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COMBINATORIAL KNOT FLOER HOMOLOGY

AND CYCLIC DOUBLE BRANCHED COVERS

FATEMEH DOUROUDIAN

Abstract. Using a Heegaard diagram for the pullback of a knot K ⊂ S3 in its

cyclic double branched cover Σ2(K), we give a combinatorial proof for the invariance

of knot Floer homology over Z.

1. Introduction

Heegaard Floer homology, introduced by Ozsváth and Szabó [5] and independently

by Rasmussen [8] is a collection of invariants for closed oriented three-manifolds.

HF (Y ) is defined by counting some holomorphic discs in the symmetric product of

a Riemann surface. There is a relative version of the theory for (Y,K), where K is a

nullhomologous knot in Y . In [9], Sarkar proposed an algorithm to compute Heeagaard

Floer homology combinatorially.

Given a knot K ∈ S3, a grid diagram associated to K is an n × n planar grid,

with X = {Xi}
i=n
i=1 and O = {Oi}

i=n
i=1 basepoints. Each column and each row contains

exactly one X and one O inside. We view this grid diagram as a torus T 2 ∈ S3 by

standard edge identifications. Here each horizontal line is an α circle and each vertical

line is a β circle. Manolescu, Ozsváth and Sarkar [1] showed that such diagrams can be

used to compute ĤFK(S3, K) combinatorially. In [3], Levine gave a construction of a

Heegaard diagram for (Σm(K), K̃) to compute ĤFK(Σm(K), K̃) combinatorially. In

this paper we use that construction to establish knot Floer homology of the pullback

of a knot K ∈ S3 in its m-fold cyclic branched cover Σm(K) over Z2 in combinatorial

terms. Later we use a recent work of Ozsváth, Stipsicz and Szabó [4] where they

assigned signs to the rectangles and bigons for an arbitrary Heegaard diagram and

consider the homology with Z coefficients.

Let T̃ be the surface obtained by gluing together m copies of the torus T 2 (where T 2

is the torus which describes the grid diagram D of K) along branch cuts connecting

X and O in each column. Denoted the copies by T0, . . . , Tm−1. Whenever X is above

O, glue the left side of the branch cut in Tk to the right side of the same cut in Tk+1;

if the O is above X , then glue the left side of the branch cut in Tk to the right side

of the same cut in Tk−1 (indices modulo m). The projection map π : T̃ → T is an

m-fold cyclic branched cover, branched around the basepoints. Each α and β circle
1

http://arxiv.org/abs/1107.1363v1


2 FATEMEH DOUROUDIAN

in T 2 bounds a disk in S3 −K so each of them has m distinct lifts to Σm(K). Each

lift of each α circle intersects exactly one lift of each β circle. This can be shown as

in Figure 1 with m disjoint grids. Denote by β̃i
j for i = 0, 1 and j = 0, . . . , n − 1 the

vertical arcs, call the arcs which has intersection with β̃i
0, α̃

i
j. We call each horizontal

line in each grid an α line, which consists of distinct segments of different lifts of an α

circle. Let us denote this Heegaard diagram by D̃.

Figure 1. A Heegaard diagram D̃ = (T̃ , α̃, β̃,O,X) for K̃ ∈ Σm(K),

where K is the figure eight knot. Here the horizontal (resp. vertical)

lines represent α̃ (resp.β̃) circles. Here a rectangle in R is illustrated

which contributes in the differential of C(D̃) and connects a generator x

which is shown with crosses to a generator y which is shown with hollow

rectangles.

Denote by RD the set of embedded rectangles in T which do not contain any base-

points and whose left and right edges are arcs of β circles and whose upper and lower

edges are arcs of α circles. Each rectangle in RD has m disjoint lifts to T̃ (possibly

passing through the branch cuts); denote the set of such lifts by R for convenience.

Let the set of generators S be the set of unordered 2n-tuples x of intersection points

between α̃i
j and β̃i

j for i = 0, . . . , m− 1 and j = 0, . . . , n− 1, such that each of α̃i
j and

β̃i
j has exactly one component of x. also denote by SD the set of generators for D.

In [3], Levine showed that any generator x ∈ S can be decomposed (non-uniquely) as

x = x̃1 ∪ · · · ∪ x̃m, where x1, . . . ,xm are generators in SD, and x̃i is a lift of xi to D̃.

The Alexander grading of a generator x ∈ S is defined as follows. Given two finite

set of points A, B in the plane, let I(A,B) be the number of pairs (a1, a2) ∈ A and

(b1, b2) ∈ B with a1 < b1 and a2 < b2. Let J (A,B) =
1

2
(I(A,B) + I(B,A)). Given

xi ∈ SD, define

A(xi) = J (xi −
1

2
(X+O),X−O)− (

n− 1

2
).
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For any generator x ∈ S, consider one of the decompositions x = x̃1 ∪ · · · ∪ x̃m and

define

A(x) =
1

m

∑
i A(xi).

A simple calculation shows that the above definition is well-defined.

Let C be the Z2 vector space generated by S. Define a differential ∂ on C by

considering the coefficient of y in ∂x nonzero if and only if x,y ∈ S agree along all but

two vertical circles and there is a rectangle R ∈ R whose lower-left and upper-right

corners are in x and whose lower-right and upper-left corners are in y, and which does

not contain any X , O, or components of x in its interior. We denote by Rect(x,y) the

set of such rectangles.

∂x =
∑
y∈S

∑
R∈Rect(x,y)

y

Later we consider C as a vector space over Z.

Theorem 1. Let K be an oriented knot and K̃ be its pullback in the cyclic double

branched cover Σ2(K), the filtered quasi-isomorphism type of the complex (C, ∂) over

Z is an invariant of the knot type and the grid number.

In Section 2, we have an overview of the required definitions and basic properties of

multi-point Heegaard diagrams and the construction of cyclic branched cover from grid

diagrams. In Section 3, we give a combinatorial prove of the statement of Theorem

1 over Z2. In Section 4, using sign assignments for Heegaard diagrams from [4], we

stablish the knot Floer homology of the pullback of a knot K ⊂ S3 in its cyclic double

branched cover Σ2(K) over Z.

Acknowledgements. I am grateful to Zoltán Szabó for suggesting this problem,

numerous helpful discussions, continuous advice through the course of this work, and

reading a draft of this paper. I would also like to thank Iman Setayesh for helpful

conversations. Part of this work was done when I was a visiting student at Princeton

university, and I am grateful for the opportunity.

2. Preliminaries

Let us begin by reminding the reader the construction of knot Floer homology from

multi-pointed Heegaard diagrams. See [5, 1] for details.

Let S be a surface of genus g, α = {α1, . . . , αg+k−1} (resp. β = {β1, . . . , βg+k−1})

be a collection of pairwise disjoint, embedded closed curves in S which span a half-

dimensional subspace of H1(S,Z) (so they give a handlebody Hα (resp. Hβ) with

boundary equal to S (resp. −S)), and let w = {w1, ..., wk} and z = {z1, ..., zk} be set of

distinct points, such that each component of S\α and each component of S\β contains
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exactly one point of w and one point of z. We call (S,α,β,w, z) a Heegaard diagram.

Note that this set of information specifies a Heegaard decomposition Hα

⋃
S Hβ for an

oriented closed 3-manifold Y and a knot K ∈ Y which is obtained by connecting the

w (resp. z) basepoints to z (resp. w) basepoints with arcs in the complement of α

(resp. β) curves and pushing the arcs into Hα (resp. Hβ). The orientation of the knot

K is such that it intersects S positively at the z basepoints. Another way to obtain

the Heegaard diagram is to consider a compatible self-indexing Morse function f on Y

with n critical points of index 0 and 3, and g + n− 1 of index 1 and 2. In this terms,

the induced Heegaard surface is S = f−1(3
2
), taking gradient vector field ▽f , αi (resp.

βi) corresponds to the set of points that flow down (resp. up) to a critical point of

index 1 (resp. 2), and we have Hα = f−1([0, 3
2
]) and Hβ = f−1([3

2
, 3]).

In order to construct m-fold cyclic branched cover of a knot K ∈ S3, let Y be the

link exterior cut along a Seifert surface F . Take m copies of Y and denote them by

Y1, ..., Ym. The boundary of Yi has two components Fi,+ and Fi,− which are copies of

F . The m-fold cyclic cover Σ̂m(K) of the knot exterior is formed by the disjoint union

Y1 ⊔ ... ⊔ Ym where Fi,− is identified with Fi+1,+ for each i (indices are considered mod

m). Then Σm(K) is created by glueing back a solid torus to the boundary of Σ̂m(K).

Denote by π : Σm(K) → S3 the projection map whose downstairs branch locus is K.

Now we turn to Levine [3] construction of a Heegaard diagram for (Σm(K), K̃) from

a grid diagram G for K ∈ S3. First we may isotope K to lie entirely within Hα, take a

Seifert surface contained in a ball in Hα then isotope K and F so that K returns to its

original place. In this way F intersects the Heegaard surface exactly in n arcs which

connect the two basepoints in each column and F ∩Hβ consists of n strips. We cut the

grid diagram along these n arcs and consider m copies of it, then glue these copies as

we explained in Section 1. If f : S3 → R is a self-indexing Morse function compatible

with the grid diagram G for K, then f̃ = f ◦ π : Σm(K) → R is a self-indexing Morse

function for (Σm(K), K̃) and describes a Heegaard decomposition Σm(K) = H̃α ∪T̃ H̃β

where T̃ is the surface obtained from T as described. So we obtain a Heegaard diagram

D̃ = (T̃ , α̃, β̃, w̃, z̃), where α̃, β̃, w̃, z̃ are the lifts of α, β, w, z to T̃ .

3. Invariance of Knot Floer Homology

In this section we want to show that the combinatorial knot Floer homology of a

cyclic double branched cover is independent of the grid diagram. As a result of the

work of Cromwell [10], any two grid diagram of the same knot can be connected by a

sequence of following elementary moves:
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(1) Cyclic Permutation This move corresponds to cyclically permuting the rows

or the columns of the grid diagram for the knot K and consequently obtaining

a Heegaard diagram for K̃.

(2) Commutation Consider two consecutive columns in a grid diagram G of knot

K, the X and O decorations of one of the columns separate the vertical circle

into two arcs. If both of the X and O decorations of the other column is in one

of the arcs, switching these two columns is a commutation move for G and lead

to another grid diagram H for K. For the knot K̃, we consider the Heegaard

diagram H̃ to be obtained from G̃ by a commutation move. Commutation can

be alternatively done by reversing the roles of rows and columns.

(3) Stabilization Consider a row in a grid diagram G of knot K, in order to get

stabilized grid diagram H , we split this row in two and introduce a new column.

For convenience, label the original diagram so it has decorations {Oi}
i=n+1
i=2 ,

{Xi}
i=n+1
i=2 . We Copy Oi onto one of the new rows and the Xi in the other row.

Then we add O1 and X1 in the two squares which are the intersections of these

two rows with the new column. We denote by β1 (resp. β2) the left (resp. right)

vertical circle. We let α denote the new horizontal circle in H which separates

O1 from X1. In this way we actually added two consecutive breaks in the knot.

We call this a stabilization move of the knot K. For the knot K̃, we consider

the Heegaard diagram H̃ to be obtained from G̃ by a stabilization. Note that

we can consider only certain stabilization moves after combining the previous

stabilizations with commutation moves. In these reduced stabilization moves

the new column is introduced next to Oi or Xi. There are different type s of

stabilization corresponding the different ways of placing the new X and O in

the new rows Also there is a similar move where the roles of rows and columns

will be interchanged.

3.1. Cyclic Permutation. Let G̃ be a Heegaard diagram for a knot K̃, and let H̃

be a different Heegaard diagram obtained by permuting the rows of the grid diagram

corresponding to K, such that the (i + 1)th row becomes the ith row, mod n. In [3],

Levine showed that for i = 0, . . . , n−1 and j = 0, . . . , n−1 and k = 0, 1, the generators

of C can be described as x = {xk
ij = β̃k

i ∩α̃
k−w(i,j)
j }, where w(i, j) is the winding number

and k − w(i, j) is considered mod 2.

We define a chain map Φ : C(G̃) → C(H̃) by defining it on the components of each

generator, Φ(xk
ij) = xl

i,j−1 = β̃l
i ∩ α̃

k−w(i,j)
j−1 , where l = k − w(i, j) + w′(i, j − 1).

Lemma 1. The map Φ : C(G̃) → C(H̃) is a filtered chain map.



6 FATEMEH DOUROUDIAN

Proof. A simple calculation shows that w(i, j+b)−w(i, j) = w′(i, j+b−1)−w′(i, j−1),

where w is the winding number in diagram G and w′ is the winding number for the

new diagram H , and the coordinates of each point are understood mod n. Using this

equality, the fact that the map Φ is a chain complex is straightforward. To prove

that Φ preserves the Alexander filtration, we use Lemma 3.1 and Proposition 3.5 in

[3], which proves that any generator x of C(D̃) can be decomposed (non-uniquely) as

x = x̃1 ∪ · · · ∪ x̃m, where x1, . . . ,xm are generators of C(D), and x̃i is a lift of xi to

D̃, also note that the Alexander grading of x is equal to the average of the Alexander

gradings of x1, . . . ,xm. But we know that the Alexander grading of a generator of

C(D) is preserved under the cyclic permutation of the grid diagram corresponding to

K. �

A similar reasoning proves the result for cyclic permutations that change columns.

3.2. Commutation. Let G̃ be a Heegaard diagram for K̃, and let H̃ be the Heegaard

diagram obtained by commuting two columns.

We define a Heegaard diagram E associated to the specific commutation, consisting

of two n × n grids where the opposite sides of each grid are identified. The X and

O decorations in the right grid are the same as for the knot K itself, in the left

grid we just interchange decorations of the two columns where we want to make the

commutation move. Let β̃i
j denote the vertical arcs in the Heegaard diagram for i = 0, 1

and j = 0, . . . , n − 1. For the horizontal arcs, we denote by α̃i
j the arc which has

intersection with β̃i
0.

Let the set of generators SE be the set of unordered 2n-tuples x of intersection points

between α̃i
j and β̃i

j for i = 0, 1 and j = 0, . . . , n − 1, such that each of α̃i
j and β̃i

j has

exactly one component of x.

Define the set of allowed regions RE to be the set of topological rectangles whose

upper and lower edges are parts of α̃i
j and whose left and right edges are parts of β̃i

j.

Let C(E) be the Z2 vector space generated by S(E). Define a differential ∂E on

E by considering the coefficient of y in ∂Ex nonzero if and only if x,y ∈ SE agree

along all but two vertical circles and there is a rectangle R ∈ RE whose lower-left and

upper-right corners are in x and whose lower-right and upper-left corners are in y, and

which does not contain any X , O, or components of x in its interior. See Figure 2.

It is convenient to draw the new Heegaard diagram E in the same diagram as of the

Heegaard diagram of G̃, replacing a distinguished vertical circle β̃ in G̃ with a different

one γ in E. The circles β̃ and γ intersect each other in two points a and b, which are

not on any horizontal circle. See Figure 3.
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Figure 2. Here we illustrated two topological rectangles in RE . In each

Heegaard diagram, the region changes the generator which is shown by

crosses to the one which is shown by hollow squares.

We define a chain map Φ
β̃γ

: C(G̃) −→ C(E) by counting pentagons. Let x ∈ S(G̃)

and y ∈ S(E), define Pent
β̃γ
(x,y) to be the space of pentagons where each pentagon

is an embedded disk in T̃ whose boundary consists of five arcs, each is contained in a

horizontal or a vertical circle. We start at the β̃ component of x, traverse the arc of

a horizontal circle, meet its corresponding y component, continue through an arc of a

vertical circle, meet a component of x, proceed to another horizontal circle, meet the

component of y which is on the distinguished circle γ, continue to an arc in γ, meet

an intersection point of β̃ with γ, and finally, traverse an arc in β̃ until we come back

at the initial component of x. All the angles here are required to be acute and all

the pentagons are empty from O or X decorations and x components. By using such

pentagons, we change x to y which differ from each other in exactly two components.

See Figure 3.

Given x ∈ S(G̃), define

Φ
β̃γ
(x) =

∑

y∈S(E)

∑

p∈Pent
β̃γ

(x,y)

y ∈ C(E) (3.1)

Lemma 2. The map Φ
β̃γ

: C(G̃) −→ C(E) preserves the Alexander filtration, and is

a chain map.

Proof. The fact that the Alexander filtration will not change is straightforward. For

proving that Φ
β̃γ

is a chain map we should consider regions which consist either of a
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g
~
b

a

b

Figure 3. Here we showed two Heegaard diagrams G and E and a

pentagon in Pent
β̃γ
(x,y), where components of x are indicated by crosses

and those of y are indicated by hollow squares.

disjoint rectangle and pentagon, a rectangle and pentagon with overlapping interiors,

or a rectangle and a pentagon which meet along an edge. For the first two cases just

changing the order in which we use the rectangle or pentagon, will cancel each other

out. For juxtaposing rectangles and pentagons, generally the composite region has two

type of decomposition to a rectangle and a pentagon. However, there is a special case

when the width of the pentagon and the rectangle which have an edge in common, is

one. In this case we will consider another pentagon which is disjoint from the previous

domain and an appropriate rectangle as shown in Figure 4.

�

In order to define chain homotopy operators, we count hexagons. Given x,y ∈ S(G̃),

we let Hex
β̃γβ̃

(x,y) denote the set of embedded hexagons in T̃ . The boundary of

a hexagon consists of six arcs each is contained in a horizontal or a vertical circle.

More specifically, under the orientation induced on the boundary of h, we start at

the β̃-component of x, traverse the arc of a horizontal circle, meet its corresponding

component of y, continue through an arc of a vertical circle, meet its corresponding

component of x, proceed to another horizontal circle, meet its component of y, which

is contained in the distinguished circle β̃, continue along β̃ until the intersection point

b of β̃ and γ, proceed on γ to the intersection point a of β̃ with γ, and finally, continue

on β̃ to the β̃-component of x, which was also our initial point. All the angles of our



COMBINATORIAL KNOT FLOER HOMOLOGY AND CYCLIC DOUBLE BRANCHED COVERS 9

Figure 4. Here we showed a special case where two different composite

regions have the same contribution so two terms cancel each other out.

In the left diagram we first used the pentagon and then the rectangle.

In the right diagram we first used a rectangle and then a pentagon.

hexagon required to be acute and all the hexagons are empty from O or X decorations

and x components. See Figure 5. We now define the function H
β̃γβ̃

: C(G̃) −→ C(G̃)

by

H
β̃γβ̃

(x) =
∑

y∈S(G̃)

∑

h∈Hex
β̃γβ̃

(x,y)

y. (3.2)

Proposition 1. The map Φ
β̃γ

: C(G̃) −→ C(E) is a chain homotopy equivalence. In

other words

I+ Φ
γβ̃

◦ Φ
β̃γ

+ ∂ ◦H
β̃γβ̃

+H
β̃γβ̃

◦ ∂ = 0

I+ Φ
β̃γ

◦ Φ
γβ̃

+ ∂ ◦H
γβ̃γ

+H
γβ̃γ

◦ ∂ = 0.

Proof. Generally considering disjoint hexagon and rectangle or hexagon and rectangle

with overlapping interiors, terms in ∂ ◦H
β̃γβ̃

will cancel out with the terms in H
β̃γβ̃

◦∂.

The composite regions which are made up of juxtaposition of a hexagon and a rectangle

will cancel out with terms that represent juxtaposing of two pentagons or juxtaposing

of a hexagon and a rectangle in another way. However, there is one type of composite

regions which are counted once in Φ
γβ̃

◦ Φ
β̃γ

+ ∂ ◦H
β̃γβ̃

+H
β̃γβ̃

◦ ∂ depending on the

place of the generator components on each such composite region, this term is also

counted once in the identity map. See Figure 6.

�
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Figure 5. Here we showed a hexagon in Hex
β̃γβ̃

(x,y), where compo-

nents of x are indicated by crosses and those of y are indicated by hollow

squares.

A similar argument between the Heegaard diagram H̃ and E proves the desired

result.

3.3. Stabilization. Let G̃ be a Heegaard diagram and H̃ denote a stabilization. Let

B = C(G̃) and C = C(H̃) and C ′ be the mapping cone of zero map between B and B

i.e., C ′ = B ⊕ B, endowed with the differential ∂′ : C ′ −→ C ′ given by

∂′(a, b) = (∂a,−∂b)

where ∂ denotes the differential within B. Let L and R ∼= B be the subgroups of C ′

of elements of the form (c, 0) and (0, c) for c ∈ B, respectively. The module R inherits

Alexander grading from its identification with B and L is given Alexander grading

which is one less than that it inherits from its identification with B.

Let (I, I) ⊂ S(H̃) be the set of those generators which have both of their α com-

ponents on the lifts of β1. There is a natural (point-wise) identification between S(G̃)

and (I, I), which drops the Alexander filtration by one. For x ∈ S(G̃), let φ(x) ∈ S(H̃)

be the induced generator in (I, I). We have

AC(G̃)(x) = AC(H̃)(φ(x)) + 1 = AC′(0,x) = AC′(x, 0) + 1 (3.3)

Definition 1. A domain is said to be of type R if it is rectangular and placed as each

of the regions which are shown in Figure 7. We say a domain is of type L if either it is

trivial or it has the shape in Figure 8. For x ∈ S(H̃) and y ∈ (I, I) ⊂ S(H̃), we use a
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Figure 6. In this figure we illustrated a special case of composite regions

which do not change the location of generator components. In the first

composite region first we used a hexagon and then a rectangle, in the

second one first we used a rectangle and then a hexagon, and in the

last one we used two juxtaposing pentagons. There are three more such

regions where the annulus is at the right of the decorations. Each of

these regions counted once in Φ
γβ̃

◦ Φ
β̃γ

+ ∂ ◦H
β̃γβ̃

+H
β̃γβ̃

◦ ∂ and once

in the identity map.

double-region, which is either two regions of type R or two regions of type L, in each

sheet.
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0
x 1

x

Figure 7. We have illustrated two type R domains, which are consid-

ered as a double-region of type R.

Figure 8. We have illustrated two domains of type L, where one of

them is trivial. We consider them as a double-region of type L.

We now define maps

FL : C(H̃) → L

FR : C(H̃) → R

where FL (resp. FR) counts double-regions of type L (resp. R), more precisely define

FL(x) =
∑

y∈S

∑

p∈πL(x,y)

y

FR(x) =
∑

y∈S

∑

p∈πR(x,y)

y

where πL(x,y) (resp. πR(x,y)) denotes the set of double-regions of type L (resp. R).

We set πF (x,y) = πL(x,y) ∪ πR(x,y) and define

F =

(
FL

FR

)
: C(H̃) → C ′

Lemma 3. The map F : C(H̃) → C ′ preserves the Alexander filtration, and is a chain

map.
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Proof. To idea to prove that F is a chain map is similar to Lemma 3.5 in [2]. We group

together different possibilities of terms in ∂ ◦ F and F ◦ ∂. Denote by x0 (resp. x1)

the intersection of the lifts of α with β̃0
1 (resp. β̃0

1). Note that in addition to empty

rectangles that we count in ∂, there are rectangles which contain x0 ∈ x (or x1 ∈ x),

O1 and X1 in their interior, but we count them as an empty rectangle in G̃. We call

these rectangles Type 2, and the ordinary ones Type 1. Also note that a rectangle

can not intersect both regions of a double-region, otherwise the image of the composite

region would wrap the grid diagram horizontally and it contradicts the assumption of

emptiness of rectangles ,L and R regions.

If r is of Type 1, we have the following cases:

I(0) A composition of a rectangle r of Type 1 and p, a double-region of type L or R,

where they do not have any corner in common. This composition can be counted in

either ∂ ◦ F or F ◦ ∂.

I(1) A composition in either way of r, a rectangle of Type 1 and p ∈ πF , where they

have one corner in common and r does not contain x0 (or x1) in its boundary. This

composition has a unique concave corner, cutting in either order gives two different

decompositions. See Figure 9.

Figure 9. Here we illustrated terms from I(1). The first Figure shows

a type L region and juxtaposing rectangle in one sheet and trivial type

L region in the other sheet. The second Figure shows double-region of

type R and a juxtaposing rectangle.

I(1′) A composition of a rectangle r of Type 1 and p ∈ πF , where they share one

corner and x0 (or x1) is in the boundary of r. There are two cases here. First x0 (or

x1) is in the right edge of r. Second, the bottom right corner of r is x0 (or x1) and p

is trivial in the same sheet as r. See Figure 10.

I(2) A composition in either way of a rectangle r of Type 1 and p ∈ πF , where they

share two corners and x0 (or x1). In this case the only possibility for p is to have a

nontrivial type L region in at least one sheet. See Figure 11.
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A

B

C

D

E

F

G

Figure 10. In this Figure we have pairs which cancel out with contri-

butions from I′(1). The left picture is a contribution from I(3). The right

picture is a contribution from II(1).

Figure 11. This picture shows a term from I(2), which can be alterna-

tively decomposed as a trivial type L region and a Type 2 rectangle.

I(3) A domain which contains a vertical column of width one in one of the two sheets.

In this case the only possibility for p is to have a complexity 3 region in at least one

sheet and shares three corners with r. See Figure 10.

If r is of Type 2, it can only appear in terms of the form F ◦ ∂ and we have the

following cases:

II(0) The rectangle r of Type 2 is disjoint from p. See Figure 11.

II(1) A domain which contains a vertical column of width one in one of the two

sheets. In this case the only possibility for p is to have a nontrivial type L region in

that sheet and shares one corner with r. See Figure 10.

Contributions from case I(0) cancel each other out and as we mentioned contributions

from I(1) cancel each other out. We claim that contributions from I(1′) will cancel out

with contributions from I(3) and II(1). In both cases for I(1′), we add the vertical

column which contains O1 and X1. In the first case the alternative decomposition is

in II(2) and in the second case it is in I(3). Contributions from I(2) cancel out with

contributions from II(0), See Figure 11.

�



COMBINATORIAL KNOT FLOER HOMOLOGY AND CYCLIC DOUBLE BRANCHED COVERS15

We decompose the set of generators as:

S(H̃) = (I, I) ∪ (I, J) ∪ (I, N) ∪ (J, I) ∪ (N, I) ∪ (J, J) ∪ (J,N) ∪ (N, J) ∪ (N,N)

Having I in the first component always shows that α̃0 component is in β̃0
1 or β̃1

1 and

having I in the second component shows that α̃1 component is in the other lift of β̃1. In

case of having J in the first (resp. second) coordinate, we deal with the α̃0 (resp. α̃1)

component on the lifts of β2. The N shows that the configuration has its component

neither on the lifts of β1 nor on the lifts of β2 in the corresponding α lift.

The corresponding decomposition of modules is

C = CI,I ⊕ CI,J ⊕ CI,N ⊕ CJ,I ⊕ CN,I ⊕ CJ,J ⊕ CJ,N ⊕ CN,J ⊕ CN,N

In order to see that F is a quasi-isomorphism, we will introduce an appropriate

filtration. Let Q be the union of two (n − 1) × (n − 1) squares of dots placed in all

the squares which do not appear in the rows or columns through O1. Given h ∈ Z,

let C(H̃, h) denote the summand generated by generators x with Alexander gradings

equal to h. For fixed x,y ∈ Sh, there is at most one domain p ∈ π(x,y) with Oi(p) =

Xi(p) = 0 for all i, so we can find a function F such that

F(x)−F(y) = #(Q ∩ p)

The function F determines a filtration on C(H̃, h), whose associated graded object

counts only those rectangles which contain no Oi, Xi, or points in Q. Thus these

rectangles must be supported in the row or column through O1. We let CQ denote this

associated graded object, and typically drop h from the notation.

In order to study the boundary map between different submodules and calculate the

homology groups, we need a new definition.

Definition 2. In order to get the boundary map we count rectangles, we call an

empty rectangle undone if the components of the generator are in its upper-right and

lower-left corners. We call it done if the generator components occupy upper-left and

lower-right corners. Also a done or undone empty vertical (resp. horizontal) rectangle

refers to empty rectangles which are placed in the column (resp. row) through O1. See

Figure 12.

Lemma 4. H∗(CQ) is isomorphic to free F2-module generated by elements of (I, I)

and (J, J) .

Proof. There are two cases, according to whether the X2 marks the square to the left

or the right of O1. Suppose X2 is in the square just to the left of the square marked

O1 . Then we have a direct splitting CQ = C
I,I
Q ⊕B1 ⊕B2⊕B3, where the differentials
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in C
I,I
Q are trivial, hence its homology is the free F2-module generated by elements of

(I, I); also B1, B2 and B3 are chain complexes fitting into these exact sequences

0 −→ C
I,N
Q −→ B1 −→ C

I,J
Q −→ 0

0 −→ C
N,I
Q −→ B2 −→ C

J,I
Q −→ 0

0 −→ B4 −→ B3 −→ C
J,J
Q −→ 0

Here B4 fits into the below short exact sequence

0 −→ C
N,N
Q −→ B4 −→ C

J,N
Q ⊕ C

N,J
Q −→ 0

First we show that H∗(C
N,N
Q ) is zero. In the first Heegaard diagram in Figure 12,

there are four disjoint done or undone rectangles, we can think of the generator which

is shown there to be e1 ∧ e′1 ∧ e2. This notion shows the undone rectangles that we

count in boundary map. Then we have

∂(e1 ∧ e′1 ∧ e2) = e1 ∧ e′1 + e′1 ∧ e2 + e1 ∧ e2

Here e1 ∧ e′1 is the term that comes from counting e2, in other words it represent a

generator with undone rectangles e1, e
′
1 and done rectangles e2, e

′
2. This shows that we

can partition our complex as a union of subcomplexes each isomorphic to the exterior

algebra over a vector space with coefficients in Z2. So the homology of CN,N
Q being

equal to the direct sum of homology of these subcomplexes is trivial. In The above

case the vector space is four dimensional. As another example see the second Heegaard

diagram in Figure 12, there are three disjoint undone rectangles, and the generator

would be represented also by e1 ∧ e′1 ∧ e2, and we will again have

∂(e1 ∧ e′1 ∧ e2) = e1 ∧ e′1 + e′1 ∧ e2 + e1 ∧ e2

Note that here the exterior algebra is over a three dimensional vector space. The same

idea shows that H∗(C
I,N
Q ) = 0 and H∗(C

N,I
Q ) = 0.

In order to compute the homology of B1 it is enough to compute the homology of

C
I,J
Q as a quotient. Each generator in C

I,J
Q can have at most two terms in its boundary,

one of which is in C
I,N
Q , so H∗(B1) = H∗(C

I,J
Q ) = 0, See Figure 13. In the same

way we can prove that H∗(B2) = H∗(C
J,I
Q ) = 0 and H∗(B4) = H∗(C

J,N
Q ⊕ C

N,J
Q ) = 0,

See Figure 14. Finally the differentials in C
J,J
Q are trivial, so its homology is the free

F2-module generated by elements of (J, J).

Suppose on the other hand that X2 is just to the right of O1. Then there is a direct

sum splitting CQ = C
J,J
Q ⊕ B′

1 ⊕ B′
2 ⊕ B′

3, where B′
1, B

′
2 and B′

3 are chain complexes

fitting into these exact sequences

0 −→ C
J,I
Q −→ B′

1 −→ C
J,N
Q −→ 0

0 −→ C
I,J
Q −→ B′

2 −→ C
N,J
Q −→ 0
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2
e'

1e'

e1

e1

e
2

1e'

e
2

Figure 12. Hollow squares show a generator in C
N,N
Q . Note that in

the first Heegaard diagram, the rectangle e′2 is done and the rectangles

e1, e
′
1, e2 are undone. In the second Heegaard diagram all the shaded

rectangles are undone.

2

1

Figure 13. Hollow squares show a generator in C
I,J
Q . We might use

either one of the regions (number 1 or 2), using region 1 leads to a

generator in C
I,N
Q . If we use region 2 the result is a generator in C

I,J
Q .

0 −→ B′
4 −→ B′

3 −→ C
N,N
Q −→ 0

Here B′
4 fits in the below exact sequence

0 −→ C
I,I
Q −→ B′

4 −→ C
I,N
Q ⊕ C

N,I
Q −→ 0
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1

2 3

Figure 14. Hollow squares show a generator in C
J,N
Q . We might use

one of the regions shown above in the boundary map, using region 1 or

2 lead to a generator in C
J,N
Q . If we use region 3 the result is a generator

in C
N,N
Q .

all the differential in C
J,J
Q are trivial so its homology is the F2-module generated by

elements of (J, J). It is easy to see that H∗(C
J,I
Q ) = 0. If we consider CJ,N

Q as a quotient

chain complex it is also easy to show that H∗(C
J,N
Q ) = 0 so we have H∗(B

′
1) = 0. In

the same way we can prove that H∗(B
′
2) = 0. The differentials in C

I,I
Q are trivial so its

homology is the F2-module generated by elements of (I, I). AlsoH∗(C
I,N
Q ⊕C

N,I
Q ) = 0 as

a quotient chain complex. A simple calculation shows that H∗(C
N,N
Q ) = 0. Considering

the above exact sequences, we get the desired result. �

Lemma 5. Suppose that F : C −→ C ′ is a filtered chain map which induces an

isomorphism on the homology of the associated graded object. Then F is a quasi-

isomorphism.

Proposition 2. The map F is a filtered quasi-isomorphism.

Proof. We consider the map induced by F :

FQ : CQ −→ C ′

Q

C ′
Q splits as a direct sum of chain complexes LQ⊕RQ, both of which are freely generated

by elements in (I, I). There are two cases. First take the case where X2 is in the square

just to the left of the square marked O1. Consider the subcomplex C
(I,I)
Q ⊕C

(J,J)
Q ⊂ CQ.

By Lemma 4, this subcomplex carries the homology, and hence it suffices to show that

the restriction of FQ to this subcomplex induces an isomorphism in homology. We

know that FL
Q restricted to C

(I,I)
Q is an isomorphism. In addition, FR

Q restricted to

C
(J,J)
Q counts double-regions of type R made up of rectangles supported in the rows

and columns through O1, which contain X1 in their interiors and the double-region end

up in (I, I). But for each element in (J, J) there is a unique way of assigning such a

double-region. Thus FQ is a quasi-isomorphism when X2 is just to the left of O1. In
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the second case, When X2 marks the square just to the right of O1, a similar proof

works. We now use Lemma 5 to conclude that F is a quasi-isomorphism. �

4. Sign Assignment

In [4], it is shown that there is a sign assignment for (stable) Heegaard Floer dia-

grams, using a special case of that we want to assign signs to our chain maps and chain

homotopies, and show that they are indeed chain homotopies with right signs.

Denote by A the union of the set of all empty rectangles and the set of all empty

bigons. We show an element of A by φ : x → y that means φ is a rectangle or bigon by

initial generator x and terminal generator y. If φ1 : x → y and φ2 : y → z then φ1 ∗φ2

shows the composite region that has x as its initial generator and z as the terminal

generator. If a Heegaard diagram has n α-curves, we say that the Heegaard diagram

is of power n.

Definition 3. A sign assignment S is a map from A into {±1} with the following

properties:

(S-1) if the composition of two rectangles r1 and r2 make a column, then

S(r1)S(r2) = 1

(S-2) if the two pairs (φ1, φ2) and (φ3, φ4) satisfy the equality φ1 ∗φ2 = φ3 ∗ φ4 then,

S(φ1)S(φ2) + S(φ3)S(φ4) = 0.

We can construct new sign assignments from an old one.

Definition 4. Let S be a sign assignment and u be any map from S the set of generators

of power n to {±1}, then we can define a new sign assignment S ′ such that S ′(φ) =

u(x)S(φ)u(y), for any φ : x → y in A. If S and S ′ are related as above, we say that

S and S ′ are gauge equivalent sign assignments.

Theorem 2. For any power n there is, up to gauge equivalence a unique sign assign-

ment. The map ∂Z over Z satisfies (∂Z)2 = 0 and the resulting Floer homology H̃F
Z
is

independent of the choice of S, and order of the α- and β-curves, and invariant under

nice moves.

Now we turn to the proof of the main theorem with signs. We use the same method

from section 3. The case of cyclic permutation is simple so we start by proving the

invariance over Z for commutation.

4.1. Commutation. In order to obtain a chain map, we need to assign signs to each

of the pentagons. There are two types of pentagons: either the pentagon is on the

left of the curve β̃ which we call it a left pentagon, or on the right side of the curve β̃
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which is a right pentagon. We use isotopy move of the curve β̃ (resp. γ) for left (resp.

right) pentagons to create new intersections with α circles and induce new rectangles,

each rectangle corresponds to one of the pentagons. In case of left pentagons, the

corresponding rectangle has the same initial points as the pentagon, also the upper-

right terminal point is the same. The lower-left terminal point for the pentagon is on the

intersection of γ and an α circle and the lower-left terminal point of the corresponding

rectangle is on the intersection of β̃ and the same α circle. See Figure 15. In case of right

pentagons, the terminal points and the upper-left initial point of the corresponding

rectangle are the same as pentagon, and the lower-left initial point is on the intersection

of the same α circle as before and γ circle. We call the corresponding rectangle r(p)

and define the sign for pentagons as follows:

ε(p) =

{
S(r(p)) if p is a left pentagon

−S(r(p)) if p is a right pentagon

Figure 15. Signs for pentagons. Here we have shown a left pen-

tagon p (shaded in gray) and the corresponding rectangle r(p) (shaded

horizontally). The initial generator x is marked by crosses. The terminal

generator is marked by hollow rectangles for the pentagon and by hollow

circles in case of the corresponding rectangle.
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Given x ∈ S(G̃), define

Φ
β̃γ
(x) =

∑

y∈ S(E)

∑

p∈Pent
β̃γ

(x,y)

ε(p)y ∈ C(E) (4.1)

Lemma 6. The map Φ
β̃γ

: C(G̃) −→ C(E) preserves the Alexander filtration, and is

anti-chain map.

Proof. The fact that the Alexander filtration will not change follows from the definition.

In order to show that Φ
β̃γ

is anti-chain map we consider different compositions of a

pentagon and a rectangle, whether they are disjoint or have overlapping interiors or

have an edge in common. In most of the cases the composed region has two different

decomposition and the consistency of signs follows from property S-2 in Definition ??

and the universal property of sign assignments. However there is one special case of

regions that have a unique decomposition. They can be paired and each pair have the

same initial and terminal points, one of the decompositions represents a term in ∂◦Φ
β̃γ

and the other one represents a term in Φ
β̃γ

◦ ∂; See Figure 16. From property S-1 and

the universal property of sign assignments, we know that in case of left pentagons we

have ǫ(p)S(r) = −1 and in case of right pentagons we have ǫ(p)S(r) = 1. So the paired

regions have different signs and cancel each other out.

Figure 16. Here we showed a special case where two different composite

regions have the same contribution. In the left diagram we first used the

pentagon and then the rectangle. In the right diagram we first used a

rectangle and then a pentagon. This two terms cancel out each other

because the product of the signs are opposite.
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�

Similarly we define Φ
γβ̃
, and a similar argument shows that it is anti-chain map.

We now want to define signs for hexagons, in order to show that homotopy operators

which are defined by counting hexagons are chain homotopies with regard to sign

assignment. We start with defining signs for width one pentagons. Note that each

width one hexagon corresponds to a rectangle in grid diagram G̃ with a cut along the

connecting line of O and X that are inside it. We define the sign to be minus the sign

of the empty width one rectangle which made a complete column together with the

hexagon.

b
~

b
t

y

Figure 17. Sign assignment for hexagons. We define the sign for

a hexagon of width more than one by considering two different decom-

positions of the shaded region.

We proceed to define signs for all hexagons. For each hexagon h of width w > 1,

consider the component of the generator on the β circle just before β̃, let us call that

βt. Form the composite region made up of hexagon itself and a rectangle r of width

one (Figure 17), this composite region has another decomposition made up of a width

one hexagon h′ and a rectangle r′ of width w − 1. We have already defined signs for

width one hexagons, so let us define ε(h) := −S(r)ε(h′)S(r′). Consider the following

homotopy operator H
β̃γβ̃

: C(G̃) −→ C(G̃)

H
β̃γβ̃

(x) =
∑

y∈S(G̃)

∑

h∈Hex
β̃γβ̃

(x,y)

ε(h)y. (4.2)
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where ε(h) is as defined above. However there is another way to define signs for

hexagons with width more than one, using another composed region which is made up

of hexagon itself and a thin rectangle above the hexagon. Note that this new method

results in the same sign assignment for hexagons. This can be easily shown using

property S-1 of sign assignments for Heeagaard diagrams and the definition of sign for

thin hexagons. Similarly define H
β̃γβ̃

: C(H) −→ C(H).

Proposition 3. The map Φ
β̃γ

: C(G̃) −→ C(E) is a chain homotopy equivalence with

respect to sign assignments. In other words

I+ Φ
γβ̃

◦ Φ
β̃γ

+ ∂ ◦H
β̃γβ̃

+H
β̃γβ̃

◦ ∂ = 0

I+ Φ
β̃γ

◦ Φ
γβ̃

+ ∂ ◦H
γβ̃γ

+H
γβ̃γ

◦ ∂ = 0.

Proof. We want to show that the same pairing as in proposition 1 works here with

regard to sign assignments.

Consider a term of the form H
β̃γβ̃

◦∂ which is paired by a term in Φ
γβ̃

◦Φ
β̃γ
, in order

to show that these two decompositions give opposite signs, we use a cube of generators

as in Figure 18. To each face of the cube we assign a sign which is the product of the

signs of its four edges. The front face demonstrates the decomposition at hand, and

we want to show that its sign is −1. The upper face and left face have sign −1 by

definition of the sign of thin hexagons (note that Φ
γβ̃

is anti-chain map and the sign of

each thin hexagon is defined based on the sign of its complementary rectangle). The

right face has sign −1 by definition of sign for hexagons with width more than one.

According to property S-2 of sign assignments for grid diagrams, the back face has sign

−1 (it shows two different ways for decomposing a region). The map Φ
β̃γ

is anti-chain

map so the lower face has sign −1 as well. This argument shows that the sign of the

front face is also −1 as desired.

For other type of pairings of Φ
γβ̃

◦Φ
β̃γ
, ∂ ◦H

β̃γβ̃
, H

β̃γβ̃
◦ ∂ a similar argument using

cubes will give the desired result.

However there are special types of composite regions that have exactly one decom-

position (Figure 6). These regions made up of either a hexagon and a rectangle or two

pentagons and they can be paired with identity, so we need to show that the product

of sign of the decomposition in each case is −1. For a hexagon and a pentagon the

result came from the definition of thin hexagon sign. The desired property for com-

posite of two pentagons follows from property S-1 and universality of sign assignment

for Heeagaard diagrams.

�

4.2. Stabilization. Now that we proved commutation invariance we want to show

the Stabilization invariance. Let S be a sign assignment for H̃ , we want to define a
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Figure 18. Here we have illustrated a cube to show that a paring of

two terms in H
β̃γβ̃

◦∂ and Φ
γβ̃
◦Φ

β̃γ
have opposite product of signs (front

face). In order to do that we show that all other five faces have −1 sign.

sign assignment for G̃. Note that we identified S(G̃) with (I, I) ⊂ S(H̃). For fixed

x,y ∈ S(G̃) and r ∈ Rect(x,y), there is a corresponding rectangle r′ connecting

x′,y′ ∈ S(H̃) which is either of Type 1 or Type 2. We decompose a rectangle of Type

2 as a product of smaller rectangles. See Figure 19.

To assign a sign to a region r of width one that has a cut that connects two branched

points inside, with initial generator x and terminal generator y, we use the empty

rectangle r ∈ Rect(y,x) (Figure 19) and define S(r) = −S(r).

Lemma 7. For any sign assignment S for H̃, define

S0(r) =

{
S(r′) if r is of Type 1

S(r1)S(r2)S(r3) if r is of Type 2
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1
1

3

2

r

r
-

Figure 19. First picture shows two complementary regions r and r,

their union make a column, and we define S(r) = −S(r). The second

picture shows a decomposition of a Type 2 rectangle and the order in

which we use the regions to define the sign for it. The third picture shows

the decomposition for a Type L region that we use to define its sign.

S0 is a sign assignment for G̃. See Figure 19.

Proof. The proof is similar to Lemma 4.26 [2]. �

Now we want to define signs µ from the regions that we count in the map which we

used in the proof of Stabilization invariance into {±1},

F =

(
FL

FR

)
: C(H̃) → C ′,

where

FL(x) =
∑

y∈S

∑

p∈πL(x,y)

µ(p)y

FR(x) =
∑

y∈S

∑

p∈πR(x,y)

µ(p)y

For a type L region define the sign as follows (Figure 19):

µ(p) =

{
1 if p is trivial

µ(r1)µ(r2) if p is nontrivial

For a double-region just multiply the signs of individual regions.

Lemma 8. FL is a chain map.

Proof. We prove this lemma by studying cases in lemma 3. Obviously, Contributions in

case I(0) and case I(1) cancel each other out. For terms in I(2) and II(0) cancellations

come from the definition of sign for Type 2 rectangles. Cancellations of pairs in I(3)

and I′(1) also come from the definition of sign for type L regions. The last case is

a pairing of II(1) and I′(1) terms, let p and p′ be nontrivial type L regions, r be a
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Type 2 rectangle and r′ be a Type 1 rectangle which satisfy the following equality, (See

Figure 10)

p ∗ r = r′ ∗ p′

Here for simplicity we call the regions with alphabets, note that S depends on the

initial and terminal points of regions and the terms cannot be freely commuted. So

the above equality can be rewritten as:

ACEG ∗BCDEF = DEF ∗ CEG

The following computation proves the desired result.

S(p)S(r) = S(AC)[S(EG)S(F )]S(BC)S(DE)

= −[S(AC)S(EF )][S(G)S(BC)]S(DE)

= −S(CEF )[S(A)S(BC)][S(G)S(DE)]

= −S(CEF )[−1][−S(D)S(EG)]

= [−S(CEF )S(D)]S(EG)

= S(r′)S(C)S(EG)

= S(r′)S(p′).

�

We now turn to type R regions, note that the two seemingly separate regions have

actually been glued together along the branch cut so the shape of a double-region of

type R is an octagon (Figure 20). Performing an isotopy move on the α curve shown

in Figure 20 result in new rectangles and bigons that allows us to define the sign for

octagons as follows

µ(θ) = S(R1)S(B1)S(R2)S(B2)S(R3),

where θ is an octagon, R1, R2 and R3 are rectangles and B1 and B2 are bigons.

Lemma 9. FL is anti-chain map.

Proof. We prove this lemma in two steps, first consider a rectangle r and an octagon θ

that are disjoint and the composites r ∗ θ have an alternative decomposition as θ′ ∗ r′,

where r′ is a rectangle with same domain as r and θ′ is an octagon with the same

domain as θ, then we have

S(r)µ(θ) = S(r)S(R1)S(B1)S(R2)S(B2)S(R3)

= −S(R1)S(B1)S(R2)S(B2)S(R3)S(r)

= −µ(θ)S(r),
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Figure 20. Here a thin octagon and regions which are created after an

isotopy move of an α circle is illustrated.

the minus sign in the second equality comes from commuting disjoint rectangles and

bigons, an odd number of times.

In the second case when r and θ have an edge in common, note that r can not contain

the bigon B1, because there are no Type 2 rectangles in Heegaard diagram H̃ (there

is a X just to the left of O1), also a rectangle in G̃ do not have β as one of its edges.

Let us study different cases when a rectangle r has an edge in common with an

octagon θ1. In Figure 21, left edge of r is in common with the octagon and we will

have the following equations

A

B

CC D

EF

GH

I

Figure 21. Here the left edge of r = DFG is in common with the oc-

tagon θ1 = ACHI, the compisite region has an alternate decomposition

I*θ2.
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r ∗ θ1 = (DFG) ∗ A ∗B ∗ C ∗ (EF ) ∗ (HI)

= A ∗B ∗ (DFG) ∗ C ∗ (EF ) ∗ (HI)

= A ∗B ∗ (CD) ∗ (FG) ∗ (EF ) ∗ (HI)

= A ∗B ∗ (CD) ∗ E ∗G ∗ (HI)

= A ∗B ∗ (CD) ∗ E ∗ I ∗ (GH)

= I ∗ A ∗B ∗ (CD) ∗ E ∗ (GH) = I ∗ θ2.

In above equations, rectangles and bigons are commuted an odd number of times so

S(r)µ(θ1) = −S(I)µ(θ2).

Next consider a case when lower edge of r is in common with octagon θ1 (Figure 22),

then

A

B

CC

D

E

F G

HI

Figure 22. Here the lower edge of r = D is in common with octagon

θ1 = ACEFHI, this composite region has an alternate decomposition

θ2 ∗ t, where θ2 = ACI is an octagon and t = DEFH is a rectangle.

r ∗ θ1 = D ∗ θ1 = D ∗ A ∗B ∗ (CD) ∗G ∗ (HI)

= A ∗B ∗D ∗ (CE) ∗G ∗ (HI)

= A ∗B ∗ C ∗ (DE) ∗G ∗ (HI)

= A ∗B ∗ C ∗ (FG) ∗ (DEF ) ∗ (HI)

= A ∗B ∗ C ∗ (FG) ∗ I ∗ (DEFH)

= θ2 ∗ (DEFH) = θ2 ∗ t

again here terms are commuted an odd number of times so

S(r)µ(θ1) = −µ(θ2)S(t)

the remaining cases are similar. �
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