arXiv:1106.0334v1 [physics.ao-ph] 1 Jun 2011

Ostwald ripening and the kinetics of rain initiation
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A central problem in cloud physics is understanding the kinetics of the growth of water droplets.
It is believed that there exists a ‘condensation-coalescence bottleneck’ in the growth of intermediate
size droplets. Here the Lifshitz-Slezov theory of Ostwald ripening is applied to the kinetics of the
growth of rain drops. The analysis shows that kinetic barriers to rain initiation are not significant. It
is also shown that Ostwald ripening can greatly enhance the apparent collision efficiency of droplets

falling under gravity.
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1. Introduction. Clouds are the least well understood
aspect of modelling the weather, and their albedo has a
stong effect on the radiation balance of the atmosphere
[1]. Perhaps the most complex aspect of cloud physics is
the removal of moisture from the atmosphere by rainfall.
Many different processes may be involved [2-4], and a
quantitative understanding of the rainfall cycle has been
lacking [5]. One difficulty is that the growth of droplets
through the size range 15 — 50 um is considered to be
a poorly understood ‘bottleneck’ in the kinetics of rain
initiation |5-8]. This bottleneck is partly a consequence
of the fact that the collision efficiency of small droplets
falling at different rates is believed to be very low, be-
cause the streamlines of the flow are deflected around the
droplets. It is believed that the effciencies are very low for
droplets smaller than 20 gm radius, but that they are of
order unity for droplets of radius 50 um or larger |2]. The
collision efficiencies of very small droplets are very hard
to measure. They are also hard to calculate reliably, be-
cause the criterion for droplet coalescence depends upon
a breakdown of hydrodynamic equations when the film of
air between the droplets becomes very thin |9, [10]. Un-
certainties about the collision efficiency are a barrier to
making relaiable estimates about the life-cycle of clouds.

Following a suggestion by Saffman and Turner [11] that
turbulence can promote collisions of water droplets, there
have been extensive efforts to explain how the growth
bottleneck might be overcome by the effects of turbu-
lence increasing the relative velocities of water droplets
[8, 16, 18, [12]. This paper addresses an alternative mech-
anism for droplet growth, applying the Lifshitz-Slezov
theory of Ostwald ripening [13] to the growth of water
droplets. It makes two distinct contributions. First, it is
shown that Ostwald ripening can circumvent the appar-
ent bottleneck in rain droplet growth. It is shown that
growth of droplets to 50 um can occur in approximately
ten minutes, independent of the physical parameters of
the cloud. In fact, this mechanism is so effective that the
emphasis should shift towards explaining the stability of
cloud systems. Secondly, it is shown that the non-local
interaction involved in the Ostwald ripening effect can
lead to ‘collision efficiencies’ which are greater than unity
for very small droplets.

2. Ostwald ripening. Ostwald ripening is a process
whereby droplets in a supersaturated solution exchange
molecules through the solution, resulting in a competitive
growth process which favours the growth of the largest
droplets at the expense of evaporation of the smallest.
The effect is caused by the Laplace pressure, p = 27/a,
resulting from surface tension ~ acting on the curvature
of the surface of a droplet of radius a. The higher pressure
inside smaller droplets increases the chemical potential,
favouring evaporation. Droplets below a critical radius
ag evaporate, and the material condenses onto the larger
droplets. As the larger droplets grow, the degree of super-
saturation s decreases, and the critical size ag increases,
so that the typical radius of the droplets increases. The
first persuasive analysis of the Ostwald ripening effect
was by Lifshitz and Slezov [13], which although not rig-
orous is regarded as essentially correct. The following is
a brief summary of the theory which is sufficient to sup-
port subsequent arguments. It follows the notation used
in [14].

The interior of a droplet of radius a has a pressure
which is higher than the ambient pressure by p = 2v/a.
This increased pressure implies that water vapour must
have a higher concentration at the surface of the droplet:
the surface of each droplet is therefore in contact with a
layer of air in which the volume fraction of water vapour
is & = ®,+0/a where o is a capillary length, defined by:

0 =29V ®./RT . (1)

Here D is the diffusion coefficient of water vapour in air,
Vi is its molar volume, ®, its equilibrium volume frac-
tion, and R is the universal gas constant. Lifshitz and
Slezov analysed the concentration gradient at the surface
of each drop, which leads to a flux of material to or from
the surface, and consequently a change in the radius of

the droplet, at a rate
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with ap = o/s, s being the supersaturation of the solu-
tion. This implies that droplets smaller than ay shrink
under the effects of the Laplace pressure, and those larger
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than ag grow by absorption of material evaporating from
the smaller droplets. The supersaturation decreases as a
function of time so that the largest droplets can continue
to grow. Lifshitz and Slezov gave a scaling form for the
distribution of droplet sizes at time ¢. Their theory shows
that ag is comparable to the typical droplet size (in fact
(a) = ap [13,114]) and it predicts that the mean droplet
size is

(a(t)) = (4Dot)"* . (3)

3. Kinetics of droplet growth in clouds. Consider
whether Ostwald ripening is relevant to the growth of
atmospheric rain droplets. It has been argued [6-8, [2(]
that there is a ‘condensation-collision bottleneck’ in the
growth kinetics of raindrops at radii in the range a ~
15 — 50 um, between smaller droplet sizes where growth
by condensation is efficient, and larger sizes where col-
lisions due to gravitational settling become important.
Let us consider the growth of droplets to 50 um by Ost-
wald ripening alone. The physical parameters are, at
10°C, diffusion constant for water vapour in air, D =
2.4 x 1075 m?s~ !, surface tension v = 7.4 x 1072 Nm™*,
molar volume Vi = 1.8 x 107°m3, saturation volume
fraction ®, = 1.2x 1072 [2]. These give a capillary length
o = 1.4 x 107" m and consequently, using equation (@),
the growth law is a(t) =~ 6 x 107%(¢/s)'/3 m. This implies
that growth to a radius of 50 um requires approximately
ten minutes. Note that this is a very robust estimate,
because it depends only upon physical parameters of the
water-air system. In particular, neither the density of the
water droplets nor the mass loading of water in the cloud,
both of which are highly variable parameters, plays any
role. Also, because droplet growth by Ostwald ripen-
ing does not involve collisions, the uncertainties in the
collision efficiency of droplet coalescence do not affect
this estimate. We must, however, ensure that the den-
sity of droplets is sufficiently high that water molecules
can pass from one to another by diffusion. For typical
water droplet densities in clouds of 10¥m=3 [2, 4], the
separation of droplet is of order 1 mm. A water molecule
diffuses this distance in a time of order 1s, so the droplets
are indeed sufficiently close to allow Ostwald ripening to
occur.

The atmosphere can be either convecting or stable.
Convecting atmospheres mix bodies of air with large
differences in temperature and saturation, so that the
growth of a droplet may occur in an environment with
fluctuating supersaturation. According to equation (2I),
an excess supersaturation can increase the rate of growth
of a droplet by a large factor, whereas a reduction in su-
perasaturation causes decrease in radius at a rate which
is bounded by |amax| = Do/a?. These considerations
indicate that equation (B]) gives a lower limit to the
droplet size, if ¢ is interpreted at the time over which
the droplet has been in a supersaturated environment.
Ostwald ripening is therefore a baseline contribution to
the droplet growth, which exists in stable atmosphere
and which may be increased by the fluctuating supersat-

uration in a convecting atmosphere.

Because the growth predicted by Ostwald ripening is
sufficiently rapid that it does not impose any limit on the
initiation of rainfall, it is not necessary to consider calcu-
lations of the rate of droplet growth due to turbulence-
induced collisions in order to explain rain initiation. In
fact, the Ostwald ripening mechanism is so efficient for
the growth of droplets in clouds that we should ask how
a cloud can persist for more than an hour without losing
its visible moisture as rainfall. We remark upon two pos-
sible explanations for the stability of clouds. One mech-
anism is that if droplets nucleate on salt grains (or other
hygroscopic nuclei) the osmotic potential reduces due to
dilution of the salt as the droplets grow, so that small
droplets are stabilised. The role of osmotic effects in sta-
bilising small droplets in aerosols was originally discussed
by Kohler [15]. A second possibility is that clouds may
be dynamic objects, where water droplets grow rapidly
at some altitudes, only to evaporate as they fall to lower
levels.

Although the effects of droplet curvature (eg. [16,17])
and hygroscopic nuclei (eg. [18, [19]) on droplet size
distributions have been included in complex models for
cloud dynamics, these studies have not isolated the role of
Ostwald ripening in circumventing the widely perceived
droplet growth bottleneck.

4. Growth by gravitational settling. As water droplets
grow their rate of sinking increases, and eventually the
effects of their macroscopic motion dominate over the
diffusional growth due to Ostwald ripening. Two effects
may be involved. Firstly, the falling drop will be able
to ‘sweep up’ the residual supersaturation of the solu-
tion more efficiently than if molecules had to reach the
droplet surface by diffusion alone. Secondly, the largest
droplets fall at a faster rate than the smaller ones. When
a droplet is caught up by a larger and faster droplet,
the two droplets may collide and coalesce. The merged
droplet will fall at an even faster rate. At the stage where
the settling velocity becomes significant, the supersatura-
tion of the air is small enough that most of the moisture
is in the form of water droplets, so it is the second mech-
anism which is most significant. It will be shown that the
equation modelling the droplet growth exhibits a finite-
time singularity, resulting in a runaway growth of the size
of the largest droplets. Other authors have also argued
that a runaway growth of droplet sizes occurs in rainfall
[20].

The sinking velocity v is estimated by equating gravi-
atational forces and the Stokes formula for the drag on
a small sphere: 47 (py — pa)ga®/3 = 6mpavav where v is
the kinematic viscosity of the air and where the densi-
ties of the air and water are p, and py, respectively. The
settling speed is therefore

2 w — Ma

v = —wa2 = ra? . 4)
9 PalV

For water droplets in air at 10°C we have v = 1.4 X
107°m?s™ 1, py, = 103kgm=3, p, = 1.2kgm~? [2], so



that kK ~ 1.3 x 108 m~1!s~ 1.

Gravitational settling allows drops to grow by sweep-
ing up smaller droplets. We can model this process as
follows. Assume that a droplet has already grown to a
radius a where it is much larger than the other droplets
in its path. The settling velocity of the smaller droplets
may be neglected. The larger drop moves through a ‘gas’
of smaller droplets which occupy a volume fraction w,
and they cause the lower surface to sweep up a volume
of liquid water per unit time V = ma?vw. This rate
of growth of the volume implies a rate of growth of the
droplet radius given by V = 4wa2a, so that the droplet
radius grows by particle accretion at a rate

. € 2

@ = Jwka (5)
where () was used to substitute for the sinking speed,
and where € is the collision efficiency coefficient. The vol-
ume fraction of water droplets is highly variable quantity,
but values of the order of w ~ 1076 would be appropriate
for a dense cloud [2].

Now consider a model for the time evolution of the
radius of the largest droplets. Their initial growth by
Ostwald ripening may be described by the relation a ~
Do /a?. Combining this with the relation for growth by
sweeping gives the model equation

da Do 1

E ~ 7 + ZE’U}K/GP (6)
where € is the collision efficiency. This model indicates
that the evolution of the droplets can be divided into
two stages, depending upon which term in the expression
for @ is dominant. The first stage, growth by Ostwald
ripening, lasts for a time ¢;, determined by the condition
that the two terms in the right hand side of (6) become
equal. This condition is satisfied when the droplets reach
a size aq. From this point on we shall ignore numerical
coefficients. The condition for the crossover is Do ~
exkwaf. Using the values quoted above and setting € = 1
and w = 107% gives a; ~ 40 um.

In the second stage of droplet growth, equation (@) for
droplet growth may be approximated by a/a? ~ exw.
With initial condition a = a; at t = t1, this has the
solution (1/a1) — (1/a) = ekw(t — t1). According to this
solution, a(t) diverges in a finite time, so that there is
a runaway growth of the largest droplets in a time to ~
(ewkai)~t. Setting € = 1, w = 1075 and a; = 40 yum
gives to ~ 200s.

To summarise, these estimates indicate that if we ap-
ply the Lifshitz-Slezov theory of Ostwald ripening, then
growth to 50 um occurs after approximately ten minutes.
Once this size is reached, collisions caused by gravita-
tional settling become significant and there is a runaway
growth in a relatively short time. For water droplets
formed on osmotically inactive nuclei, there estimates are
very robust, because the Ostwald ripening growth law,
equation (@), is independent of all of the the physical
parameters of the cloud except temperature. The con-
clusion is that calculations of collision rate enhancement

due to turbulence are not required to explain the onset of
rainfall, and that attention should shift to explaining the
persistence of clouds, which is favoured by condensation
onto hygroscopic nuclei.

5. Ostwald ripening and collision efficiency. An in-
teresting aspect of the Ostwald ripening mechanism for
droplet growth is that it is non-local, in that water is
transferred from smaller droplets to larger ones without
the necessity for physical contact. The collision efficiency
€, (defined in (B) above) cannot be greater than unity if
the droplets grow by coalescence upon contact, and in
the case of interaction between very small droplets, the
collision efficiencies are expected to be very low [2]. Tt
is interesting to consider whether Ostwald ripening can
increase the collision efficiencies of very small droplets.
It will be argued that this is possible, and that in some
circumstances the effective collision efficiency can exceed
unity.

A larger droplet falling of radius b falling through a
‘gas’ of small droplets of radius a will grow at a rate
b, which is proporitional to the volume fraction of the
smaller droplets, and by comparison with (@) it is pos-
sible to define a ‘collision efficiency’ e for this growth
process. In the following simplified account it is assumed
that b/a > 1. Droplets of radius a are in equilibrium
with a air containing a supersaturation s = o/a. The
supersaturation at the surface of the much larger droplet
of radius b is s’ = o /b, which is negligible because we as-
sume that b > a. As the larger droplet passes tha smaller
ones, it absorbs supersaturated water vapour onto its sur-
face by diffusion, so that the supersaturation drops to a
negligible value in a region of dimension R. The influ-
ence of the passage of the larger droplet lasts for a time
T ~ R/v, where v = kb? is the settling speed of the larger
droplet. The size of the region of reduced supersaturation
is given by R? ~ Dr, so that

L (1)
b kb3

In cases where R/b > 1, the effective collision efficiency
could exceed unity. To assess this possibility, we must
consider the effect of this reduction in supersaturation
as the larger droplet passes. Water will evaporate from
the smaller droplets of size a. If the time 7 is sufficiently
large, all of the small droplets in the affected region will
evaporate completely and their water content will con-
dense onto the larger droplet, but this could only hap-
pen is a is extremely small. For physically relevant values
of a, the temporary reduction in the degree of supersat-
uration will cause a limited evaporation of the smaller
droplets, so that their radius is reduced by Aa in the
time 7 taken for the larger droplet to pass. From (2I), the
fractional change in radius is estimated as

NOICE.

The evaporated material represents a fraction O(Aa/a)
of the total volume fraction of the droplets, w, so that the
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falling droplet sweeps out a cylinder of radius R, which
may be much larger than the contact radius b+ a, with a
collection efficiency which is of order Aa/a. The apparent
collision efficiency is therefore

R\* Aa D\*s /b)? 9

~G) TG 6 e

When D > xb? this quantity may be large compared to
unity.

For the water-air system at 10°C, we have shown
that Ostwald ripening grows droplets to radius of 40 pm
within a few minutes. For b = 40 ym, we find D/kb?® ~ 3,
so that the range of interaction due to Ostwald ripening
is comparable to the size of the droplet. This shows that
Ostwald ripening does not substantially enhance the col-
lision effciency of water droplets in clouds.

However, there are other contexts in which phase sepa-
ration results in nucleated droplets settling due to buoy-
ancy forces, where the condition R/b > 1 is easily sat-
isfied. One example is in the case of ‘test-tube’ experi-
ments on phase separation |21, [22], which show phenom-
ena analogous to ‘drizzle’ when a slow change of temper-
ature reduces the intersolubility of two partially miscible
liquids. In the case where the two phases are both lig-
uids with a similar composition, the density difference
in the numerator of (@) is orders of magnitude smaller
than in the water-air system, resulting in « being much
smaller. Also, when the equilibrium concentration is of
order unity, the volume fraction ®, and consequently the
capillary length ¢ are much larger than for the water-air
system. Both of these effects increase the efficiency, as
estimated by (@), to the point where numbers in excess
of unity are possible.

6. Summary. This paper has discussed the implica-
tions of the Lifshitz-Slezov theory of Ostwald ripening
for the kinetics of rain formation. It was demonstrated
that this theory leads to the growth of water droplets
condensed upon an osmotically inactive nucleus to 50 um
radius in approximately ten minutes by Ostwald ripening
alone. This estimate involves only the physical chemistry
of the water-air system, and is independent of the mass
loading and droplet density in the cloud. After reaching a
size of 50 pm collisions caused by graviationally induced
settling become the dominant growth process and lead
to a fast runaway growth of the droplet size. This shows
that attempts to explain the growth of rain droplets by
the effects of turbulence are of marginal relevance. The
emphasis must shift to understanding why clouds are so
persistent.

Ostwald ripening also provides a mechanism to en-
hance the collision efficiency for growth of droplets set-
tling under gravity. This effect is of marginal relevance
to atmospheric clouds, but it is significant where droplets
form in liquids with similar density. It was shown that
the apparent collision efficiencies of very small droplets
can exceed unity.
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