2]. Yet, every finitely generated subgroup
of the fundamental group of a one-dimensional separable metric space is free [7,
Section 5] and the homotopy class of every loop contains an essentially unique
shortest representative (see [8, Lemma 3.1 and Theorem 3.1] or [5, Theorem 3.9]).
In light of these and related results, Cannon and Conner have asked whether a
general one-dimensional path-connected compact metric space X admits a tree-like
object that might be considered the “topological Cayley graph” of its fundamental
group π1(X,x) [5, Question 3.9.1]. In this article, we answer this question in the
positive and provide a combinatorial description of such an object.

The main feature of a classical Cayley graph (for a finitely generated group)
is that its vertex set bijectively corresponds to the elements of the group in such
a way that the various edge-paths between two fixed vertices describe all possible
representations of the difference of the corresponding group elements by words in the
generators. The word length distance agrees with the natural path length metric of
the Cayley graph and the group acts by graph automorphism on the Cayley graph;
it acts freely and transitively on the vertex set.

In the “tame” case, where the underlying space is a one-dimensional simplicial
complex, we have a free fundamental group whose Cayley graph can readily be
built from the universal covering space by collapsing the lifts of a maximal subtree
of the covered graph—making the vertex set of the Cayley graph the preimage of a
single base vertex. The fact that the Cayley graph is a simplicial tree in this case
is witness to the principle that the free group structure is fully captured by the
concatenation of words and their reduction via cancellation.
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l1

l2

l3

Figure 1. The Hawaiian Earring (left) is the one-dimensional
planar set H =

⋃
n∈N{(x, y) ∈ R2 | x2 + (y − 1/n)2 = (1/n)2}

The general situation is more delicate. Since X allows for the accumulation of
small essential loops, we are faced with the following obstacles: (1) The fundamental
group might be uncountable; (2) there might not be a universal covering space; and
(3) collapsing a contractible subset of X might drastically alter its fundamental
group. (For example, if we collapse an arc that connects the distinguished points of
two copies of the Hawaiian Earring, as depicted in Figure 1; see [11, Theorem 1.2].)

It is shown in [14, Theorem 4.10 and Example 4.14] that X admits a generalized

universal covering q : X̃ → X on which π1(X,x) acts as the group of covering trans-

formations, and that X̃ is an R-tree. (An R-tree is a uniquely arcwise connected
metric space in which every arc is an isometric embedding of a compact interval of
the real line). We choose this R-tree as the underlying space for our generalized
Cayley graph, keeping in mind two inevitable limitations: We must abandon the
idea of using a conventional generating set, because collapsing is not an option and
because we are dealing with “nearly free” groups that are not free on any generating
set. Furthermore, there is no R-tree metric on X̃ for which the action of π1(X,x)
could possibly be by isometry. (See also Remark 5.1.) From this point of view, the
following seems to be the best possible solution to the given problem.

We give a fully combinatorial description of the R-tree X̃ and its designated
subset q−1(x) = π1(X,x) by uniquely labeling all points with infinite sequences
of finite words, which combinatorially capture the structure of π1(X,x) by way of
term-wise concatenation and reduction. Here, we are limited to using sequences
of (reduced) words which specify (homotopy classes of) edge-paths through var-
ious approximating graphs for X, rather than the usual words whose individual
letters correspond to homotopy classes of entire loops. Arcs between two points of
q−1(x) = π1(X,x) naturally spell out word sequences that represent the difference
of the corresponding group elements. We recursively assign weights to the individ-
ual letters of the words of a word sequence, in such a way that we obtain a limiting
word length function which combinatorially describes the R-tree metric on X̃ as a
radial metric.

In particular, we provide a combinatorial description of the fundamental group
π1(X,x) of a general one-dimensional path-connected compact metric space X via a
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word calculus in which there are no relations, other than cancellation—underscoring
the nearly free character of the group.

There are many situations in which X is the limit of a preferred inverse sys-
tem of approximating graphs, making the set-up of this paper a rather natural
and systematic start of inquiry into its fundamental group. Such is the case for
one-dimensional CAT(0) boundaries [3, 6]. The Sierpiński carpet and the Menger
universal curve, for example, arise in this way as Gromov boundaries of hyperbolic
Coxeter groups [2, 16].

2. Informal Overview of Definitions and Results

Reference Diagrams. As a visual guide for the informal overview contained in
this section, the reader may wish to consult the diagrams of Remarks 6.11 and 6.21.

We express the space X as the limit of an inverse sequence of finite graphs Xn

and bonding maps fn which map each edge of a given graph homeomorphically
onto an edge of a subdivision of the previous graph. (See Figure 2 and Lemma 3.1
& Notation.) Edge-paths through these graphs will be recorded by words of visited
vertices. Observe that the process of cancelling an adjacent inversely directed edge-
pair in an edge-path generates the path homotopy classes for a given graph and that
each such homotopy class contains a unique reduced representative. (For example,
one edge-cancellation within the word ω1 = ABCB reduces it to ω′1 = AB.)

A B

C

D
E G

I
J

K
ML

O

P

HH

N

F

X1 X2

f1 f2

ω1 = ABCB
φ1 7→ ω2 = DEGHKLNPOMJI

φ2 7→· · ·
ω1 = ABCB/A

φ1 7→ ω2 = DEGHKLNPOMJIGF
φ2 7→· · ·

Figure 2. Examples of word sequences (ω1, ω2, ω3, . . .) ∈ W. The
smaller vertices on the left are the subdivision vertices of X1. Black
and gray vertices map to black or gray vertices, respectively. For
example, f1(D) = A, f1(H) = f1(I) = B, f1(N) = f1(O) = C.
The arrows in the (undirected) graph X2 indicate two possibilities
for a path ω2. In both cases, ω2 is a reduced path, while ω1 is not.

The topological bonding maps are then replaced by combinatorial word functions
φn, which naturally transform the (unreduced) words of one level into well-formed
(unreduced) words of the previous level. All ensuing combinatorial notions are
subsequently framed in terms of this combinatorial inverse limit of sets of words,
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denoted by W, whose elements we call word sequences. (See Definition 3.2.) The
convention of suppressing adjacent repetitions of letters within a given word ensures
that the words of a word sequence remain finite even if they oscillate increasingly
at finer approximation stages.

Word sequences will always start at a fixed base point. Naturally, when inves-
tigating the fundamental group, word sequences will also return to the base point.
(The set of returning word sequences will be denoted by Ω.) When they do not,
certain round-off information will have to be encoded in the ending of each word:
We will signify a combinatorial end of a path “between two vertices” with a slash
“/” between the last two letters of a word, as suggested in Figure 2. This naturally
leads to a certain degree of combinatorial redundancy in the word endings of word
sequences, similar to (but more varied than) the nonuniqueness of decimal repre-
sentations (such as 0.999 . . .

.
= 1.000 . . .), because we are approximating continuous

entities by discrete objects, some of which can be approximated from different sides.
Accordingly, the symbol “

.
=” will be used to indicate that two word sequences are

equal up to a combinatorially equivalent ending. We place a dot “ ˙ ” over an entire
set of word sequences when selecting canonical representatives with respect to this
equivalence relation. (Formal definitions of these concepts are given in Section 3.)

The elements of X̃ are homotopy classes of paths in X that emanate from the
base point x and the map q : X̃ → X consists of the standard endpoint projection.
When endowed with the correct topology, this generalized universal covering space
is characterized by the usual unique lifting criterion and π1(X,x) acts naturally

on X̃ as the group of covering transformations [14]. There is a natural injective

map from X̃ into the inverse limit X̂ of the simplicial trees which cover the finite
approximating graphs of X. Along with it comes a natural injective homomorphism
from the fundamental group π1(X,x) into the first Čech homotopy group π̌1(X,x),
which is the inverse limit of the free fundamental groups of these finite graphs. (See
Lemma 6.13 and Remark 6.14.)

This poses the challenge of combinatorially identifying the homomorphic image of
π1(X,x) in π̌1(X,x). Our solution to this problem is modeled on the work of [1] for
the Sierpiński gasket and proceeds as follows. An element of π̌1(X,x) has a natural
representation by a sequence (gn)n of unique canonically reduced words gn, each
of which represents an entire homotopy class of edge-paths. Such a sequence (gn)n
is not φn-coherent (and hence not a word sequence of W) but only φ′n-coherent,
where φ′n denotes φn followed by reduction. (Figure 2 shows examples of reduced
words ω2 which map to unreduced words ω1 under φ2.) We will denote the set of all
returning φ′n-coherent reduced sequences by G and use the symbol “ ′ ” throughout
when reducing words. (See Definition 4.2, Lemma 6.1 and Remark 4.5.) Then for
each element g ∈ π1(X,x) there is some sequence ϕ(g) = (gn)n ∈ G ∼= π̌1(X,x) of
reduced words representing the image of g in π̌1(X,x). (See Definitions 6.5 and 6.15,
and Lemma 6.16.) If we represent an arbitrary element of π̌1(X,x) by a sequence
(gn)n ∈ G and project progressively later words gk of this sequence onto fixed lower
levels n without reducing them, then this process might or might not stabilize to
an overall φn-coherent word sequence (ωn)n of W. If it stabilizes, at all levels, we
call (gn)n locally eventually constant and we place the symbol “ ←− ” over it to

denote the resulting stabilized word sequence:
←−−−
(gn)n = (ωn)n. (See Definition 4.6.)

Denoting by G ⊆ G ∼= π̌1(X,x) the set of all elements of G which stabilize in this
sense, it turns out that ϕ(π1(X,x)) = G = Ω′. (See Lemma 6.2 and Theorem 6.17.)
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The stabilized state of a reduced word sequence captures the ideal degree of
combinatorial reduction, leading to a combinatorial description of π1(X,x) in terms
of word sequences which generalizes the description given in [1] for the fundamental
group of the Sierpiński gasket:

Theorem A of Section 5 describes the fundamental group of X as the combina-

torially well-formed set of word sequences
←−
G along with the combinatorially well-

defined binary operation of term-wise concatenation of words, followed by reduction
and restabilization.

Similarly, every element of X̂ can be represented by a non-returning sequence of
reduced words. We will denote the set of all reduced φ′n-coherent sequences by R
and we will denote the subset of sequences of R that stabilize in the above sense
by R ⊆ R. We then combinatorially identify the image of X̃ in X̂ in terms of word

sequences by
←−−−
ϕ(X̃) =

←̇−
R. (See Theorem 6.20(b).)

In Theorem B we show that
←̇−
R is an R-tree whose metric is radially induced by

a word length function for word sequences. This word length function is based on
a recursive weighting scheme from [18], applied to the letters of words of adjacent
levels. (See Definitions 4.14 and 4.15; see Definition 3.4 for “DRC”.) In order
to correctly capture the topology of the R-tree, however, the word sequences need
to first undergo a combinatorial completion step which inserts limiting letters into
their words. We will use the symbol “ ” for completion. (See Definition 4.9 and
Figure 3.) Geometrically, the completed state of the word sequence can be gener-
ated by connecting the corresponding point of the R-tree with an arc to the base
point and reading off the resulting sequence of words in the finite approximating
graphs. (See Corollary 6.28 and Example 6.29.)

Theorem C states that arcs in the R-tree whose endpoints correspond to elements
of π1(X,x) naturally spell out word sequences which represent the (completed state
of the) difference of the group elements.

Theorem D combinatorially describes the action of the fundamental group on
what can now be regarded as its generalized Cayley graph. Finally, Theorem E
presents a combinatorial criterion (cf. Definition 4.16) for when the quotient under
this action is homeomorphic to the original one-dimensional space.

Remark. Any attempt to combinatorially describe the fundamental group of a space
which allows for the accumulation of small essential loops requires some concept
of infinite products that accounts for this effect. The combinatorial description of
the fundamental group of the Hawaiian Earring alone has been the subject of a
number of papers [4, 10, 19, 21], where essentially three different approaches have
emerged: (i) studying the inverse limit of free groups which contains the given
fundamental group as a subgroup; (ii) accommodating products of infinite linear
order type; or (iii) using infinite sequences of well-formed finite words (i.e., word
sequences) along with well-defined combinatorial multiplication rules. Roughly
speaking, infinite products arise as limiting objects from word sequences and, in
turn, word sequences can be obtained from infinite products via successively finer
approximations. While for the Hawaiian Earring the majority of authors seem to
prefer the infinite product approach, all advances into combinatorial descriptions
of fundamental groups of spaces with more than one accumulation point of small
essential loops use, in principle, word sequences [1, 9, 13, 22].
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3. General Setup: Word Sequences

Assumption. Let X be a one-dimensional path-connected compact metric space.

It is well-known that X can be expressed as the limit of an inverse sequence
of finite graphs [17, Theorem 1], i.e., of finite connected one-dimensional simplicial
complexes (without looping edges or multiple edges between the same two vertices).
Moreover, given any inverse sequence of finite graphs and continuous maps whose
limit is X, there is a systematic procedure for improving the representation:

Lemma 3.1 ([20]). There is an inverse sequence X1
f1←− X2

f2←− X3
f3←− · · · of

finite connected one-dimensional simplicial complexes Xn and continuous surjec-
tions fn : Xn+1 → Xn, along with subdivisions X∗n of Xn, such that the following
hold:

(a) X = lim
←−

(
X1

f1←− X2
f2←− X3

f3←− · · ·
)

.

(b) Every edge of Xn is evenly subdivided into the same number of edges of X∗n.
(This number, which is assumed to be greater than 1, depends on n.)

(c) fn : Xn+1 → X∗n maps every edge of Xn+1 linearly onto an edge of X∗n.

Notation. We will fix a description of X as given in Lemma 3.1. Throughout the
paper, elements of (and functions into) a limit of an inverse sequence will be denoted
as coherent sequences of points of (and functions into) the individual terms.

Proof. Lemma 3.1 follows from the proof of [20, Theorem 2], upon adding further
subdivision points in the inductive step [20, Theorem 1] to ensure that (b) holds. �

Definition 3.2 (Word sequences: Ω ⊆ W). Let Vn and En denote the vertex set
and the (undirected) edge set of Xn, respectively. We may assume that Vi ∩Vj = ∅
for all i 6= j. Let Pn denote the set of all non-stagnating words v1v2 · · · vk over the
alphabet Vn (i.e., vi 6= vi+1 for all i = 1, 2, · · · , k− 1) which describe edge-paths in
Xn. For convenience, we also include the empty word in Pn.

For each word v1v2 · · · vkvk+1 ∈ Pn, we also form a word v1v2 · · · vk/vk+1 in
which we symbolically separate the last letter. (We think of this new word as
an edge-path which passes vertex vk, but does not quite reach vertex vk+1.) We
will write v1v2 · · · vk/∗ when discussing issues pertaining to both types of words,
referring to v1, v2, . . . , vk as the proper letters. We define

P+
n = {v1v2 · · · vk/vk+1 | v1v2 · · · vkvk+1 ∈ Pn}

and let φn : Pn+1 ∪ P+
n+1 → Pn ∪ P+

n denote the natural projection function,
formally described in Definition 3.4 below.

Fix a base point x = (xn)n ∈ X such that xn ∈ Vn for all n. Let Wn be the set
of all words in Pn ∪P+

n that start with xn and let Ωn be the set of all words in Pn
that start and end with xn. We define the set W of word sequences by

W = lim
←−

(
W1

φ1←−W2
φ2←−W3

φ3←− · · ·
)

along with its subset

Ω = lim
←−

(
Ω1

φ1←− Ω2
φ2←− Ω3

φ3←− · · ·
)
.

Remark 3.3. In Section 5, we will represent the identity element of π1(X,x) by the
word sequence (ωn)n ∈ W with ωn = xn for all n. Accordingly, the word length
function of Definition 4.14 will assign a value of zero to this word sequence.
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Definition 3.4 (Delete-Replace-Compress: “DRC” and φn). For a given word
ωn+1 = v1v2 · · · vk ∈ Pn+1, we let DRCn(ωn+1) ∈ Pn be the word obtained from
ωn+1 by first deleting every letter v from ωn+1 for which fn(v) 6∈ Vn, next replacing
every remaining letter v by fn(v), and finally compressing any resulting maximal
stagnating subwords of the form uu · · ·u into one letter u.

We then define φn : Pn+1 ∪ P+
n+1 → Pn ∪ P+

n as follows:

(1) Suppose ωn+1 = v1v2 · · · vk ∈ Pn+1. If fn(vk) ∈ Vn or if DRCn(ωn+1)
is the empty word, then we define φn(ωn+1) = DRCn(ωn+1) ∈ Pn; oth-
erwise we consider j = max{i | 1 6 i 6 k − 1, fn(vi) ∈ Vn} and define
φn(ωn+1) = DRCn(ωn+1)/u ∈ P+

n , where {fn(vj), u} ∈ En is the edge
containing fn(vj+1).

(2) Suppose ωn+1 = v1 · · · vk/vk+1 ∈ P+
n+1. If DRCn(v1v2 · · · vk) is the empty

word, then we define φn(ωn+1) to be the empty word; otherwise we con-
sider j = max{i | 1 6 i 6 k, fn(vi) ∈ Vn} and define φn(ωn+1) =
DRCn(v1v2 · · · vk)/u, where {fn(vj), u} ∈ En contains fn(vj+1).

Remark 3.5. We always have φn(v1v2 · · · vk/∗) = DRCn(v1v2 · · · vk)/∗.
Remark 3.6. By definition, φn|Ωn+1

= DRCn.

Definition 3.7 (Terminating type). We categorize word sequences (ωn)n ∈ W into
two types.

(1) Terminating type: there is an N ∈ N such that ωn ∈ P+
n for all n < N and

ωn ∈ Pn for all n > N ;
(2) Non-terminating type: ωn ∈ P+

n for all n.

Remark 3.8. For a word sequence (ωn)n ∈ W of terminating type, φn maps the
last letter of ωn+1 to the last letter of ωn for all n > N .

Remark 3.9. Every (ωn)n ∈ Ω is of terminating type (with N = 1).

We now define a word sequence analog to “0.999 . . .
.
= 1.000 . . .”.

Definition 3.10 (Equivalence: (ξn)n
.
= (ωn)n. Terminating representatives: Ṡ ).

Let (ωn)n ∈ W be a word sequence of terminating type. We call a word se-
quence (ξn)n ∈ W of non-terminating type formally equivalent to (ωn)n and we
write (ξn)n

.
= (ωn)n, if there is an index N such that ωn = vn,1vn,2 · · · vn,mn

for all n > N , and either ξn = vn,1vn,2 · · · vn,mn−1/vn,mn for all n > N , or
ξn = vn,1vn,2 · · · vn,mn/vn,mn+1 for all n > N and some vn,mn+1. We denote
the induced equivalence relation on W also by the symbol

.
=. Given S ⊆ W, we

denote by Ṡ the set of word sequences obtained via replacing every element of S
by a formally equivalent element from W of terminating type, whenever possible.

Remark 3.11. Note that in Definition 3.10, we might not be able to choose N so
that ξn = ωn for all n < N . Indeed, the relationship between the words ξn and
ωn might be reversed for some n < N when compared to n > N . Specifically, we
may have ξn = vn,1vn,2 · · · vn,mn−1/vn,mn for all n while ωn = vn,1vn,2 · · · vn,mn
for all n > N and ωk = vk,1vk,2 · · · vk,mk−1 for one or more k < N . This will
happen when for some 1 6 i < mN − 1, each of the three words vN,i, vN,mN , and
vN,ivN,i+1 · · · vN,mN gets mapped to the letter vk,mk−1 by φk ◦ φk+1 ◦ · · · ◦ φN−1.

Remark 3.12. If a formal equivalence class of W contains more than one element,
then it contains exactly one word sequence of terminating type and possibly un-
countably many word sequences of non-terminating type.
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4. Combinatorial Notions and Definitions

The definitions of this section are solely in terms of the functions φn.

Definition 4.1 (Concatenation: ωnξn). For two words ωn = v1v2 · · · vk ∈ Ωn and
ξn = u1u2 · · ·us/∗ ∈ Wn we define ωnξn = v1v2 · · · vk−1u1u2 · · ·us/∗ ∈ Wn.

Definition 4.2 (Reduction: (ωn)′n,W ′ ⊆ R, Ω′ ⊆ G). The reduction ω′n ∈ Wn of a
given word ωn ∈ Wn is obtained by repeatedly replacing substrings of ωn of the form
“uvu” and “uv/u” by “u” and “u/v”, respectively, until this is no longer possible.
We will call ωn reduced if ω′n = ωn. Consider the set W ′n = {ω′n | ωn ∈ Wn} =
{ωn ∈ Wn | ωn is reduced} of all reduced words in Wn and let φ′n : W ′n+1 → W ′n
be the function given by φ′n(ω′n+1) = φn(ω′n+1)′. We define the set R by

R = lim
←−

(
W ′1

φ′1←−W ′2
φ′2←−W ′3

φ′3←− · · ·
)
.

We also define a subset G ⊆ R by considering the set Ω′n of all reduced words in Ωn,
i.e., Ω′n = {ω′n | ωn ∈ Ωn} ⊆ Pn, and setting

G = lim
←−

(
Ω′1

φ′1←− Ω′2
φ′2←− Ω′3

φ′3←− · · ·
)
.

Moreover, for a word sequence (ωn)n ∈ W, we define (ωn)′n = (ω′n)n, and for a
subset S ⊆ W, we define S ′ = {(ωn)′n | (ωn)n ∈ S}. Since φn(ωn+1)′ = φn(ω′n+1)′

for all (ωn)n ∈ W and all n, we have W ′ ⊆ R and Ω′ ⊆ G.

Remark 4.3. By Lemma 6.1 below, reduction is well-defined.

Remark 4.4. In general, R * W and G * Ω, because the sequences of R and
Ω are φ′n-coherent rather than φn-coherent. Moreover, W ′ $ R and Ω′ $ G, in
general. This is best illustrated by considering the sequence of reduced words that
describe the commutators l1l2l

−1
1 l−1

2 l1l3l
−1
1 l−1

3 · · · l1lnl
−1
1 l−1

n in the approximating
graphs of an appropriately chosen inverse sequence whose limit is the Hawaiian
Earring depicted in Figure 1. This sequence lies in G but neither in W nor in W ′.

Remark 4.5. Each Ω′n forms a free group under the operation ωn ∗ ξn = (ωnξn)′.
Every φ′n : Ω′n+1 → Ω′n is a homomorphism and the group G is naturally isomorphic

to the first Čech homotopy group π̌1(X,x). (See Lemma 6.16 below.)

Definition 4.6 (Stabilization:
←−−−
(rn)n, R ⊆ R, G ⊆ G). We will call a sequence

(rn)n ∈ R locally eventually constant if for every fixed level n > 1 the sequence
(φn ◦φn+1 ◦ · · · ◦φk−1(rk))k>n of (unreduced) words in Wn is eventually constant.1

We put

R = {(rn)n ∈ R | (rn)n is locally eventually constant},
G = {(gn)n ∈ G | (gn)n is locally eventually constant}.

For (rn)n ∈ R, let ωn = φn ◦φn+1 ◦· · ·◦φk−1(rk), for sufficiently large k, and define
←−−−
(rn)n = (ωn)n ∈ W. We call

←−−−
(rn)n the stabilization of (rn)n. Finally, we define

←−
R = {

←−−−
(rn)n | (rn)n ∈ R} ⊆ W,

←−
G = {

←−−−
(gn)n | (gn)n ∈ G} ⊆ Ω.

1We adapt the terminology “locally eventually constant” from [19].
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Remark 4.7. The (reduced) locally eventually constant sequences R ⊆ R naturally

correspond to the (unreduced) stabilized word sequences
←−
R ⊆ W because(←−−−

(rn)n

)′
= (rn)n,

which follows from the fact that φn◦φn+1◦· · ·◦φk−1(rk)′ = φ′n◦φ′n+1◦· · ·◦φ′k−1(rk).
That is, we have the following bijection:

R R? _oo

“←−”

((
bij. ←−

R
′

hh
� � // W

Remark 4.8. By Lemma 6.2 below, we have R =W ′ and G = Ω′.

Completion inserts limiting letters into the words of a word sequence:

Definition 4.9 (Completion: (ωn)n ). Given a word sequence (ωn)n ∈ W, we

define its completion (ωn)n ∈ W based on the following modification of DRC:
For k > n + 1 and any word v1v2 · · · vm ∈ Pk, we let drckn(v1v2 · · · vm) ∈ Pn be

the word obtained from v1v2 · · · vm ∈ Pk in three steps: first delete every letter v
from v1v2 · · · vm for which φn◦φn+1◦· · ·◦φk−1(v) is the empty word, unless there is
a (unique2) letter u with uv ∈ Pk such that φn◦φn+1◦· · ·◦φk−1(u) is not the empty
word; then replace every remaining letter v by the letter φn ◦ φn+1 ◦ · · · ◦ φk−1(v)
or the letter φn ◦ φn+1 ◦ · · · ◦ φk−1(u), respectively; finally compress the resulting
maximal stagnating subwords into one letter as before.

For each n, express ωn = vn,1vn,2 · · · vn,mn/∗. Now fix n. As k increases, the
words drckn(vk,1 · · · vk,mk) are eventually constant (see Lemma 6.3); say for k > K.
For k > K > n+ 1, let jk be the maximal index for which drckn does not delete the
letter vk,jk from the word vk,1 · · · vk,mk . If jk < mk for some k > K, then ωn =
vn,1vn,2 · · · vn,mn/vn,mn+1 for some vn,mn+1 and the word drckn(vk,1vk,2 · · · vk,mk)
ends either in the letter vn,mn+1 or in the letter vn,mn and, accordingly, we put
τn = drckn(vk,1vk,2 · · · vk,mk)/vn,mn or τn = drckn(vk,1vk,2 · · · vk,mk)/vn,mn+1. If
jk = mk for all k > K, then we define τn = drckn(vk,1vk,2 · · · vk,mk). Finally, we

define (ωn)n = (τn)n.

Remark 4.10. By Lemma 6.3, the completion of a word sequence is well-defined.
Moreover, if (ωn)n ∈ Ω then (ωn)n ∈ Ω.

Remark 4.11. While the process of completion inserts limiting letters into the words
of a word sequence, it might also drop one letter at the end of some of the words.
Based on the definition of drckn, some of the proper letters “u” in the words of a
word sequence might get replaced by strings of the form “uv1uv2u · · · vsu”, while the
ending of a word can change in one of the following three ways: (. . . u/v) 7→ (. . . uv),
(. . . u/v) 7→ (. . . uv/u), (. . . u/v) 7→ (. . . u). In particular, if (ωn)n is of terminating

type then so is (ωn)n, but not necessarily vice versa.

Remark 4.12. For (ωn)n ∈ W, in general, (ωn)n 6∈
←−
R (cf. Example 6.29).

Remark 4.13. In Lemma 6.4(a), we will show the following correspondence, which
improves upon Remark 4.7 for returning word sequences:

2Here we need k > n+ 1, rather than k > n, because X∗
n might only halve the edges of Xn.
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←−
G

′

bijections

��

←−
G

“ ”oo

G
“←−”

??

Definition 4.14 (Dynamic word length: ‖(ωn)n‖ ). For a fixed word sequence
(ωn)n ∈ W, we recursively assign weights to the letters of the words ωn as follows.

To the letters v1, v2, . . . , vs of the first word ω1 = v1v2 · · · vs/∗ we assign the
weights 1

2 ,
1
22 , · · · , 1

2s , respectively. (For words of the form v1v2 · · · vs/vs+1, we
never assign any weight to the letter vs+1.) Assuming that the letters v1, v2, . . . , vk
of the word ωn = v1v2 · · · vk/∗ have been assigned the weights a1, a2, · · · , ak, re-
spectively, we assign weights b1, b2, · · · , bm to the letters u1, u2, . . . , um of the word
ωn+1 = u1u2 · · ·um/∗ as follows. Since DRCn(u1u2 · · ·um) = v1v2 · · · vk, we may
cut the word ωn+1 into substrings in such a way that i1 is the maximal index
with DRCn(u1u2 · · ·ui1) = v1 and, inductively, it+1 is the maximal index with
DRCn(uit+1uit+2 · · ·uit+1) = vt+1, the last index being ik = m:

v1 v2 v3 · · · vk

u1

_
DRCn

OO

· · ·ui1
∣∣∣ ui1+1

_
DRCn

OO

· · ·ui2
∣∣∣ ui2+1

_
DRCn

OO

· · ·ui3
∣∣∣ · · · ∣∣∣ uik−1+1

_
DRCn

OO

· · ·um

We then define the weights b1, b2, · · · , bm by
a1

2
,
a1

22
,
a1

23
, · · · , a1

2i1

∣∣∣ a1

2i1
+
a2

2
,
a2

22
,
a2

23
, · · · , a2

2i2−i1

∣∣∣ a2

2i2−i1
+
a3

2
,
a3

22
,
a3

23
, · · · , a3

2i3−i2

∣∣∣ · · ·
· · ·
∣∣∣ ak−1

2ik−1−ik−2
+
ak
2
,
ak
22
, · · · , ak

2m−ik−1
.

(Notice the carryover after each subdivision.) While ai is the weight of the ith

letter of the nth word ωn = v1v2 · · · vk/∗ of the word sequence (ωn)n, we will abuse
notation and simply denote ai by |vi| whenever it is clear from context what we
mean. We define the length of the word ωn = v1v2 · · · vk/∗ as the sum of the weights
of its proper letters: |ωn| = |v1|+ |v2|+ · · ·+ |vk|. The lengths |ωn| decrease with
increasing n so that we may define the length of the entire word sequence (ωn)n by

‖(ωn)n‖ = lim
n→∞

|ωn|.

Next, we define to the concept of stable initial match as the maximal sub-word
sequence of two word sequences:

Definition 4.15 (Stable initial match: (ωn)n e (ξn)n ). For two word sequences
(ωn)n, (ξn)n ∈ W, we denote by ωk ∩ ξk the maximal matching consecutive initial
substring of letters of the two words ωk, ξk ∈ Wk, including any letters that might
come after the symbol “/”, where we separate the last two letters of ωk ∩ ξk by the
symbol “/” if they are so separated in the shorter of the two words ωk and ξk. For
n < k1 < k2, the word φn ◦ φn+1 ◦ · · · ◦ φk2−1(ωk2 ∩ ξk2) is an initial substring of
φn◦φn+1◦· · ·◦φk1−1(ωk1∩ξk1). Hence, with increasing k, φn◦φn+1◦· · ·◦φk−1(ωk∩ξk)
is eventually constant; say it eventually equals τn. We define the stable initial match
of (ωn)n and (ξn)n by (ωn)n e (ξn)n = (τn)n ∈ W.

Example. We have (v1v2/v3)∩(v1v2v3) = v1v2/v3, (v1v2/v3)∩(v1v2/v4) = (v1v2),
(v1v2) ∩ (v1v2/v3) = (v1v2), (v1v2/v3) ∩ (v1v2v3/v4) = (v1v2/v3). �
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While every letter of a given level potentially splits into multiple preimage letters
at subsequent levels, its multiplicity may be essentially bounded:

Definition 4.16 (Essential multiplicity). Fix v ∈ Vn. For each k > n consider the
set Vk(v) = {u ∈ Vk | φn ◦ φn+1 ◦ · · · ◦ φk−1(u) = v}. For u1, u2 ∈ Vk(v), we write

u1
v∼ u2 if there is a word ωk ∈ Pk whose first letter is u1 and whose last letter

is u2, such that the word φn ◦ φn+1 ◦ · · · ◦ φk−1(ωk) consists of the single letter v.

Let ck(v) denote the number of
v∼-equivalence classes in Vk(v). The numbers ck(v)

increase with k and we call lim
k→∞

ck(v) the essential multiplicity of v.

Example. In Figure 2 above, we have |V2(C)| = 4, N
C∼ O and c2(C) = 2. �

5. Statements of Results (Theorems A–E)

Theorem A. The word sequences of
←−
G form a group under the binary operation

given by (ωn)n ∗ (ξn)n =
←−−−−
(ωnξn)′, and the group

←−
G is isomorphic to π1(X,x).

Proof. This theorem will be proved as Theorem 6.17 below.

Theorem B. For word sequences (ωn)n, (ξn)n ∈
←−
R, define

ρ((ωn)n, (ξn)n) =
∥∥∥(ωn)n

∥∥∥+
∥∥∥(ξn)n

∥∥∥− 2
∥∥∥(ωn)n e (ξn)n

∥∥∥.
Then ρ is a pseudo metric on

←−
R with ρ((ωn)n, (ξn)n) = 0 ⇔ (ωn)n

.
= (ξn)n.

Moreover, the resulting metric space (
←̇−
R, ρ) is an R-tree.

Proof. This theorem will be proved as Corollary 6.41 below.

Theorem C. For (ωn)n, (ξn)n ∈
←−
G ∼= π1(X,x), the arc of the R-tree

←̇−
R from

(ωn)n to (ξn)n naturally spells out the word sequence (ωn)−1
n ∗ (ξn)n.

Proof. This theorem will be proved as Corollary 6.30 below.

Theorem D. The group
←−
G ∼= π1(X,x) acts freely and by homeomorphism on the

R-tree
←̇−
R via its natural action (ωn)n.(ξn)n =

←−−−−−
(ωnξn)′n.

Proof. This theorem will be proved as Corollary 6.23 below.

Theorem E. If the essential multiplicity of every letter is finite, which happens

precisely when X is locally path-connected, then
←̇−
R/
←−
G is homeomorphic to X.

Proof. This theorem will be proved as Theorem 6.42 below.

Remark 5.1. In general, the action of
←−
G on

←̇−
R is not by isometry. In fact, when X

is the Hawaiian Earring, then there is no R-tree metric for the topology of
←̇−
R that

would render the action of
←−
G as isometries [14, Example 4.15].

6. Proofs

Lemma 6.1. The reduction ω′n of a given word ωn ∈ Wn is well-defined.

Proof. If ωn ∈ Pn, then ω′n corresponds to the unique shortest representative for
the homotopy class of edge-paths in Xn which contains the edge-path tracing out
the word ωn. The same argument can be made for ωn = v1v2 · · · vk/u ∈ P+

n , if we
temporarily allow ourselves to once subdivide the edge {vk, u} ∈ En. �
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Lemma 6.2. We have Ω′ = G and W ′ = R.

Proof. First, let (ωn)n ∈ Ω be given. We wish to show that (ωn)′n ∈ G. Observe
that for every n 6 k, the word φn ◦ φn+1 ◦ · · · ◦ φk−1(ω′k), when regarded as a
finite sequence, is a subsequence of φn ◦ φn+1 ◦ · · · ◦ φk−1(ωk) = ωn. Moreover,
φn ◦ φn+1 ◦ · · · ◦ φk−1(ω′k) is a subsequence of φn ◦ φn+1 ◦ · · · ◦ φk−1 ◦ φk(ω′k+1),
which is in turn a subsequence of φn ◦ φn+1 ◦ · · · ◦ φk−1 ◦ φk ◦ φk+1(ω′k+2), etc., all
of which are subsequences of ωn by the above observation. Hence (ωn)′n is locally
eventually constant and we have (ωn)′n ∈ G.

Next, let (gn)n ∈ G be given. Put (ωn)n =
←−−−
(gn)n. Then for every n and

sufficiently large k, ω′n = φn ◦ φn+1 ◦ · · · ◦ φk−1(gk)′ = φ′n ◦ φn+1 ◦ · · · ◦ φk−1(gk) =
φ′n ◦ φ′n+1 ◦ · · · ◦ φ′k−1(gk) = gn. Hence, (ωn)′n = (gn)n so that (gn)n ∈ Ω′.

The argument for W ′ = R is exactly the same, once we generalize the notion of
subsequence to elements of P+

n in the obvious way: u1u2 · · ·uk/uk+1 is a subsequence
of v1v2 · · · vm/vm+1 if u1u2 · · ·uk is a subsequence of v1v2 · · · vm and {uk, uk+1} =
{vm, vm+1}. �

Lemma 6.3. For (ωn)n ∈ W, the completion (ωn)n is well-defined and (ωn)n ∈ W.

Proof. For every k > n+1, the first mn letters of the word ωn = vn,1vn,2 · · · vn,mn/∗
record those vertices of Xn that are traversed by the image under the function
fn ◦ fn+1 ◦ · · · ◦ fk−1 of the edge-path in Xk, which is represented by the first mk

letters of the word ωk = vk,1vk,2 · · · vk,mk/∗ (while ignoring repeats). The word
drckn(vk,1vk,2 · · · vk,mk) records, in addition, all vertices of Xn that were narrowly
missed by this image. (In the process, drckn may also restore some of the letters that
fell victim to compression due to repetition when vn,1vn,2 · · · vn,mn was formed by
DRC from ωk.) The larger the index k, the nearer the miss of the vertex. Therefore,
all potential “inserts” in the word ωn, which drckn might make for large k, are already
determined by the word ωn+2. By the same token, the potential “inserts” in ωn
are also determined by the word ωn+3. However, the potential inserts determined
by ωn+3 are a subset of the potential inserts determined by ωn+2. Continuing with
this logic, we see that drckn(vk,1vk,2 · · · vk,mk) is eventually constant, for sufficiently

large k. Moreover, DRCn ◦ drckn+1 = drckn so that (ωn)n ∈ W. �

The following technical lemma will be needed in the buildup of the diagrams of
Remarks 6.11 and 6.21. It states that completing a word sequence before reducing
and restabilizing it, results in a formally equivalent word sequence and that formally
equivalent word sequences have identical completions.

Lemma 6.4. Let (ωn)n, (ξn)n ∈ W.

(a) If (ωn)n is of terminating type or if (ωn)n is of non-terminating type, then(
(ωn)n

)′
= (ωn)′n.

(b) We always have

←−−−−−−(
(ωn)n

)′ .
=
←−−−
(ωn)′n.

(c) If (ωn)n
.
= (ξn)n, then (ωn)n = (ξn)n.

Proof. (a) If (ωn)n is of terminating type, then any letters that the completion pro-
cess might insert into the words ωn disappear upon reduction. (See Remark 4.11.)

If (ωn)n is of non-terminating type then so is (ωn)n and their words have the same
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ending pairs, with u/v switched to v/u by the completion process exactly when
reduction reverses this switch.

(b) By Part (a), we may assume that (ωn)n is of non-terminating type and that

(ωn)n is of terminating type. Then
←−−−
(ωn)′n is of non-terminating type and

←−−−−−−(
(ωn)n

)′
is of terminating type, with all of their words identical except for the endings, which
for the former is always of the form u/v where the latter will eventually feature
the (matching) letters uv or u, instead. Indeed, between these two alternatives, uv
versus u, it is eventually consistently one or the other, which can be seen as follows:

Write
←−−−
(ωn)′n = (ξn)n and

←−−−−−−(
(ωn)n

)′
= (τn)n, with τn = vn,1vn,2 · · · vn,mn for all n.

We claim that there is no index n such that alternative uv at level n is fol-
lowed by alternative u at level n + 1. For if ξn = vn,1vn,2 · · · vn,mn−1

/vn,mn and
ξn+1 = vn+1,1vn+1,2 · · · vn+1,mn+1

/vn+1,mn+1+1 for some n and some vn+1,mn+1+1,
then φn(ξn+1) = ξn, while φn(vn+1,mn+1

) = vn,mn by Remark 3.8. But this is not
consistent with Definition 3.4.

(c) We may assume, without loss of generality (cf. Remark 3.12), that (ωn)n
is of terminating type. Then ωn = vn,1vn,2 · · · vn,mn for all n > N and either
ξn = vn,1vn,2 · · · vn,mn−1/vn,mn for all n > N or ξn = vn,1vn,2 · · · vn,mn/vn,mn+1

for all n > N and some vn,mn+1. Either way, since φn(vn+1,mn+1
) = vn,mn for all

n > N , we have jk = mk at every sufficiently large level in Definition 4.9 for (ξn)n.
Therefore, the value of drckn in Definition 4.9 is the same for both sequences (ωn)n
and (ξn)n, so that (ωn)n = (ξn)n. �

Definition 6.5 (Words spelled by paths: αn 7→ ωn(αn) ). Given a continuous path
αn : [0, 1] → Xn with αn(0) = xn, we let ωn(αn) ∈ Wn denote the word “spelled”
by αn. Specifically, let

0 = s1 6 t1 < s2 6 t2 < · · · < sk 6 tk 6 1

be the unique subdivision of [0, 1] such that

αn(si) = αn(ti) ∈ Vn for all 1 6 i 6 k;
αn(u) ∩ Vn ⊆ {αn(si)} for all 1 6 i 6 k and all u ∈ [si, ti];

αn(u) 6∈ Vn for all u 6∈
⋃k
i=1[si, ti];

αn(ti) 6= αn(si+1) for all 1 6 i 6 k − 1.

Put vi = αn(si). If αn(1) = vk we define ωn(αn) = v1v2 · · · vk, otherwise we put
ωn(αn) = v1v2 · · · vk/u where αn(1) lies on the edge {vk, u} ∈ En.

Remark 6.6. The word ωn(αn) records the traversed vertices of the edge-path in
Xn obtained by straight-line homotopies of αn on the above subdivision intervals.

Remark 6.7. For two paths αn, βn : [0, 1]→ Xn with αn(0) = αn(1) = βn(0) = xn,
we have ωn(αn · βn) = ωn(αn)ωn(βn).

Word sequences generated by continuous paths in X are complete:

Lemma 6.8. For every continuous path α = (αn)n : ([0, 1], 0) → (X,x) we have

(ωn(αn))n ∈ W and (ωn(αn))n = (ωn(αn))n.

Proof. This follows directly from Definitions 6.5 and 4.9, and the continuity of α.
�
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Conversely, Proposition 6.10 states that every completed word sequence can be
realized by a continuous path in X. The proof is based on the following lemma.

Lemma 6.9. Given continuous functions βn : [0, 1] → Xn with the property that
βn and fn ◦ βn+1 are contiguous in Xn, the limits

αn = lim
k→∞

fn ◦ fn+1 ◦ · · · ◦ fk−1 ◦ βk : [0, 1]→ Xn

exist and combine to a continuous function α = (αn)n : [0, 1]→ X.

Proof. By Lemma 3.1, the sequence (fn ◦ fn+1 ◦ · · · ◦ fk−1 ◦ βk : [0, 1] → Xn)k is
uniformly Cauchy. �

Proposition 6.10. For every word sequence (ξn)n ∈ W or (ξn)n ∈ Ω, there is
a continuous path or loop, respectively, α = (αn)n : ([0, 1], 0) → (X,x) such that

(ωn(αn))n = (ξn)n.

Proof. We construct α in the obvious canonical way. First, we define a piecewise
linear continuous path β1 : [0, 1] → X1 based on the word ξ1 = v1v2 · · · vk/∗. Let
0 = s1 < t1 < s2 < t2 < · · · < sk < tk = 1 be the partition that subdivides
[0, 1] into 2k − 1 intervals of equal length and let β1 be the unique piecewise linear
function on this subdivision with β1(si) = β1(ti) = vi for all 1 6 i 6 k.

We then define a piecewise linear continuous path β2 : [0, 1]→ X2 as follows. Say,
ξ2 = u1u2 · · ·um/∗. Let i1 be the maximal index such that φ1(u1) = φ1(ui1) = v1

and φ1(u1u2 · · ·ui1) = v1. Subdividing the interval [s1, t1] into 2i1 − 1 subinter-
vals of equal length, we define β2 to be alternately constant and linear on these
subintervals, the constant values being the vertices u1, u2, . . . , ui1 . Next, let i2 be
the maximal index such that φ1(ui1+1ui1+2 · · ·ui2) is the empty word. Subdividing
[t1, s2] into 2(i2− i1)+1 subintervals of equal length, we define β2 to be alternately
linear and constant on these subintervals, the constant values being the vertices
ui1+1, ui1+2, . . . , ui2 . We process the remaining intervals [s2, t2], [t2, s3], . . . , [sk, tk]
analogously until β2 is fully defined.

Continuing in this fashion, we obtain a sequence (βn : [0, 1]→ Xn)n of continuous
functions such that βn and fn ◦βn+1 are contiguous. Let α : [0, 1]→ X be the limit
path provided by Lemma 6.9. The fact that α has the desired properties follows
from the proof of Lemma 6.3. �

Remark 6.11. By Lemma 6.8 and Proposition 6.10, (αn)n 7→ (ωn(αn))n defines a
surjection from the set of all continuous loops L(X,x) in X, based at x, onto the
set Ω of all completed word sequences in Ω. On one hand, the fundamental group
π1(X,x) is the image of L(X,x) under the function (αn)n 7→ [(αn)n] which forms
the homotopy classes. On the other hand, by Lemma 6.2 and Lemma 6.4(a), we
have a surjection from Ω onto the set G of locally eventually constant sequences
in G given by (ωn)n 7→ (ωn)′n. In order to circumvent a systematic discussion of
the combinatorial relationship between word sequences that represent homotopic
paths, we will shift our focus to the function ϕ : π1(X,x) → G ⊆ G given by
ϕ([(αn)n]) = (ωn(αn))′n, which makes the following diagram commute and which
will be shown to be a well-defined isomorphism in Lemma 6.16 and Theorem 6.17.
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L(X,x)

[ · ]
��

surjection

(αn)n 7→(ωn(αn))n
// Ω

′

��

←−
G? _oo

′

bijections

  

←−
G

“ ”oo � � // Ω ⊆ W

π1(X,x)
ϕ

isomorphism
// G G � � //

“←−”

>>

G ⊆ R

So, at the level of word sequences, we obtain the correspondence π1(X,x) ∼=
←−
G .

In Theorem 6.20 (and Remark 6.21), we will establish the more general correspon-

dence between the homotopy classes of paths in X which start at x, denoted by X̃,

and the elements of the set
←̇−
R ⊆ W. By Lemma 6.13, X̃ is a uniquely arcwise con-

nected space. In Corollary 6.28, we show that the radial arcs of X̃, when projected

into X, precisely spell out the completions of the elements in
←̇−
R. We now work out

the details.

Definition 6.12 (Lifts). Let X̃ denote the set of all homotopy classes [α] of contin-
uous paths α : ([0, 1], 0)→ (X,x) and let x̃ denote the class containing the constant

path. Endow X̃ with the topology generated by the basis comprised of all sets of the
form B([α], U) = {[β] | [β] = [α · γ], γ : [0, 1]→ U}. Since X is path-connected, we

have that X̃ is path-connected, locally path-connected and metrizable [14]. Define

the map q = (qn)n : (X̃, x̃)→ (X,x) by q([α]) = α(1), i.e., qn([(αn)n]) = αn(1). Ex-

press the elements of the universal covering spaces X̃n of Xn as homotopy classes of
continuous paths in Xn starting at xn, i.e., X̃n = {[αn] | αn : ([0, 1], 0)→ (Xn, xn)},
and let x̃n ∈ X̃n denote the class containing the constant path. The covering maps
pn : X̃n → Xn are given by pn([αn]) = αn(1). Lift the given bonding maps

fn : (Xn+1, xn+1) → (Xn, xn) to maps f̃n : (X̃n+1, x̃n+1) → (X̃n, x̃n) such that

pn ◦ f̃n = fn ◦ pn+1 for all n. Specifically, f̃n([αn+1]) = [fn ◦ αn+1]. Finally, define

q̃n : (X̃, x̃) → (X̃n, x̃n) by q̃n([(αn)n]) = [αn]. Then q̃n is continuous, pn ◦ q̃n = qn
and f̃n ◦ q̃n+1 = q̃n for all n:

X̃n+1

pn+1

��

f̃n||zz
zz

zz
zz

X̃

qn

��
<<

<<
<<

<<
<<

<<
<<

<<
<<

qn+1
TTTTTTTTTTTTT

**TTTTTTT

q

��

q̃n //

q̃n+1

44jjjjjjjjjjjjjjjjjjjjj
X̃n

pn

��

Xn+1

fn||xxxxxxxx

X

proj iiiiiiiiii

iii

44iiiiiii

proj
// Xn

The following fact has essentially been known since [7]. We sketch a proof using
the argument given there for the Menger cube.

Lemma 6.13. The space X̃ is uniquely arcwise connected and the map

q̃ = (q̃n)n : X̃ → X̂ = lim
←−

(
X̃1

f̃1←− X̃2
f̃2←− X̃3

f̃3←− · · ·
)

sending [(αn)n] 7→ ([αn])n is injective.
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Proof. (Based on [7].) Since each X̃n is a tree, the inverse limit X̂ does not contain
any simple closed curves. Therefore, every compact path-connected and locally
path-connected subspace of X̂ is a dendrite and hence contractible. Consequently,
the map q̃ = (q̃n)n : X̃ → X̂ is injective and X̃ contains no simple closed curve. �

Remark 6.14. The map q̃ = (q̃n)n : X̃ → X̂ is always well-defined and continuous

for any inverse limit X of topological spaces Xn, even if X̃ is not simply con-
nected. (This follows directly from the definition of the topologies on X̃ and X̃n.)
However, if q̃ happens to be injective and if each Xn is a compact metric space,
then the natural homomorphism q̃|π1(X,x) : π1(X,x)→ π̌1(X,x) into the first Čech

homotopy group π̌1(X,x) = lim
←−

(
π1(X1, x1)

f1#← π1(X2, x2)
f2#← π1(X3, x3)

f3#← · · ·
)

is injective so that X̃ is simply connected [14].

Definition 6.15. We define functions ϕn : X̃n →W ′n by ϕn([αn]) = ωn(αn)′.

We record the following straightforward lemma without proof:

Lemma 6.16. Each Ω′n forms a free group under the operation ωn ∗ ξn = (ωnξn)′

and ϕn : π1(Xn, xn) → Ω′n is an isomorphism. Moreover, the following diagrams
commute for all n:

π1(X,x)

q̃n

xxqqqqqqqqqq
q̃n+1

''OOOOOOOOOOOO

π1(Xn, xn)

ϕn

��

π1(Xn+1, xn+1)
fn#

oo

ϕn+1

��

Ω′n Ω′n+1

φ′noo

Consequently, π̌1(X,x) ∼= G are isomorphic and the function ϕ : π1(X,x) → G,
given by ϕ([(αn)n]) = (ϕn([αn]))n = (ωn(αn))′n, is an injective homomorphism.

Theorem 6.17 (Theorem A). We have ϕ(π1(X,x)) = G ⊆ G. Hence,
←−
G forms a

group under the operation ∗, given by (wn)n ∗ (ξn)n =
←−−−−−
(ωnξn)′n, and

←−
G ∼= π1(X,x).

Proof. Let L(X,x) denote the set of all continuous loops in X which are based
at x. For a given (αn)n ∈ L(X,x), we have ϕ([(αn)n]) = (ωn(αn))′n ∈ Ω′ = G by
Lemma 6.2. Conversely, let (gn)n ∈ G be given. By Proposition 6.10, there is an

(αn)n ∈ L(X,x) with (ωn(αn))n =
←−−−
(gn)n. Then, by Lemma 6.4(a) and Remark 4.7,

we have

ϕ([(αn)n]) = (ωn(αn))′n =

(←−−−
(gn)n

)′
=
(←−−−

(gn)n

)′
= (gn)n.

Therefore, ϕ(π1(X,x)) = G. The fact that the operation ∗ corresponds to multipli-
cation in π1(X,x) is verified in more generality in Remark 6.22 below.

�
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Lemma 6.18. The following diagrams commute for all n:

X̃
q̃n

~~~~
~~

~~
~~ q̃n+1

!!D
DD

DD
DD

D

X̃n

ϕn

��

X̃n+1

f̃noo

ϕn+1

��

W ′n W ′n+1

φ′noo

The combined functions (ϕn)n : X̂ → R yield an injection so that we obtain an

injective function ϕ : X̃ ↪→ R given by ϕ([(αn)n]) = (ϕn([αn]))n = (ωn(αn))′n.

Proof. The difference between this lemma and Lemma 6.16 is the fact that the
functions ϕn : X̃n → W ′n are not bijective. For a reduced word rn ∈ W ′n of

the form rn = v1v2 · · · vk, the preimage ϕ−1
n ({rn}) is a vertex of the tree X̃n.

For a reduced word rn ∈ W ′n of the form rn = v1v2 · · · vk/vk+1, the preimage

ϕ−1
n ({rn}) is a half-open edge of the tree X̃n, where v1v2 · · · vk is the shortest edge-

path representative for the homotopy class of paths that connect xn to the included
vertex of the projection of this edge in Xn. Therefore, by Lemma 3.1, the combined
functions (ϕn)n yield an injection. Note that although each ϕn is clearly surjective,

the combined functions (ϕn)n : X̂ → R need not yield a surjection, as illustrated
in the following remark. �

Remark 6.19. An example for which (ϕn)n : X̂ → R is not surjective is given by
X = [0, 1], expressed as an inverse limit of subdivisions Xn of [0, 1] with fn = id|Xn
and xn = 0 for all n. Label the vertices of Xn as 0 = vn,1 < vn,2 < · · · < vn,mn = 1,
and form the word rn = vn,1vn,2 · · · vn,mn−1/vmn ∈ W ′n. Then (rn)n ∈ R. However,

(rn)n is not in the image of (ϕn)n : X̂ → R.

Theorem 6.20. We have

(a) ϕ(X̃) ⊆ R ⊆ R;

(b)
←−−−
ϕ(X̃) =

←̇−
R ⊆ W, yielding a bijective correspondence between X̃ and

←̇−
R;

(c)

(←−−
ϕ(ỹ)

)′
= ϕ(ỹ) for all ỹ ∈ X̃.

Proof. The proof is similar to that of Theorem 6.17.
(a) This follows from Lemma 6.2.

(b) Put S =
←−−−
ϕ(X̃). While not every element of S is of terminating type, it

follows from Definition 3.10 and Definition 6.5 that Ṡ = S. Hence,
←−−−
ϕ(X̃) ⊆

←̇−
R by

Part (a). For the reverse inclusion, let (rn)n ∈ R. By Proposition 6.10 we may

choose ỹ = [(αn)n] ∈ X̃ with (ωn(αn))n =
←−−−
(rn)n. Then

←−−
ϕ(ỹ)

.
=
←−−−
(rn)n, as in the

proof of Theorem 6.17, but using Lemma 6.4(b) instead of Lemma 6.4(a):

←−−
ϕ(ỹ) =

←−−−−−−−
ϕ([(αn)n]) =

←−−−−−−−
(ωn(αn))′n =

←−−−−−−(←−−−
(rn)n

)′
.
=

←−−−−−−(←−−−
(rn)n

)′
=
←−−−
(rn)n.
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The fact that z̃ 7→
←−−
ϕ(z̃) defines a bijection from X̃ onto

←̇−
R follows now from

Lemma 6.18 and Remark 4.7.

(c) Let ỹ ∈ X̃. Then, as in the proof of Part (b), we have

←−−−−−(←−−
ϕ(ỹ)

)′
.
=
←−−
ϕ(ỹ). Also,

by Proposition 6.10,

(←−−
ϕ(ỹ)

)′
∈ ϕ(X̃). Hence,

(←−−
ϕ(ỹ)

)′
= ϕ(ỹ) by Part (b). �

Remark 6.21. By Theorem 6.20 and Lemma 6.4(c), we now have the following
commutative diagram, where P (X,x) denotes all continuous paths in X which
start at x.

P (X,x)

[ · ]
��

surjection

(αn)n 7→(ωn(αn))n
// W

′

��

←−
R? _oo

′

bijections

""

←̇−
R

“ ”oo � � // W

X̃ //
ϕ

injection
// R ϕ(X̃)

� � //

“←−”

<<

R

Remark 6.22. Under the correspondence of Theorem 6.20(b) between X̃ and
←̇−
R,

the natural action of π1(X,x) on X̃, given by [α].[β] = [α · β], corresponds to

the action of
←−
G on

←̇−
R, given by (ωn)n.(ξn)n =

←−−−−−
(ωnξn)′n. To see this, suppose

(ωn)n =
←−−
ϕ(ỹ) and (ξn)n =

←−−
ϕ(z̃), with ỹ = [(αn)n] and z̃ = [(βn)n]. Then we

have (ωn)n =
←−−−−−−−
(ωn(αn))′n so that ω′n = ωn(αn)′ for all n. Similarly, ξ′n = ωn(βn)′

for all n. Hence,
←−−−−−
(ωnξn)′n =

←−−−−−
(ω′nξ

′
n)′n =

←−−−−−−−−−−−−−
(ωn(αn)′ωn(βn)′)′n =

←−−−−−−−−−−−−
(ωn(αn)ωn(βn))′n =

←−−−−−−−−−−
(ωn(αn · βn))′n =

←−−−−−−−−−−
ϕ([(αn · βn)n]) =

←−−−−−−−−−−−−−
ϕ([(αn)n].[(βn)n]) =

←−−−−
ϕ(ỹ.z̃).

Corollary 6.23 (Theorem D). The group
←−
G ∼= π1(X,x) acts freely and by home-

omorphism on the R-tree
←̇−
R via its natural action (ωn)n.(ξn)n =

←−−−−−
(ωnξn)′n.

Proof. Based on Remark 6.14, we may apply [14, Theorem 4.10]. In particular,
π1(X,x) acts freely and by homeomorphism on the generalized universal covering

space X̃. The results now follow from Theorem 6.20(b) and Remark 6.22. �

Definition 6.24. For ỹ, z̃ ∈ X̃, we denote the unique arc in X̃ from ỹ to z̃ by [ỹ, z̃].

Corollary 6.28 below states that the arc [x̃, ỹ] in X̃ from the base point x̃ to
a point ỹ, when projected into the approximating graphs Xn of X, spells out the

word sequence
←−−
ϕ(ỹ). The proof follows from Proposition 6.27, which in turn uses

the following:

Lemma 6.25. Let (ωn)n, (ξn)n ∈ W. Express the word sequences (ωn)n, (ξn)n ∈ W
as (ωn)n = (ω̄n)n and (ξn)n = (ξ̄n)n with ω̄n, ξ̄n ∈ Wn. If ωn is a subsequence of
ξn for all n, then ω̄n is a subsequence of ξ̄n for all n.

Remark 6.26. The notion of subsequence is in the sense of the proof of Lemma 6.2.

Proof. drckn for (ωn)n produces subsequences of drckn for (ξn)n. �

Proposition 6.27. Let ỹ ∈ X̃, let β̃ : [0, 1] → X̃ be a parametrization of the arc

[x̃, ỹ] in X̃ and put (βn)n = q ◦ β̃ : [0, 1]→ X. Then

←−−−−−−−
(ωn(βn))′n = (ωn(βn))n.
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Proof. Fix k > 1. Note that ỹ = β̃(1) = [q ◦ β̃] = [(βn)n]. Put (ξn)n =
←−−−−−−−
(ωn(βn))′n

and express (ξn)n = (ξ̄n)n. Since (ξn)n is the stabilization of ϕ(ỹ) = (ωn(βn))′n,
we have ξk = φk ◦ φk+1 ◦ · · · ◦ φn−1(ωn(βn)′), for all sufficiently large n, which is a
subsequence of φk ◦ φk+1 ◦ · · · ◦ φn−1(ωn(βn)) = ωk(βk). By Lemma 6.8, we have

(ωn(βn))n = (ωn(βn))n, so that ξ̄k is a subsequence of ωk(βk) by Lemma 6.25.
By Proposition 6.10, there is a path γ = (γn)n : ([0, 1], 0) → (X,x) such that

(ωn(γn))n = (ξn)n. Let γ̃ : ([0, 1], 0)→ (X̃, x̃) be the lift with q ◦ γ̃ = γ. Then, by
Lemma 6.4(b),

←−−−−−
ϕ(γ̃(1)) =

←−−−
ϕ([γ]) =

←−−−−−−−
ϕ([(γn)n]) =

←−−−−−−−−
(ϕn([γn]))n =

←−−−−−−−
(ωn(γn)n)′n =

=

←−−−−−−(
(ξn)n

)′ .
=
←−−−
(ξn)′n =

←−−−−−−−−−(←−−−−−−−
(ωn(βn))′n

)′
=
←−−−−−−−
(ωn(βn))′n =

←−−
ϕ(ỹ).

Therefore, by Lemma 6.4(c) and Theorem 6.20(c), ϕ(γ̃(1)) = ϕ(ỹ). Hence, by

Lemma 6.18, the path γ̃ : [0, 1] → X̃ connects the endpoints of the arc β̃([0, 1]).

Since X̃ is uniquely arcwise connected, this implies (directly from the definition)
that ωk(βk) is a subsequence of ωk(γk) = ξ̄k.

Hence, ωk(βk) = ξ̄k, each being a subsequence of the other. �

Corollary 6.28. Let ỹ = [(αn)n)] ∈ X̃, let β̃ : [0, 1] → X̃ be a parametrization of

the arc [x̃, ỹ] in X̃ and put (βn)n = q ◦ β̃ : [0, 1]→ X. Then

←−−
ϕ(ỹ) =

←−−−−−−−
(ωn(αn))′n = (ωn(βn))n.

Proof. As in the proof of Proposition 6.27, we have [(αn)n] = ỹ = [(βn)n]. Hence,
(ωn(αn))′n = ϕ(ỹ) = (ωn(βn))′n. �

Example 6.29. Note that the stabilization of (ωn(αn))′n in Corollary 6.28 might
not be complete. This can be observed, for example, in the one-point compactifi-
cation L of an infinitely long ladder, expressed as the limit of an inverse sequence
satisfying Lemma 3.1. Such a space and its defining sequence are depicted in Fig-
ure 3. Let x = a be the base point of the space X = L and let ỹ be the homotopy
class of a parametrization (αn)n of the arc ab ∪ bc. While the words of the se-

quence
←−−−−−−−
(ωn(αn))′n = (ωn(αn))′n never include the top vertex of the corresponding

approximating graph, all words of the completion do. �

a

b

c

Figure 3. The space L (left) and its defining sequence (right).
Although all paths in the homotopy class of the arc ab ∪ bc travel
through the point b, the reduced projections of this arc into the ap-
proximating spaces yield an already stabilized word sequence, none
of whose words include the top vertex. The completion process is
designed to remedy such omissions by reinserting these vertices.
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Corollary 6.30 (Theorem C). Let (ωn)n, (ξn)n ∈
←−
G . Say, (ωn)n =

←−−
ϕ(ỹ) and

(ξn)n =
←−−
ϕ(z̃) with ỹ, z̃ ∈ π1(X,x). Let γ̃ : [0, 1] → X̃ be a parametrization of the

arc [ỹ, z̃] in X̃ and put (γn)n = q◦γ̃ : [0, 1]→ X. Then (ωn)−1
n ∗ (ξn)n = (ωn(γn))n.

Proof. Say, ỹ = [(αn)n] and z̃ = [(βn)n]. Put α−n (t) = αn(1 − t) and consider the

homeomorphism ψ : X̃ → X̃ given by ψ([(τn)n]) = [(α−n ·τn)n] (cf. [14, Lemma 2.6]).

Then ψ ◦ γ̃ : [0, 1]→ X̃ parametrizes the arc from x̃ to [(δn)n] = [(αn)n]−1.[(βn)n]

and q ◦ ψ ◦ γ̃ = q ◦ γ̃. On one hand,
←−−−−−−
ϕ([(δn)n] = (ωn(γn))n by Corollary 6.28. On

the other hand,
←−−−−−−
ϕ([(δn)n] = (ωn)−1

n ∗ (ξn)n by Remark 6.22. �

Definition 6.31. Given ỹ, z̃ ∈ X̃, we define ỹ ∧ z̃ ∈ X̃ by [x̃, ỹ]∩ [x̃, z̃] = [x̃, ỹ ∧ z̃].

Corollary 6.32. Let ỹ, z̃ ∈ X̃. Then the following hold:

(a)
←−−−−−
ϕ(ỹ ∧ z̃) .

=
←−−
ϕ(ỹ) e

←−−
ϕ(z̃)

(b) ‖
←−−−−−
ϕ(ỹ ∧ z̃)‖ = ‖

←−−
ϕ(ỹ) e

←−−
ϕ(z̃)‖

Proof. Choose any parametrizations β̃ : [0, 1]→ X̃ of [x̃, ỹ], γ̃ : [0, 1]→ X̃ of [x̃, z̃],

and α̃ : [0, 1] → X̃ of [x̃, ỹ ∧ z̃]. Put β = q ◦ β̃ = (βn)n, γ = q ◦ γ̃ = (γn)n
and α = q ◦ α̃ = (αn)n, so that ỹ = [(βn)n], z̃ = [(γn)n], ỹ ∧ z̃ = [(αn)n]. By

Corollary 6.28, we have
←−−−−−
ϕ(ỹ ∧ z̃) = (ωn(αn))n and

←−−
ϕ(ỹ) e

←−−
ϕ(z̃) = (ωn(βn))n e

(ωn(γn))n. Let τn = φn ◦ φn+1 ◦ · · · ◦ φk−1(ωk(βk)∩ωk(γk)) for sufficiently large k.
Clearly, ωk(αk) is an initial substring of both ωk(βk) and ωk(γk), and hence of
ωk(βk) ∩ ωk(γk), for all k. Now, ωn(αn) = φn ◦ φn+1 ◦ · · · ◦ φk−1(ωk(αk)), so that
ωn(αn) is an initial substring of τn or all n. Now fix n. Say, ωn(αn) = v1v2 · · · vi/∗
and τn = v1v2 · · · vivi+1 · · · vj/∗. We claim that i = j. Suppose, to the contrary,

that i < j. Choose tβ and tγ such that ỹ ∧ z̃ = β̃(tβ) = γ̃(tγ). Let sβni+1 and sγni+1

be the subdivision points of [0, 1] which, as in Definition 6.5, put the letter vi+1

into the words ωn(βn) and ωn(γn), respectively. Then tβ < sβni+1 and tγ < sγni+1.
By definition of τn, we must have ωk(βk|[0,sβni+1]) = ωk(γk|[0,sγni+1]) ∈ Pk for all

k > n. Hence, β̃(sβni+1) = [βk|[0,sβni+1]] = [γk|[0,sγni+1]] = γ̃(sγni+1) by Lemma 6.18, which

contradicts the choice of tβ and tγ . �

Example 6.33. It is possible that ωn(αn) = v1v2 · · · vi and τn = v1v2 · · · vi/vi+1 in
the proof of Corollary 6.32. For example, consider again the space X = L depicted
in Figure 3, but this time with base point x = b, and let ỹ and z̃ be the homotopy
classes of the arcs ba and bc, respectively. �

The proofs of the following three lemmas are a combination of straightforward
inductive arguments, which can be extracted from [18], and Corollary 6.28. We
include them for completeness.

Lemma 6.34. Let (ωn)n ∈ W. If ωn = v1v2 · · · vk/∗ and 2 6 i 6 k, then

|v1| =
1

2n
and 0 <

|vi−1|
2n

6 |vi| 6
1

2

(
3

4

)n−1

.

Proof. It follows from the recursive step of Definition 4.14 that |v1| = 1
2n and that

all weights are positive rational numbers. We first show, by induction on n, that
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|vi| 6 1
2

(
3
4

)n−1
. For n = 1, we have |vi| = 1

2i . This establishes the base case. Write

ωn+1 = u1u2 · · ·um/∗ and inductively assume that |vi| 6 1
2

(
3
4

)n−1
for all i. By

Definition 4.14, for each j ∈ {1, 2, . . . ,m} there are two cases: either |uj | = |vi|/2s
for some 1 6 i 6 k and s > 1, or |uj | = |vi−1|/2s + |vi|/2 for some 2 6 i 6 k and

s > 2. In the first case, we have |uj | 6 1
2

(
3
4

)n−1
2−s 6 1

4

(
3
4

)n−1
< 1

2

(
3
4

)n
. In the

second case, we have |uj | 6 |vi−1|/4 + |vi|/2 6
(

1
4 + 1

2

)
1
2

(
3
4

)n−1
= 1

2

(
3
4

)n
.

Finally, we show, by induction on n, that |vi−1| 6 2n|vi| for all 2 6 i 6 k. When
n = 1, we have |vi−1| = 1

2i−1 and |vi| = 1
2i , establishing the base case. Again,

write ωn+1 = u1u2 · · ·um/∗ and inductively assume that |vi−1| 6 2n|vi| for all
2 6 i 6 k. If |uj | = |vi−1|/2s + |vi|/2, then |uj−1| = |vi−1|/2s so that |uj | > |uj−1|
and |uj−1| < 2n+1|uj |. So, we may assume that |uj | = |vi|/2s for some 1 6 i 6 k
and s > 1. Either |uj−1| = 2|uj |, or s = 2 and |uj−1| = |vi−1|/2t + |vi|/2 for some
t > 2. Assuming the second case, as we may, we get from the induction hypothesis
that |uj−1| 6 2n|vi|/2t + |vi|/2 6 2n|vi|/4 + 2|vi|/4 = (2n + 2)|uj | 6 2n+1|uj |. �

Lemma 6.35. Let (ωn)n ∈ W. If ωn = v1v2 · · · vk/∗ and k > 2, then

|ωn| − |vk−1| − |vk| 6 ‖(ωm)m‖ < |ωn|.

Proof. It suffices to show that |ωn| − |vk−1| − |vk| < |ωm| for all m > n. If m = n,
this is trivial. If m = n + 1, the inequality holds, because |ωn+1| = |ωn| − |vk|/2i
for some i > 1, by Definition 4.14. Now, suppose m = n + 2 and express ωn+1

as ωn+1 = u1u2 · · ·us/∗. Then |ωn+2| = |ωn+1| − |us|/2j for some j > 1. In
turn, either |us| = |vk|/2t or |us| = |vk−1|/2t + |vk|/2 for some t > 2. So, either
|ωn+2| = |ωn|−|vk|/2i−|vk|/2t+j or |ωn+2| = |ωn|−|vk|/2i−|vk−1|/2t+j−|vk|/21+j .
Either way, |ωn| − |vk−1| − |vk| < |ωn+2|.

To see the general induction logic, express ωm−1 as ωm−1 = u1u2 · · ·us/∗. Then
|ωm| = |ωm−1| − |us|/2j for some j > 1. Observe that every substring in the
recursion step of Definition 4.14, except possibly the last one, has length at least
two. Hence, each |ui| is a rational linear combination of |v1|, |v2|, . . . , |vk| with
coefficients in [0, 1), such that at most two coefficients are positive and the positive
coefficients are consecutive. Moreover, the |vk|-coefficient for |us| must be positive.

�

Lemma 6.36. Let ỹ, z̃ ∈ X̃ such that ỹ ∈ [x̃, z̃] and ỹ 6= z̃. Say,
←−−
ϕ(ỹ) = (ωn)n

and
←−−
ϕ(z̃) = (ξn)n. Suppose n is sufficiently large so that ωn = v1v2 · · · vk/∗ and

ξn = v1v2 · · · vku1u2 · · ·um/∗ with m > 3. Then the weights of the letters
v1, v2, · · · , vk agree in both word sequences. Moreover, for every i ∈ {1, 2, . . . ,m−2}
we have ∥∥∥←−−ϕ(z̃)

∥∥∥− ∥∥∥←−−ϕ(ỹ)
∥∥∥ > |ui| > 0.

Proof. The fact that n can be chosen as claimed and that the weights of the letters
v1, v2, . . . , vk agree in both word sequences follows from Corollary 6.28. Now, fix
any i ∈ {1, 2, . . . ,m− 2}. By Lemma 6.35, we have∥∥∥←−−ϕ(z̃)

∥∥∥ > |ξn|−|um−1|−|um| > |v1|+|v2|+· · ·+|vk|+|ui| = |ωn|+|ui| >
∥∥∥←−−ϕ(ỹ)

∥∥∥+|ui|.

�
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Remark 6.37. Clearly,
∥∥∥←−−ϕ(x̃)

∥∥∥ = 0. Moreover, it follows from Lemma 6.36 that for

every z̃ ∈ X̃, the function ỹ 7→
∥∥∥←−−ϕ(ỹ)

∥∥∥ is increasing on the arc [x̃, z̃].

Remark 6.38. Let S be a set with base point s0 ∈ S and let τ be a topology on
S such that the space (S, τ) is uniquely arcwise connected. Let g : S → [0,∞) be
any function such that g(s0) = 0 and such that for every s ∈ S, the function g is
increasing on the arc [s0, s] of S. Then the function d : S × S → [0,∞), given by
d(s, t) = g(s) + g(t)− 2g(s ∧ t), defines a metric on the set S. Moreover, for every
arc [s, t] of the space (S, τ) the function d(s, ·) : [s, t] → [0, d(s, t)] is an isometric
embedding: |d(s, u)− d(s, v)| = d(u, v) for all u, v ∈ [s, t]. (See [18, pp.409–411] for
details.)

Remark 6.39. If there is any arc [s, t] in the space (S, τ) of Remark 6.38 on which the
given function g is not continuous, then [s, t] is not an arc of the metric space (S, d).
This logical pitfall appears to have been overlooked by the authors of [18], when in
[18, Theorem 4.9] they erroneously claimed convexity of the resulting metric while
still holding back the additional assumption of local arcwise connectedness. (See
also the first paragraph on p.397 of [18].)

Recall that we defined ρ((ωn)n, (ξn)n) =
∥∥∥(ωn)n

∥∥∥+
∥∥∥(ξn)n

∥∥∥− 2
∥∥∥(ωn)n e (ξn)n

∥∥∥.

Theorem 6.40. The function

d(ỹ, z̃) = ρ
(←−−
ϕ(ỹ),

←−−
ϕ(z̃)

)
=
∥∥∥←−−ϕ(ỹ)

∥∥∥+
∥∥∥←−−ϕ(z̃)

∥∥∥− 2
∥∥∥←−−ϕ(ỹ) e

←−−
ϕ(z̃)

∥∥∥
defines an R-tree metric on X̃ which induces the given topology.

Proof. Based on Remarks 6.37 and 6.38 and Corollary 6.32, the function d defines
a metric on X̃. It suffices to show that this metric induces the given topology on
X̃, as this implies that (X̃, d) is an R-tree by Remark 6.38. We use Corollaries 6.28

and 6.32 to describe the metric d: Let ỹ, z̃ ∈ X̃ and choose any parametrizations
β̃ : [0, 1]→ X̃ of [x̃, ỹ], γ̃ : [0, 1]→ X̃ of [x̃, z̃], and α̃ : [0, 1] → X̃ of [x̃, ỹ ∧ z̃]. Put

β = q ◦ β̃ = (βn)n, γ = q ◦ γ̃ = (γn)n and α = q ◦ α̃ = (αn)n. Then ỹ = [β], z̃ = [γ],
ỹ ∧ z̃ = [α] and

d(ỹ, z̃) = ‖(ωn(βn))n‖+ ‖(ωn(γn))n‖ − 2‖(ωn(αn))n‖

= lim
n→∞

(
|ωn(βn)|+ |ωn(γn)| − 2|ωn(αn)|

)
Put y = (yn)n = q ◦ ỹ = β(1) and let fn,∞ : X → Xn denote coordinate projection.

First, let [δ] ∈ X̃, let U be an open subset of X and suppose that ỹ ∈ B([δ], U).
We wish to find an ε > 0 such that if d(ỹ, z̃) < ε, then z̃ ∈ B([δ], U). Notice
that B([δ], U) = B([β], U). Choose n sufficiently large so that the combinatorial
6-neighborhood En of yn in Xn is such that y ∈ f−1

n,∞(En) ⊆ U . In order to prove
that z̃ ∈ B([β], U), it suffices to show that qn([z̃, ỹ]) ⊆ En. To this end, write
ωn(βn) = v1v2 · · · vk/∗. Put ε = min{|v1|/2n, |v2|/2n, . . . , |vk|/2n}. Suppose that
d(ỹ, z̃) < ε. We wish to show that qn([z̃, ỹ]) = qn([z̃, ỹ ∧ z̃]) ∪ qn([ỹ ∧ z̃, ỹ]) ⊆ En.
Let Fn be the combinatorial 3-neighborhood of yn in Xn. Then we must have
qn([ỹ ∧ z̃, ỹ]) ⊆ Fn ⊆ En. (Otherwise, d(ỹ, z̃) > ‖(ωn(βn))n‖ − ‖(ωn(αn))n‖ >
|vk−2| > 2nε > ε, by Lemma 6.36; a contradiction.) Let Hn be the combinatorial
3-neighborhood of qn(ỹ ∧ z̃) in Xn. Then qn([z̃, ỹ ∧ z̃]) ⊆ Hn ⊆ En. (Otherwise, we



COMBINATORIAL R-TREES AS GENERALIZED CAYLEY GRAPHS 23

have ωn(αn) = v1v2 · · · vs/∗ and ωn(γn) = v1v2 · · · vsu1u2 · · ·um/∗ with s 6 k and
m > 3. Then, by Lemmas 6.36 and 6.34, d(ỹ, z̃) > ‖(ωn(γn))n‖ − ‖(ωn(αn))n‖ >
(|v1|+ |v2|+ · · ·+ |vs|+ |u1|)−(|v1|+ |v2|+ · · ·+ |vs|) = |u1| > |vs|/2n > ε; a con-
tradiction.)

Next, let ε > 0 be given. We wish to find an open set U ⊆ X such that
B([β], U) ⊆ {[δ] ∈ X̃ | d([β], [δ]) < ε}. By Lemmas 6.34 and 6.35, we may choose n
so that the weight of every letter of the nth word of every word sequence is less than
ε/4 and so that the length of every word sequence is within ε/8 of the length of its
nth word. Let En be any open vertex-star of Xn with yn ∈ En. Put U = f−1

n,∞(En)
and suppose z̃ ∈ B([β], U). Then [γ] = [β · τ ] with τ = (τn)n : [0, 1] → U . Let

τ̃ : ([0, 1], 0) → (X̃, ỹ) be the lift of τ with q ◦ τ̃ = τ . Then τ̃(1) = [β · τ ] = z̃.

Since X̃ is uniquely arcwise connected, we have [ỹ, z̃] ⊆ τ̃([0, 1]). Since X̃ is simply
connected (Lemma 6.13 and Remark 6.14), we may assume that τ equals the image
of a parametrization of the arc [ỹ, z̃] under the mapping q. Since the image of τn
lies in En and since En contains only one vertex of Xn, we get see that ωn(βn)
and ωn(αn) differ by at most one letter and so do ωn(γn) and ωn(αn). Since
the weight of such a letter is less than ε/4, we get from our choice of n that
d(ỹ, z̃) < ε/8 + ε/8 + 2ε/8 + ε/4 + ε/4 = ε. �

Corollary 6.41 (Theorem B). The function ρ, given by

ρ((ωn)n, (ξn)n) =
∥∥∥(ωn)n

∥∥∥+
∥∥∥(ξn)n

∥∥∥− 2
∥∥∥(ωn)n e (ξn)n

∥∥∥,
defines a pseudo metric on

←−
R such that ρ((ωn)n, (ξn)n) = 0 ⇔ (ωn)n

.
= (ξn)n.

The resulting metric space (
←̇−
R, ρ) is an R-tree.

Proof. It remains to show that ρ((ωn)n, (ξn)n) = 0⇔ (ωn)n
.
= (ξn)n.

If (ωn)n
.
= (ξn)n, then (ωn)n = (ξn)n by Lemma 6.4(c), so that we have

ρ((ωn)n, (ξn)n) = 0. Conversely, say ρ((ωn)n, (ξn)n) = 0 with (ωn)n, (ξn)n ∈
←−
R.

Let ỹ, z̃ ∈ X̃ be the unique elements with (ωn)n
.
=
←−−
ϕ(ỹ) and (ξn)n

.
=
←−−
ϕ(z̃).

Then d(ỹ, z̃) = 0 by Lemma 6.4(c). Hence, ỹ = z̃ by Theorem 6.40, so that
(ωn)n

.
= (ξn)n. �

Theorem 6.42 (Theorem E). If for every n, the essential multiplicity of every

letter v ∈ Vn is finite, then the quotient space
←̇−
R/
←−
G is homeomorphic to X. The

essential multiplicity of every letter is finite if and only if X is locally path connected.

Proof. First suppose that the essential multiplicity of every letter is finite. We will

show thatX is locally path-connected, which implies that
←̇−
R/
←−
G is homeomorphic to

X [14, Theorem 4.10(c)]. It suffices to show that X is locally connected. Following
[15], we show that X has Property S: every open cover of X can be refined by a finite
cover of connected subsets of X. Fix n and let {C1, C2, . . . , Cm} be the collection of
all closed vertex stars of Xn. Let Ui be the open combinatorial 1-neighborhood of
Ci in Xn. Since every vertex of Xn has finite essential multiplicity, there is a K > n
such that for every k > K the number of components of (fn◦fn+1◦· · ·◦fk+1)−1(Ui)
which intersect (fn◦fn+1◦· · ·◦fk+1)−1(Ci) is constant; say, this number is l. Label

these components V 1
k,i, V

2
k,i, . . . , V

l
k,i so that fk(V jk+1,i) ⊆ V

j
k,i for all i = 1, 2, . . . ,m

and j = 1, 2, . . . , l. Since both i and j range over finite index sets and since the



24 HANSPETER FISCHER AND ANDREAS ZASTROW

sets V jk,i cover Xk, we see that the sets Sji =

lim
←−

(
X1

f1←− · · · fK−2←− XK−1
fK−1←− cl(V jK,i)

fK←− cl(V jK+1,i)
fK+1←− cl(V jK+2,i)

fK+2←− · · ·
)

cover X. Also, each Sji is connected. Note that given any open cover U of X, we

can choose n sufficiently large so that {Sji | i = 1, 2, . . . ,m; j = 1, 2, . . . , l} refines U .
Now suppose X is locally connected and let v ∈ Vn. Let Star(v,Xn) denote the

open star of the vertex v in Xn. Then ck(v) equals the number of components of
(fn ◦ fn+1 ◦ · · · ◦ fk)−1(Star(v,Xn)) which intersect (fn ◦ fn+1 ◦ · · · ◦ fk)−1({v}).
Let fk+1,∞ : X → Xk+1 denote coordinate projection, i.e., fk+1,∞((xi)i) = xk+1.
By [15, Lemma 2], the numbers ck(v) are bounded by the (finite) number of (open)
components of (fn ◦ fn+1 ◦ · · · ◦ fk ◦ fk+1,∞)−1(Star(v,Xn)) which intersect the
(compact) set (fn ◦fn+1 ◦· · ·◦fk ◦fk+1,∞)−1({v}). Hence, the essential multiplicity
of v is finite. �
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