
ar
X

iv
:1

10
7.

14
49

v1
  [

m
at

h.
R

A
] 

 7
 J

ul
 2

01
1

On extensions of Lie algebras
1 L. A. Simonian

Abstract

In the note some construction of Lie algebras is introduced. It is proved
that the construction has the same property as a well known wreath product
of groups [1]: Any extension of groups can be embedded into their wreath
product [2].

Let M and L be Lie algebras over an arbitrary field K, U = U (L) -
a universal enveloping algebra of Lie algebra L, {ei, i ∈ I} - a well-ordered
basis in L. We can convert the linear space HomK (U,M) into a Lie algebra
if we define a Lie product by Leibniz formula

[f, h] (E) =
∑

I∗J=E

[f (I) , h (J)] ,

where E, I, J are standard monomials [3]: for example E = ejek · · · emen,
ej ≤ ek · · · ≤ em ≤ en, I ∗ J is a product in a symmetrical algebra of L and
f, h are elements of HomK (U,L).

Define an action of L on HomK (U,M) by a rule

(fu) (E) = f (uE) ,

where f ∈ HomK (U,M), u ∈ L and the product of u and E is taken in
algebra U .

It can be immediately checked that HomK (U,M) is indeed a Lie algebra
with respect to the above defined product and L acts on HomK (U,M) as
a Lie algebra of derivations of the Lie algebra HomK (U,L).

We denote a semidirect product of HomK (U,M) and L by M Wr L

and call it a wreath product of Lie algebras M and L.
The notation and the name are justified by the following Therem that

we prove here:
Any extension N of Lie algebra M by Lie algebra L can be

embedded into their wreath product M Wr L

The theorem is similar to the well known theorem of Kaloujnine and
Krasner [2].
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To prove it, we need the following way of constructing the extension N

via a factor set g (u, v).
Let M and L be Lie algebras and suppose that elements of L act on M

as derivations of algebra M , that is

[x, y]u = [xu, y] + [x, yu].

Let g : L× L → M be a bilinear mapping, such that

(a) g(u, v) = −g(v, u)

(b) g(u, v)w + g([u, v], w) + g(v,w)u + g([v,w], u)+

g(w, u)v + g([w, u], v) = 0

(c) (xu)v − (xv)u = x[u, v] + [x, g(u, v)]

where x, y ∈ M , u, v ∈ L. Then the direct product N = M × L of linear
spaces M and L can be converted into a Lie algebra by the formula

[(x, u), (y, v)] = ([x, y] + xv − yu+ g(u, v), [u, v]).

It can be verified that N is the extension of M by L with a given factor set
g(u, v) and given an action of elements of L on M .

We will henceforth assume that N , as the extension of M by L, is given
as just described.

We are now coming to the proof of the Theorem. We will construct an
embedding ϕ : N → M Wr L.

If (x, u) ∈ N , then (x, u) = (x, 0) + (0, u). Therefore it is enough to
determine ϕ((x, 0)) and ϕ((0, u)). In turn, if {zq, q ∈ Q} is a basis in M and

x =
∑

q

βqzq,

then ϕ((x, 0)) must equal
∑

q βqϕ((zq , 0)). Therefore it suffices to determine
ϕ((zq , 0)). Equally, to determine ϕ((0, u)) we need to know ϕ((0, ei)).

Next, set ϕ((x, u)) = (f(x,u), u), where f(x,u) ∈ HomK (U,M). In the
same sense we will use notations f(x,0), f(0,u), f(zq,0), f(0,ei). For example,
ϕ((x, 0)) = (f(x,0), 0) and ϕ((0, ei)) = (f(0,ei), ei).

If
ϕ([(x, u), (y, v)] = [ϕ((x, u)), ϕ((y, v))],

then

(1) f(g(u,v),0) + f(0,[u,v]) = [f(0,u), f(0,v)] + f(0,u)v − f(0,v)u

(2) f(xu,0) = [f(x,0), f(0,u)] + f(x,0)u

(3) f([x,y],0) = [f(x,0), f(y,0)]
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and vice versa.
Now, determine f(zq,0) and f(0,ei) on standard monomials E by induction

in such a way that assures (1), (2), (3).
Put f(x,0)(1) = x and f(0,u)(1) = 0.
If E = ej then for u = ei and v = ej , (1) gives us:

f(g(ei,ej),0)(1)+ f(0,[ei,ej ])(1) = [f(0,ei), f(0,ej)](1)+ (f(0,ei)ej)(1)− (f(0,ej)ei)(1)

or
g(ei, ej) = f(0,ei)(ej)− f(0,ej)(ei).

Define f(0,ei)(ej) in the form αg(ei, ej) where α ∈ K is to be determined.
Then

f(0,ej)(ei) = αg(ej , ei) = −αg(ei, ej) = −f(0,ei)(ej)

and g(ei, ej) = 2f(0,ei)(ej). Hence

f(0,ei)(ej) =
1

2
g(ei, ej).

To determine f(zq,0)(ej) we use (2) and put u = ej and x = zq:

f(zqej ,0)(1) = [f(zq,0), f(0,ej)](1) + (f(zq ,0)ej)(1).

So f(zq,0)(ej) = zqej . It is immediate that

f(x,0)(ej) = xej .

If E = ejek then we use

f(g(ei,ej),0)(ek)+f(0,[ei,ej ])(ek) = [f(0,ei), f(0,ej)](ek)+(f(0,ei)ej)(ek)−(f(0,ej)ei)(ek).

By the previous f(g(ei,ej),0)(ek) = g(ei, ej)ek. Next if

[ei, ej ] =
∑

r

αrer

then
f(0,[ei,ej ])(ek) =

∑

r

αrf(0,er)(ek)

and the values f(0,er)(ek) are already known. We have also

[f(0,ei), f(0,ej)](ek) = [f(0,ei)(ek), f(0,ej)(1)] + [f(0,ei)(1), f(0,ej)(ek)] = 0,

(f(0,ei)ej)(ek) = f(0,ei)(ejek),
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(f(0,ej)ei)(ek) = f(0,ej)(eiek).

If ei ≤ ek then we set f(0,ej)(eiek) = −f(0,ei)(ejek). Then

f(0,ei)(ejek) =
1

2
(f(g(ei,ej),0)(ek) + f(0,[ei,ej ])(ek)).

In the case of ei > ek we have

f(0,ej)(eiek) = f(0,ej)(ekei) + f(0,ej)([ei, ek])

and ej ≤ ek < ei. We set as before f(0,ek)(ejei) = −f(0,ej)(ekei) in

f(g(ej ,ek),0)(ei) + f(0,[ej ,ek])(ei) =

[f(0,ej), f(0,ek)](ei) + (f(0,ej)ek)(ei)− (f(0,ek)ej)(ei).

Then

(f(0,ej)(ekei) =
1

2
(f(g(ej ,ek),0)(ei) + f(0,[ej ,ek])(ei)).

This imlies
f(0,ei)(ejek) = f(g(ei,ej),0)(ek)+

f(0,[ei,ej ])(ek) +
1

2
(f(g(ej ,ek),0)(ei) + f(0,[ej ,ek])(ei)) + f(0,ej)([ei, ek]).

Next we determine f(zq,0)(ejek). We set u = ej and x = zq in (2). We
have

f(zqej ,0)(ek) = [f(zq,0), f(0,ej)](ek) + (f(zq,0)ej)(ek)

or
f(zqej ,0)(ek) = [f(zq,0)(1), f(0,ej)(ek)] + f(zq,0)(ejek)

or

f(zq,0)(ejek) = zqejek −
1

2
[zq, g(ej , ek)].

It follows immediately, that

f(x,0)(ejek) = xejek −
1

2
[x, g(ej , ek)].

Suppose now that f(x,0) and f(0,ei) are already defined for any standard
monomial of degree less than n and let E = ejekF be a standard monomial
of degree n.

It has to be by (1)

f(g(ei,ej),0)(ekF ) + f(0,[ei,ej ])(ekF ) = [f(0,ei), f(0,ej)](ekF )+
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(f(0,ei)ej)(ekF )− (f(0,ej)ei)(ekF )

or

(f(0,ei)(ejekF )− (f(0,ej)(eiekF ) = f(g(ei,ej),0)(ekF ) + f(0,[ei,ej ])(ekF )−

[f(0,ei), f(0,ej)](ekF ).

If ei ≤ ek we put f(0,ej)(eiekF ) = −f(0,ei)(ejekF ) and obtain

f(0,ei)(E) =
1

2
(f(g(ei,ej),0)(ekF ) + f(0,[ei,ej])(ekF )− [f(0,ei), f(0,ej)](ekF )).

In the case of ei > ek we have

eiekF = ekG+
∑

s

αsHs, αs ∈ K.

Here G is a standard monomial which is equal to the product of ei and all
factors of F and Hs are standard monomials of degree less than n.The first
factor of G can be ei or the first factor em of F . We have ej ≤ ek < ei for
the first case and ej ≤ ek ≤ em for the second one.

So we set as before f(0,ek)(ejG) = −f(0,ej)(ekG) in

f(g(ej ,ek),0)(G)+f(0,[ej ,ek])(G) = [f(0,ej), f(0,ek)](G)+f(0,ej)(ekG)−f(0,ek)(ejG).

Then

f(0,ej)(ekG) =
1

2
(f(g(ej ,ek),0)(G) + f(0,[ej ,ek])(G)− [f(0,ej), f(0,ek)](G))

Ultimately we have

f(0,ei)(E) = f(g(ei,ej),0)(ekF ) + f(0,[ei,ej ])(ekF )− [f(0,ei), f(0,ej)](ekF )+

1

2
(f(g(ej ,ek),0)(G) + f(0,[ej ,ek])(G) − [f(0,ej), f(0,ek)](G)) +

∑

s

αsf(0,ej)(Hs),

and values of functions in the right hand side are known.
To determine f(zq,0)(E) we use (2) and put u = ej and x = zq. We have

f(zqej ,0)(ekF ) = [f(zq ,0), f(0,ej)](ekF ) + (f(zq,0)ej)(ekF ).

This implies

f(zq,0)(E) = f(zqej ,0)(ekF )− [f(zq,0), f(0,ej)](ekF )
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and
f(x,0)(E) = f(xej ,0)(ekF )− [f(x,0), f(0,ej)](ekF ).

To guarantee that ϕ preserves Lie multiplication, it remains to prove (3)
for f(x,u) defined above.

We apply induction on degree n of the standard monomial E. If n = 0
(3) is evident. Suppose we have proved (3) for any standard monomial E of
degree less than n and let eE be a standard monomial of degree n.

We have

f([x,y],0)(eE) = f([x,y]e,0)(E) −
∑

I∗J=E

[f([x,y],0)(I), f(0,e)(J)] =

f([xe,y],0)(E) + f([x,ye],0)(E)−
∑

I∗J=E

[
∑

F∗H=I

[f(x,0)(F ), f(y,0)(H)], f(0,e)(J)] =

f([xe,y],0)(E) −
∑

I∗J=E

∑

F∗H=I

[[f(x,0)(F ), f(0,e)(J)], f(y,0)(H)]+

f([x,ye],0)(E)−
∑

I∗J=E

∑

F∗H=I

[f(x,0)(F ), [f(y,0)(H), f(0,e)(J)]] =

∑

S∗H=E

[f(xe,0)(S)−
∑

F∗J=S

[f(x,0)(F ), f(0,e)(J)], f(y,0)(H)]+

∑

F∗R=E

[f(x,0)(F ), f(ye,0)(R)−
∑

H∗J=R

[f(y,0)(H), f(0,e)(J)]] =

∑

S∗H=E

[(f(xe,0) − [f(x,0), f(0,e)])(S), f(y,0)(H)]+

∑

F∗R=E

[f(x,0)(F ), (f(ye,0) − [f(y,0), f(0,e)])(R)] =

∑

S∗H=E

[f(x,0)(eS), f(y,0)(H)] +
∑

F∗R=E

[f(x,0)(F ), f(y,0)(eR)] =

∑

P∗Q=eE

[f(x,0)(P ), f(y,0)(Q)] = [f(x,0), f(y,0)](eE).

The mapping ϕ is one-to-one. Indeed, ϕ((x, u)) = ϕ((y, v)) implies u = v

and therefore f(x,u) = f(y,u). But f(x,u) = f(x,0) + f(0,u) and f(y,u) = f(y,0) +
f(0,u). Therefore f(x,0) = f(y,0). In particular, f(x,0)(1) = f(y,0)(1) and x = y.

Thus we have built the mapping which embeds an extension N of Lie
algebra M by Lie algebra L into the wreath product MWrL.
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