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On extensions of Lie algebras
L. A. Simonian

Abstract

In the note some construction of Lie algebras is introduced. It is proved
that the construction has the same property as a well known wreath product
of groups [1]: Any extension of groups can be embedded into their wreath
product [2].

Let M and L be Lie algebras over an arbitrary field K, U = U (L) -
a universal enveloping algebra of Lie algebra L, {e;,i € I} - a well-ordered
basis in L. We can convert the linear space Homg (U, M) into a Lie algebra
if we define a Lie product by Leibniz formula

[fR(B)= Y [f ),k ()],

where E,I,J are standard monomials [3]: for example E = ejey - - emen,
ej <ep- - <en< ey I*xJisaproduct in a symmetrical algebra of L and
f,h are elements of Homg (U, L).

Define an action of L on Homg (U, M) by a rule

(fu) (E) = [ (uE),

where f € Homg (U, M), uw € L and the product of u and E is taken in
algebra U.

It can be immediately checked that Homg (U, M) is indeed a Lie algebra
with respect to the above defined product and L acts on Homyg (U, M) as
a Lie algebra of derivations of the Lie algebra Hompg (U, L).

We denote a semidirect product of Homg (U, M) and L by M Wr L
and call it a wreath product of Lie algebras M and L.

The notation and the name are justified by the following Therem that
we prove here:

Any extension N of Lie algebra M by Lie algebra L can be
embedded into their wreath product M Wr L

The theorem is similar to the well known theorem of Kaloujnine and
Krasner [2].
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To prove it, we need the following way of constructing the extension N
via a factor set g (u,v).

Let M and L be Lie algebras and suppose that elements of L act on M
as derivations of algebra M, that is

[, ylu = [vu,y] + [z, yu].
Let g : L x L — M be a bilinear mapping, such that

(a) g(u,v) = —g(v, u)
(b) g(u, v)w + g([u, v],w) + g(v, wu + g([v, w],u)+
g(w,u)v + g([w,u],v) =0
(¢) (zu)v — (zv)u = z[u, v] + [z, g(u,v)]
where z,y € M, u,v € L. Then the direct product N = M x L of linear
spaces M and L can be converted into a Lie algebra by the formula

[(‘Tvu)7 (y,v)] = ([‘Tay] + v —yu +g(uav)7 [u,v]).

It can be verified that N is the extension of M by L with a given factor set
g(u,v) and given an action of elements of L on M.

We will henceforth assume that N, as the extension of M by L, is given
as just described.

We are now coming to the proof of the Theorem. We will construct an
embedding ¢ : N - M Wr L.

If (x,u) € N, then (x,u) = (x,0) + (0,u). Therefore it is enough to
determine ¢((z,0)) and ¢((0,w)). In turn, if {z,, ¢ € Q} is a basis in M and

= Zﬂqzq’
q

then ¢((x,0)) must equal > Byp((24,0)). Therefore it suffices to determine

©((24,0)). Equally, to determine ¢((0,u)) we need to know ¢((0,€;)).
Next, set ¢((z,u)) = (f(zu),u), where f ) € Homg (U, M). In the

same sense we will use notations f(;0), fiou)s f(z,0)s f(0,e;)- For example,

90((3"70)) = (f(x,O)vO) and 90((076@)) = (f(O,ei)7ei)‘

If
o([(w,u), (y,v)] = [p((z,u)), p((y,v))],
then
(1) figuw),0) T fo,jue)) = Lfo,m)5 fo.0)] + fomv — fomu
(2) fzuw0) = @0 fow] + faou
(3) f([m,y},O) = [f(m,0)7 f(y,(])]



and vice versa.
Now, determine f. o) and f(g,) on standard monomials £ by induction
in such a way that assures (1), (2), (3).

Put f0)(1) =z and f(gu)(1) = 0.
If E = e; then for u = e; and v = ¢;, (1) gives us:

Figteine)0) (D) + fo,feie;)) (1) = f(0.e0)s F0,e)] (1) + (fo,e0)€5) (1) = (f(o,e;)€i) (1)

or
9(€i,e5) = fio.e)(€5) = f(0.e,)(€3)-
Define fg,)(e;) in the form ag(e;, e;) where a € K is to be determined.
Then

f(o,ej)(ez‘) = ag(ejaei) = —Oég(ez',ej) = _f(O,ei)(ej)
and g(e;, ej) = 2f(0,¢;)(€;). Hence
1
f(O,ei)(ej) = 59(62', e])
To determine f(., o)(e;) we use (2) and put u = e; and = = z;:
f(zq6j,0)(1) = [f(zq,O)v f(O,ej)](l) + (f(zq,O)ej)(l)'
So f.,0)(€j) = 2qe;. It is immediate that
fw0)(€j) = xe;.

If £ = ejey, then we use

Fia(ere;),0)(€6)FF(0,jese;)) (€8) = [f(0,e)s F0.e)](€r)F(F0,e0)€5) (€x) = (f(0,e;)€1) (€k)-

By the previous f(y(c;.¢;),0)(€x) = g(€i, €;)ex. Next if

lei,ej] = g Qo€

then
foo,jere;n (€x) ZanOeT ek)

and the values f(g,)(ex) are already known. We have also
[f0,e0)s Fro,e)(er) = [f(0.e0)(€k), F(0,e;) (D] + [f0,e0) (1) f0,¢,)(ex)] = 0,
(flo,.enei)ler) = fo.en(€jer),



(fo.epy€i)(ek) = fro,e;)(€ick)-
If e; < ex then we set f(o.,)(€iex) = —f(o,e;)(ejex). Then

1
Ffoeo(ejen) = 5 (figleies 0 () + fo fer e (er)).

In the case of e; > e, we have

fo.e)(€ier) = flo.e;)(€xei) + fo.e;) (e ex])

and e; < e < e;. We set as before fig.,\(ei€;) = —fioe)(ere;) in
J (0,ex)\CJ (0, J)
Figtesien0)(€1) + fofe; en)) (€0) =

[f0,e,) Foer)](€) + (Fo.e)er)(€) = (Fo,ep)€5)(€i)-
Then 1
(f(0,e;)(eres) = §(f(g(ej,ek),0)(ei) + f(0,le;.er)) (€1)-
This imlies
foen(ejer) = figese;),0)(€x)+

1
Folenes) () + 5 (Fgtese.0)(€0) + F0 fej ey (€0)) + Fro.e5)([eis exl)-

Next we determine f,, o)(ejex). We set u = e; and © = z; in (2). We
have
Fzge; 0 (k) = [f(z.00 Fo,e)(er) + (fizp.0€5) (ex)
or
fizges,00(€8) = [f(2,0) (1), f(0,e;) (€r)] + f(z4.0) (€5€K)
or

1
f0)(ejer) = Zgejer — 5 lzq, 9(es, ex)].

It follows immediately, that

1
f(x,O)(ejek) = xejep — 5[3:,9(6]-, ek)]

Suppose now that f(; ) and f(g.,) are already defined for any standard
monomial of degree less than n and let £/ = ejeiF' be a standard monomial
of degree n.

It has to be by (1)
figtere;)0) (€6 F) + foeren (€xE) = [f0,e0)s fro,ep)](€xF)+
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(fo.erei)(ext) = (f(o,e;)€i)(exE)
or
(f(076i)(ejekF) - (f(O,ej)(eiekF) = f(g(ei,ej )(ekF) + f Jleire;]) (ekF)_

[f0,e0)s Fo,e)) (erF).
If e; < ex we put fo.;)(eiext’) = —f(o,e;)(ejerF’) and obtain

1
foen(B) = 5(Fgtere.0) (€ E) + fofeses) (€ F) = [fo.e0s fo.epl(ert)-

In the case of e; > e, we have

eiepF = e, G + Z%HS, ag € K.

s

Here G is a standard monomial which is equal to the product of e¢; and all
factors of F' and H are standard monomials of degree less than n.The first
factor of GG can be e; or the first factor e, of F'. We have e; < e, < ¢; for
the first case and e; < e; < e, for the second one.

So we set as before f(g,)(€;G) = —f(o,¢;)(exG) in

Fiate; 01,0 (G)+F0,1e;,e1)) (G) = [f(0,6))s [(0,e)](G)FFi0,6,) (€6 G) — f(0,e0) (€5G)-
Then
1
f(O,ej)(ekG) = §(f(g(e],ek ( ) + f 0,[ej,ex]) ( ) - [f((],ej)v f(O,ek)](G))
Ultimately we have

f0.e)(E) = figeie),0)(€xF) + fioese;) (€6 F) = [f0.) F0.e))] (erF)+

1
§(f(g(6j,ek ( ) + f 0,[ej,ex]) ( ) [f(O,ej) Q ek + Z asf(o ej

and values of functions in the right hand side are known.
To determine f(., )(E£) we use (2) and put u = e; and x = z;,. We have

Fege; 0 (k) = [fz0.00s Fo.ep](€x F) + (fiz 00€5) (ex ).

This implies
Fe00)(B) = fzge; 00 (€6 ) = [fz0.00s f0,e)] (€rF)
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and
f2,0)(E) = frae; 0)(€x) = [f2,0)s f0,e5)](exF).

To guarantee that ¢ preserves Lie multiplication, it remains to prove (3)
for f(; ) defined above.

We apply induction on degree n of the standard monomial E. If n =0
(3) is evident. Suppose we have proved (3) for any standard monomial E of
degree less than n and let eE be a standard monomial of degree n.

We have

Fes 0 (€E) = Flogle0)B) = > UeatoD: foe ()] =

f([xe,y},O)(E)+f([m,ye],0)(E)_ Z [ Z [f(xO( )f ( )] f(Oe( )] -

IxJ=FE FxH=I

[:ce yl, 0 Z Z (0,e) (J)]7 f(y,O) (H)]+

IxJ=F FxH=I

[mye]O Z Z f(acO f(yO( )7f(0,e)(‘])“:

IxJ=E FxH=I

> Faen)(S) = D oy E): fo.e (D), Fuo (H)]+

SxH=F FxJ=S

Z [f(xO( ) fyeO)(R) - Z [f(y,O)(H)7f(0,e)(J)H =

FxR=FE HxJ=R

Z [(f(xe,O) - [f(x,0)7 f(O,e)])(S)v f(y,O) (H)]+

> o) B (fyeo) — w0 foo )R] =

FxR=FE

> w0 (@) fuo D+ D fwo(E), fyo(eR)] =

SxH=F FxR=F

S Feo)®) Fo0) (@) = o) fuo)l(€B).

PxQ=cecFE

The mapping ¢ is one-to-one. Indeed, p((z,u)) = ¢((y,v)) implies u = v
and therefore f(, ) = fyu)- But fzu) = fe,0) + fou) and flyu) = fy0) +
fo,u)- Therefore f(, o) = f(y0)- In particular, f(, o) (1) = fy,0)(1) and z = y.

Thus we have built the mapping which embeds an extension N of Lie
algebra M by Lie algebra L into the wreath product MWrL.
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