On extensions of Lie algebras
 1 L. A. Simonian

Abstract

In the note some construction of Lie algebras is introduced. It is proved that the construction has the same property as a well known wreath product of groups [1]: Any extension of groups can be embedded into their wreath product [2].

Let M and L be Lie algebras over an arbitrary field $K, U=U(L)$ a universal enveloping algebra of Lie algebra $L,\left\{e_{i}, i \in I\right\}$ - a well-ordered basis in L. We can convert the linear space $\operatorname{Hom}_{K}(U, M)$ into a Lie algebra if we define a Lie product by Leibniz formula

$$
[f, h](E)=\sum_{I * J=E}[f(I), h(J)],
$$

where E, I, J are standard monomials [3]: for example $E=e_{j} e_{k} \cdots e_{m} e_{n}$, $e_{j} \leq e_{k} \cdots \leq e_{m} \leq e_{n}, I * J$ is a product in a symmetrical algebra of L and f, h are elements of $\operatorname{Hom}_{K}(U, L)$.

Define an action of L on $\operatorname{Hom}_{K}(U, M)$ by a rule

$$
(f u)(E)=f(u E),
$$

where $f \in \operatorname{Hom}_{K}(U, M), u \in L$ and the product of u and E is taken in algebra U.

It can be immediately checked that $\operatorname{Hom}_{K}(U, M)$ is indeed a Lie algebra with respect to the above defined product and L acts on $H o m_{K}(U, M)$ as a Lie algebra of derivations of the Lie algebra $\operatorname{Hom}_{K}(U, L)$.

We denote a semidirect product of $\operatorname{Hom}_{K}(U, M)$ and L by $M W r L$ and call it a wreath product of Lie algebras M and L.

The notation and the name are justified by the following Therem that we prove here:

Any extension N of Lie algebra M by Lie algebra L can be embedded into their wreath product $M W r L$

The theorem is similar to the well known theorem of Kaloujnine and Krasner [2].

[^0]To prove it, we need the following way of constructing the extension N via a factor set $g(u, v)$.

Let M and L be Lie algebras and suppose that elements of L act on M as derivations of algebra M, that is

$$
[x, y] u=[x u, y]+[x, y u] .
$$

Let $g: L \times L \rightarrow M$ be a bilinear mapping, such that

$$
\begin{aligned}
& \text { (a) } g(u, v)=-g(v, u) \\
& \text { (b) } g(u, v) w+g([u, v], w)+g(v, w) u+g([v, w], u)+ \\
& g(w, u) v+g([w, u], v)=0 \\
& \text { (c) }(x u) v-(x v) u=x[u, v]+[x, g(u, v)]
\end{aligned}
$$

where $x, y \in M, u, v \in L$. Then the direct product $N=M \times L$ of linear spaces M and L can be converted into a Lie algebra by the formula

$$
[(x, u),(y, v)]=([x, y]+x v-y u+g(u, v),[u, v])
$$

It can be verified that N is the extension of M by L with a given factor set $g(u, v)$ and given an action of elements of L on M.

We will henceforth assume that N, as the extension of M by L, is given as just described.

We are now coming to the proof of the Theorem. We will construct an embedding $\varphi: N \rightarrow M$ Wr L.

If $(x, u) \in N$, then $(x, u)=(x, 0)+(0, u)$. Therefore it is enough to determine $\varphi((x, 0))$ and $\varphi((0, u))$. In turn, if $\left\{z_{q}, q \in Q\right\}$ is a basis in M and

$$
x=\sum_{q} \beta_{q} z_{q},
$$

then $\varphi((x, 0))$ must equal $\sum_{q} \beta_{q} \varphi\left(\left(z_{q}, 0\right)\right)$. Therefore it suffices to determine $\varphi\left(\left(z_{q}, 0\right)\right)$. Equally, to determine $\varphi((0, u))$ we need to know $\varphi\left(\left(0, e_{i}\right)\right)$.

Next, set $\varphi((x, u))=\left(f_{(x, u)}, u\right)$, where $f_{(x, u)} \in \operatorname{Hom}_{K}(U, M)$. In the same sense we will use notations $f_{(x, 0)}, f_{(0, u)}, f_{\left(z_{q}, 0\right)}, f_{\left(0, e_{i}\right)}$. For example, $\varphi((x, 0))=\left(f_{(x, 0)}, 0\right)$ and $\varphi\left(\left(0, e_{i}\right)\right)=\left(f_{\left(0, e_{i}\right)}, e_{i}\right)$.

If

$$
\varphi([(x, u),(y, v)]=[\varphi((x, u)), \varphi((y, v))]
$$

then

$$
\begin{aligned}
& \text { (1) } f_{(g(u, v), 0)}+f_{(0,[u, v])}=\left[f_{(0, u)}, f_{(0, v)}\right]+f_{(0, u)} v-f_{(0, v)} u \\
& \text { (2) } f_{(x u, 0)}=\left[f_{(x, 0)}, f_{(0, u)}\right]+f_{(x, 0)} u \\
& \text { (3) } f_{([x, y], 0)}=\left[f_{(x, 0)}, f_{(y, 0)}\right]
\end{aligned}
$$

and vice versa.
Now, determine $f_{\left(z_{q}, 0\right)}$ and $f_{\left(0, e_{i}\right)}$ on standard monomials E by induction in such a way that assures (1), (2), (3).

Put $f_{(x, 0)}(1)=x$ and $f_{(0, u)}(1)=0$.
If $E=e_{j}$ then for $u=e_{i}$ and $v=e_{j}$, (1) gives us:
$f_{\left(g\left(e_{i}, e_{j}\right), 0\right)}(1)+f_{\left(0,\left[e_{i}, e_{j}\right]\right)}(1)=\left[f_{\left(0, e_{i}\right)}, f_{\left(0, e_{j}\right)}\right](1)+\left(f_{\left(0, e_{i}\right)} e_{j}\right)(1)-\left(f_{\left(0, e_{j}\right)} e_{i}\right)(1)$
or

$$
g\left(e_{i}, e_{j}\right)=f_{\left(0, e_{i}\right)}\left(e_{j}\right)-f_{\left(0, e_{j}\right)}\left(e_{i}\right) .
$$

Define $f_{\left(0, e_{i}\right)}\left(e_{j}\right)$ in the form $\alpha g\left(e_{i}, e_{j}\right)$ where $\alpha \in K$ is to be determined. Then

$$
f_{\left(0, e_{j}\right)}\left(e_{i}\right)=\alpha g\left(e_{j}, e_{i}\right)=-\alpha g\left(e_{i}, e_{j}\right)=-f_{\left(0, e_{i}\right)}\left(e_{j}\right)
$$

and $g\left(e_{i}, e_{j}\right)=2 f_{\left(0, e_{i}\right)}\left(e_{j}\right)$. Hence

$$
f_{\left(0, e_{i}\right)}\left(e_{j}\right)=\frac{1}{2} g\left(e_{i}, e_{j}\right)
$$

To determine $f_{\left(z_{q}, 0\right)}\left(e_{j}\right)$ we use (2) and put $u=e_{j}$ and $x=z_{q}$:

$$
f_{\left(z_{q} e_{j}, 0\right)}(1)=\left[f_{\left(z_{q}, 0\right)}, f_{\left(0, e_{j}\right)}\right](1)+\left(f_{\left(z_{q}, 0\right)} e_{j}\right)(1) .
$$

So $f_{\left(z_{q}, 0\right)}\left(e_{j}\right)=z_{q} e_{j}$. It is immediate that

$$
f_{(x, 0)}\left(e_{j}\right)=x e_{j}
$$

If $E=e_{j} e_{k}$ then we use
$f_{\left(g\left(e_{i}, e_{j}\right), 0\right)}\left(e_{k}\right)+f_{\left(0,\left[e_{i}, e_{j}\right]\right)}\left(e_{k}\right)=\left[f_{\left(0, e_{i}\right)}, f_{\left(0, e_{j}\right)}\right]\left(e_{k}\right)+\left(f_{\left(0, e_{i}\right)} e_{j}\right)\left(e_{k}\right)-\left(f_{\left(0, e_{j}\right)} e_{i}\right)\left(e_{k}\right)$.
By the previous $f_{\left(g\left(e_{i}, e_{j}\right), 0\right)}\left(e_{k}\right)=g\left(e_{i}, e_{j}\right) e_{k}$. Next if

$$
\left[e_{i}, e_{j}\right]=\sum_{r} \alpha_{r} e_{r}
$$

then

$$
f_{\left(0,\left[e_{i}, e_{j}\right]\right)}\left(e_{k}\right)=\sum_{r} \alpha_{r} f_{\left(0, e_{r}\right)}\left(e_{k}\right)
$$

and the values $f_{\left(0, e_{r}\right)}\left(e_{k}\right)$ are already known. We have also

$$
\begin{aligned}
{\left[f_{\left(0, e_{i}\right)}, f_{\left(0, e_{j}\right)}\right]\left(e_{k}\right)=} & {\left[f_{\left(0, e_{i}\right)}\left(e_{k}\right), f_{\left(0, e_{j}\right)}(1)\right]+\left[f_{\left(0, e_{i}\right)}(1), f_{\left(0, e_{j}\right)}\left(e_{k}\right)\right]=0, } \\
& \left(f_{\left(0, e_{i}\right)} e_{j}\right)\left(e_{k}\right)=f_{\left(0, e_{i}\right)}\left(e_{j} e_{k}\right),
\end{aligned}
$$

$$
\left(f_{\left(0, e_{j}\right)} e_{i}\right)\left(e_{k}\right)=f_{\left(0, e_{j}\right)}\left(e_{i} e_{k}\right) .
$$

If $e_{i} \leq e_{k}$ then we set $f_{\left(0, e_{j}\right)}\left(e_{i} e_{k}\right)=-f_{\left(0, e_{i}\right)}\left(e_{j} e_{k}\right)$. Then

$$
f_{\left(0, e_{i}\right)}\left(e_{j} e_{k}\right)=\frac{1}{2}\left(f_{\left(g\left(e_{i}, e_{j}\right), 0\right)}\left(e_{k}\right)+f_{\left(0,\left[e_{i}, e_{j}\right]\right)}\left(e_{k}\right)\right) .
$$

In the case of $e_{i}>e_{k}$ we have

$$
f_{\left(0, e_{j}\right)}\left(e_{i} e_{k}\right)=f_{\left(0, e_{j}\right)}\left(e_{k} e_{i}\right)+f_{\left(0, e_{j}\right)}\left(\left[e_{i}, e_{k}\right]\right)
$$

and $e_{j} \leq e_{k}<e_{i}$. We set as before $f_{\left(0, e_{k}\right)}\left(e_{j} e_{i}\right)=-f_{\left(0, e_{j}\right)}\left(e_{k} e_{i}\right)$ in

$$
\begin{gathered}
f_{\left(g\left(e_{j}, e_{k}\right), 0\right)}\left(e_{i}\right)+f_{\left(0,\left[e_{j}, e_{k}\right]\right)}\left(e_{i}\right)= \\
{\left[f_{\left(0, e_{j}\right)}, f_{\left(0, e_{k}\right)}\right]\left(e_{i}\right)+\left(f_{\left(0, e_{j}\right)} e_{k}\right)\left(e_{i}\right)-\left(f_{\left(0, e_{k}\right)} e_{j}\right)\left(e_{i}\right) .}
\end{gathered}
$$

Then

$$
\left(f_{\left(0, e_{j}\right)}\left(e_{k} e_{i}\right)=\frac{1}{2}\left(f_{\left(g\left(e_{j}, e_{k}\right), 0\right)}\left(e_{i}\right)+f_{\left(0,\left[e_{j}, e_{k}\right]\right)}\left(e_{i}\right)\right) .\right.
$$

This imlies

$$
\begin{gathered}
f_{\left(0, e_{i}\right)}\left(e_{j} e_{k}\right)=f_{\left(g\left(e_{i}, e_{j}\right), 0\right)}\left(e_{k}\right)+ \\
f_{\left(0,\left[e_{i}, e_{j}\right]\right)}\left(e_{k}\right)+\frac{1}{2}\left(f_{\left(g\left(e_{j}, e_{k}\right), 0\right)}\left(e_{i}\right)+f_{\left(0,\left[e_{j}, e_{k}\right]\right)}\left(e_{i}\right)\right)+f_{\left(0, e_{j}\right)}\left(\left[e_{i}, e_{k}\right]\right) .
\end{gathered}
$$

Next we determine $f_{\left(z_{q}, 0\right)}\left(e_{j} e_{k}\right)$. We set $u=e_{j}$ and $x=z_{q}$ in (2). We have

$$
f_{\left(z_{q} e_{j}, 0\right)}\left(e_{k}\right)=\left[f_{\left(z_{q}, 0\right)}, f_{\left(0, e_{j}\right)}\right]\left(e_{k}\right)+\left(f_{\left(z_{q}, 0\right)} e_{j}\right)\left(e_{k}\right)
$$

or

$$
f_{\left(z_{q} e_{j}, 0\right)}\left(e_{k}\right)=\left[f_{\left(z_{q}, 0\right)}(1), f_{\left(0, e_{j}\right)}\left(e_{k}\right)\right]+f_{\left(z_{q}, 0\right)}\left(e_{j} e_{k}\right)
$$

or

$$
f_{\left(z_{q}, 0\right)}\left(e_{j} e_{k}\right)=z_{q} e_{j} e_{k}-\frac{1}{2}\left[z_{q}, g\left(e_{j}, e_{k}\right)\right] .
$$

It follows immediately, that

$$
f_{(x, 0)}\left(e_{j} e_{k}\right)=x e_{j} e_{k}-\frac{1}{2}\left[x, g\left(e_{j}, e_{k}\right)\right] .
$$

Suppose now that $f_{(x, 0)}$ and $f_{\left(0, e_{i}\right)}$ are already defined for any standard monomial of degree less than n and let $E=e_{j} e_{k} F$ be a standard monomial of degree n.

It has to be by (1)

$$
f_{\left(g\left(e_{i}, e_{j}\right), 0\right)}\left(e_{k} F\right)+f_{\left(0,\left[e_{i}, e_{j}\right]\right)}\left(e_{k} F\right)=\left[f_{\left(0, e_{i}\right)}, f_{\left(0, e_{j}\right)}\right]\left(e_{k} F\right)+
$$

$$
\left(f_{\left(0, e_{i}\right)} e_{j}\right)\left(e_{k} F\right)-\left(f_{\left(0, e_{j}\right)} e_{i}\right)\left(e_{k} F\right)
$$

or

$$
\begin{gathered}
\left(f_{\left(0, e_{i}\right)}\left(e_{j} e_{k} F\right)-\left(f_{\left(0, e_{j}\right)}\left(e_{i} e_{k} F\right)=f_{\left(g\left(e_{i}, e_{j}\right), 0\right)}\left(e_{k} F\right)+f_{\left(0,\left[e_{i}, e_{j}\right]\right)}\left(e_{k} F\right)-\right.\right. \\
{\left[f_{\left(0, e_{i}\right)}, f_{\left(0, e_{j}\right)}\right]\left(e_{k} F\right) .}
\end{gathered}
$$

If $e_{i} \leq e_{k}$ we put $f_{\left(0, e_{j}\right)}\left(e_{i} e_{k} F\right)=-f_{\left(0, e_{i}\right)}\left(e_{j} e_{k} F\right)$ and obtain

$$
f_{\left(0, e_{i}\right)}(E)=\frac{1}{2}\left(f_{\left(g\left(e_{i}, e_{j}\right), 0\right)}\left(e_{k} F\right)+f_{\left.\left(0, e_{i}, e_{j}\right]\right)}\left(e_{k} F\right)-\left[f_{\left(0, e_{i}\right)}, f_{\left(0, e_{j}\right)}\right]\left(e_{k} F\right)\right)
$$

In the case of $e_{i}>e_{k}$ we have

$$
e_{i} e_{k} F=e_{k} G+\sum_{s} \alpha_{s} H_{s}, \alpha_{s} \in K
$$

Here G is a standard monomial which is equal to the product of e_{i} and all factors of F and H_{s} are standard monomials of degree less than n. The first factor of G can be e_{i} or the first factor e_{m} of F. We have $e_{j} \leq e_{k}<e_{i}$ for the first case and $e_{j} \leq e_{k} \leq e_{m}$ for the second one.

So we set as before $f_{\left(0, e_{k}\right)}\left(e_{j} G\right)=-f_{\left(0, e_{j}\right)}\left(e_{k} G\right)$ in

$$
f_{\left(g\left(e_{j}, e_{k}\right), 0\right)}(G)+f_{\left(0,\left[e_{j}, e_{k}\right]\right)}(G)=\left[f_{\left(0, e_{j}\right)}, f_{\left(0, e_{k}\right)}\right](G)+f_{\left(0, e_{j}\right)}\left(e_{k} G\right)-f_{\left(0, e_{k}\right)}\left(e_{j} G\right)
$$

Then

$$
f_{\left(0, e_{j}\right)}\left(e_{k} G\right)=\frac{1}{2}\left(f_{\left(g\left(e_{j}, e_{k}\right), 0\right)}(G)+f_{\left(0,\left[e_{j}, e_{k}\right]\right)}(G)-\left[f_{\left(0, e_{j}\right)}, f_{\left(0, e_{k}\right)}\right](G)\right)
$$

Ultimately we have

$$
\begin{gathered}
f_{\left(0, e_{i}\right)}(E)=f_{\left(g\left(e_{i}, e_{j}\right), 0\right)}\left(e_{k} F\right)+f_{\left(0,\left[e_{i}, e_{j}\right]\right)}\left(e_{k} F\right)-\left[f_{\left(0, e_{i}\right)}, f_{\left(0, e_{j}\right)}\right]\left(e_{k} F\right)+ \\
\frac{1}{2}\left(f_{\left(g\left(e_{j}, e_{k}\right), 0\right)}(G)+f_{\left(0,\left[e_{j}, e_{k}\right]\right)}(G)-\left[f_{\left(0, e_{j}\right)}, f_{\left(0, e_{k}\right)}\right](G)\right)+\sum_{s} \alpha_{s} f_{\left(0, e_{j}\right)}\left(H_{s}\right),
\end{gathered}
$$

and values of functions in the right hand side are known.
To determine $f_{\left(z_{q}, 0\right)}(E)$ we use (2) and put $u=e_{j}$ and $x=z_{q}$. We have

$$
f_{\left(z_{q} e_{j}, 0\right)}\left(e_{k} F\right)=\left[f_{\left(z_{q}, 0\right)}, f_{\left(0, e_{j}\right)}\right]\left(e_{k} F\right)+\left(f_{\left(z_{q}, 0\right)} e_{j}\right)\left(e_{k} F\right)
$$

This implies

$$
f_{\left(z_{q}, 0\right)}(E)=f_{\left(z_{q} e_{j}, 0\right)}\left(e_{k} F\right)-\left[f_{\left(z_{q}, 0\right)}, f_{\left(0, e_{j}\right)}\right]\left(e_{k} F\right)
$$

and

$$
f_{(x, 0)}(E)=f_{\left(x e_{j}, 0\right)}\left(e_{k} F\right)-\left[f_{(x, 0)}, f_{\left(0, e_{j}\right)}\right]\left(e_{k} F\right) .
$$

To guarantee that φ preserves Lie multiplication, it remains to prove (3) for $f_{(x, u)}$ defined above.

We apply induction on degree n of the standard monomial E. If $n=0$ (3) is evident. Suppose we have proved (3) for any standard monomial E of degree less than n and let $e E$ be a standard monomial of degree n.

We have

$$
\begin{gathered}
f_{([x, y], 0)}(e E)=f_{([x, y] e, 0)}(E)-\sum_{I * J=E}\left[f_{([x, y], 0)}(I), f_{(0, e)}(J)\right]= \\
f_{([x e, y], 0)}(E)+f_{([x, y e], 0)}(E)-\sum_{I * J=E}\left[\sum_{F * H=I}\left[f_{(x, 0)}(F), f_{(y, 0)}(H)\right], f_{(0, e)}(J)\right]= \\
f_{([x e, y], 0)}(E)-\sum_{I * J=E} \sum_{F * H=I}\left[\left[f_{(x, 0)}(F), f_{(0, e)}(J)\right], f_{(y, 0)}(H)\right]+ \\
f_{([x, y e], 0)}(E)-\sum_{I * J=E} \sum_{F * H=I}\left[f_{(x, 0)}(F),\left[f_{(y, 0)}(H), f_{(0, e)}(J)\right]\right]= \\
\sum_{S * H=E}\left[f_{(x e, 0)}(S)-\sum_{F * J=S}\left[f_{(x, 0)}(F), f_{(0, e)}(J)\right], f_{(y, 0)}(H)\right]+ \\
\sum_{F * R=E}\left[f_{(x, 0)}(F), f_{(y e, 0)}(R)-\sum_{H * J=R}\left[f_{(y, 0)}(H), f_{(0, e)}(J)\right]\right]= \\
\sum_{S * H=E}\left[\left(f_{(x e, 0)}-\left[f_{(x, 0)}, f_{(0, e)}\right]\right)(S), f_{(y, 0)}(H)\right]+ \\
\sum_{F * R=E}\left[f_{(x, 0)}(F),\left(f_{(y e, 0)}-\left[f_{(y, 0)}, f_{(0, e)]}\right]\right)(R)\right]= \\
\sum_{S * H=E}\left[f_{(x, 0)}(e S), f_{(y, 0)}(H)\right]+\sum_{F * R=E}\left[f_{(x, 0)}(F), f_{(y, 0)}(e R)\right]= \\
\sum_{P * Q=e E}\left[f_{(x, 0)}(P), f_{(y, 0)}(Q)\right]=\left[f_{(x, 0)}, f_{(y, 0)]}\right](e E) .
\end{gathered}
$$

The mapping φ is one-to-one. Indeed, $\varphi((x, u))=\varphi((y, v))$ implies $u=v$ and therefore $f_{(x, u)}=f_{(y, u)}$. But $f_{(x, u)}=f_{(x, 0)}+f_{(0, u)}$ and $f_{(y, u)}=f_{(y, 0)}+$ $f_{(0, u)}$. Therefore $f_{(x, 0)}=f_{(y, 0)}$. In particular, $f_{(x, 0)}(1)=f_{(y, 0)}(1)$ and $x=y$.

Thus we have built the mapping which embeds an extension N of Lie algebra M by Lie algebra L into the wreath product $M W r L$.

References

1. Kaloujnine L., Sur les p-groupes de Sylow du groups symétrique du degré p^{m}, C.R. Paris, 1945, 221, p. 222-224.
2. Kaloujnine L. et Krasner M., Produit complet des groupes de permutations et le problème d'extension des groupes, III, Acta Sci. Math., Szeged, 1951,14, p. 69-82.
3. Jacobson N., Lie Algebras, Interscience Publishers, A division of John Wiley and Sons, New York - London, 1962.

[^0]: ${ }^{1}$ Email for correspondence: lsimonian@gmail.com

