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I. INTRODUCTION

Nano plasmas can now be readily produced in laser irradiated clusters, and new physical phenomena have come
into focus experimentally as well as theoretically. Interactions between laser fields of 1013−1016 W cm−2 and clusters
have been investigated over the last few years, see Refs. [1]–[9]. After laser interaction, extremely large absorption
rates of nearly 100%, see [10], as well as x-ray radiation, see Refs. [11]–[17], were found. In pump-probe experiments,
e.g. by Döppner et al. [9] and Fennel et al. [18], the absorption rate of a second laser pulse is strongly dependent on
the time delay what is caused by the dynamical properties of the expanding cluster. We will discuss the dynamical
response function of the electrons in a nano plasma that is responsible for scattering and absorption of electromagnetic
radiation.

Collective electronic excitations of the nano plasma usually are interpreted as Mie resonances of a homogeneously
charged sphere. Absorption cross section experiments by Xia et al. [19] show multiple resonance structures indeed.
The effect of collective electron motion can also be seen in ultraviolet (UPS) and x-ray photoelectron spectroscopy
(XPS) experiments, see [20], which are used to detect binding energies of core level electrons in small metal clusters
[21, 22]. In fusion related experiments by Ditmire et al. [23], Grillon et al. [24], as well as Madison et al. [25] ignition
processes are started via irradiation of deuterium clusters. Collective effects in the optical response are discussed in
the context of metallic nanoshells by Höflich et al. [26] as well as nanocavities by Maier et al. [27].

In theoretical calculations of finite systems, see Raitza et al. [28–31], a more complex resonance structure was
found. Earlier investigations by Reinhard et al. [32] and Kull et al. [33, 34] led to comparable results. The method
of resonance structure analysis using spherical harmonics is known from the discussion of giant dipole resonances of
nuclei, see Reinhard et al. [35]. Quantum and semi-classical methods, see Refs. [36]–[38], respectively, were used
to investigate the cluster excitation via laser fields. Collisional absorption processes in nano plasmas have been the
subject of theoretical investigations by Hilse et al. [39]. Using density functional theory (DFT) calculations, the
electronic structures of cold clusters were analyzed by Ekardt [40], Kümmel et al. [41], Brack et al. [42], as well
as Krotscheck et al. [43]. The damping of collective electron oscillations was investigated by Ramunno et al. [44]
emphasizing the importance of collisional processes beside the Landau damping.

In this work, molecular dynamics (MD) simulations will be used to study nano plasmas in metal clusters. Clusters
consisting of 55 up to 1000 sodium like atoms are considered after short pulse laser irradiation with intensities in
the order of 1012 Wcm−2. Properties of the nano plasma are mainly determined by the dynamics of electrons which
are bound to the cluster but ionized from the former atoms, comparable to conduction electrons in bulk systems.
As already shown in earlier publications, see [28], plasma parameters as known from bulk (temperature and particle
density) but also the cluster size and net charge are justified for characterization since the electrons can be assumed to
be in local thermal equilibrium within time scales considered here. We focus on parameter ranges where the plasma
can be treated classically. Strong correlations are taken into account via collisions of all particles. Concepts that have
been well established for infinite bulk systems near thermodynamic equilibrium have to be modified for applications
to finite systems, e.g. clusters. In particular, we are interested in the dynamical structure factor and the response
function for such finite nano plasmas. In order to bridge from finite systems to bulk plasmas, we investigate size effects,
e.g. in the dynamical collision frequency. First results in this direction have been reported in Refs. [28, 45, 46].

In Sec. II, correlation functions and their relation to optical properties of homogeneous bulk plasma are introduced
as far as it will be of interest to extend the approach to finite systems. Expressions will also be used for comparison
with nano plasmas in the limit of large clusters. Sec. III explains the restricted molecular dynamics (RMD) scheme
for the calculation of the particle trajectories from which the total and bi-local current density correlation functions
are determined. Symmetries in the correlation matrix discussed in Sec. IV can be used for an improved statistics.
The decomposition of the correlation matrix into eigenvectors and eigenvalues is interpreted as a decomposition into
collective excitation modes. In Sec. V, the excitation modes will be characterized with respect to spherical harmonics.
In the further analysis, we focus on modes with a dipole moment, which are also seen in the total current density
auto-correlation function. First results for resonance frequencies and damping are presented. Regarding the dipole-
like modes, the spatial structure at the selected resonance frequency will be discussed in Subsec. A and Subsec. B.
Conclusion and outlook are given in Sec. VI.

II. LINEAR RESPONSE THEORY OF PLASMAS IN EQUILIBRIUM

Within linear response theory as derived by Kubo et al., see [47, 48], the reaction of a many-particle system
to weak external perturbations can be related to the dynamical behavior of fluctuations in thermal equilibrium.
Denoting the equilibrium statistical operator with ρ0, we introduce the two-time correlation function of the fluctuations



3

δAi(t) = Ai(t)− Tr{Aiρ0} as the Kubo scalar product

(Ai(t);Aj(0)) = β

∫ 1

0

dλTr{δAi(t)δAj(ih̄βλ)ρ0}, (1)

where the time dependence is given in the Heisenberg picture. The indices i and j identify quantum observables.
In particular we consider local properties so that they contain also the position ~r. In case of i = j, it is called
auto-correlation function (ACF).
In the classical case, equilibrium two-time correlation functions can be calculated according to

(Ai(~r, t);Aj(~r
′, 0)) = lim

T→∞

1

T

∫ T

0

dτ δAi(~r, τ + t) · δAj(~r
′, τ), (2)

where we assumed ergodic systems - the ensemble average can be replaced by a time average. The spectrum of the
equilibrium correlation function 〈Ai(~r);Aj(~r

′)〉ω then results from Laplace transformation.
We consider an induced electron density fluctuation δne(~r, t) = ne(~r, t)−ne,0(~r) at time t as the deviation from the

equilibrium density distribution ne,0(~r) due to an external potential Uext(~r
′, t′) at times t′ < t. Close to equilibrium,

the correlation between the external potential and the induced density fluctuation is only dependent on the time
difference ∆t = t− t′. Thus, one is able to discuss its spectrum after Laplace transform. In the same way, the induced

electrical current density ~je(~r, t) is related to the external electric field ~E(~r′, t′). Via Kubo’s theory, these induced

quantities, δ〈ne(~r)〉ω and δ〈~j(~r)〉ω , can be expressed within linear response, see [48], as

δ〈ne(~r)〉ω = β

∫

d3~r′ 〈δne(~r); δṅe(~r
′)〉ω Uext(~r

′, ω), (3)

δ〈~j(~r)〉ω = β

∫

d3~r′ 〈~j(~r);~j(~r′)〉ω ~E(~r′, ω). (4)

The spectrum of the density fluctuation correlation 〈δne(~r); δṅe(~r
′)〉ω is related to a scalar response function. The

current-density correlation 〈~j(~r);~j(~r′)〉ω represents in general a tensor due to the directions of the current density
vector.
Before considering non-local response functions, we shortly mention homogeneous systems. Properties of the bulk

plasmas with electron density ne and inverse temperature β are only dependent on the difference of the positions
∆~r = ~r − ~r′. Thus, after Fourier transform of the spatial difference ∆~r, the correlations are dependent on a wave

vector ~k.
The dynamical structure factor is directly related to the density fluctuation correlation, as

S(~k, ω) =
1

2πN
〈δnk; δnk〉ω (5)

with N the number of particles. For further relations to the dielectric function and the optical response of a homo-
geneous bulk plasma see [49]. Note that the density fluctuations Eq. (3) as well as the density correlation function
in Eq. (5) can be expressed in terms of the current-density correlation function via partial integration and using the

continuity equation. Thus, the dynamical structure factor is divided into a static part S0(~k) and a dynamical part
which is directly related to the longitudinal part of the current-density correlation function

S(~k, ω) =
S0(~k)

−iω
+

1

2πN

k2

ω2
〈~j||k ;~j

||
k 〉ω . (6)

It is of fundamental interest to describe the collective behavior of the system as response to external fields, in
particular emission, absorption and scattering of light. In bulk systems, the wave vector and frequency dependent
response function reads

χ(~k, ω) = −iβΩ0
k2

ω
〈~j||k ;~j

||
k 〉ω , (7)

which can be evaluated using quantum statistical approaches such as Green function theory, see [49], or numerical
approaches such as MD simulations, see [50]. As collisions are relevant in strongly correlated systems, the dynamical
collision frequency ν(ω) is derived and appears in a generalized Drude formula [51, 52]

lim
k→0

χ(~k, ω) =
ε0k

2 ω2
pl

(

ω2 − ω2
pl

)

+ iων(ω)
. (8)
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In the classical case, the current-density correlation function has been extensively discussed in the long wavelength
limit k → 0 applying MD simulations and perturbative approaches. Exemplarily, we refer to [50].
The state of a homogeneous one-component plasma in thermodynamic equilibrium is characterized by the nonide-

ality parameter Γ = e2(4πne/3)
1/3(4πε0kBTe)

−1 and the degeneracy parameter Θ = 2mekBTeh̄
−2(3π2ne)

−2/3, Te is

the temperature of the electrons. Considering the response function χ(~k, ω) in the long wavelength limit, a sharp peak
arises at the plasmon frequency ωpl, see Eq. (8). For finite wavelengths, the resonance is shifted and can be approxi-
mated by the so called Gross-Bohm plasmon dispersion for small wave numbers k, see [53, 54], ω(k) ≈ ωpl+3k2/κ2+...

with the Debye screening length κ−1 = [nee
2/(ǫ0kBTe)]

−1/2. This relation has recently been revisited with respect to
the relevance of collisions by Thiele et al. [55]. According to Eq. (8), the general behavior of the response function

χ(~k, ω) in the long-wavelength limit is closely related to the collision frequency which is relevant in non-ideal plasmas,
see [52, 55]. In the two-component plasma, a phonon mode can arise in addition to the plasmon excitations [56].

The response function χ(~k, ω) and the related dynamical structure factor S(~k, ω) as well as the optical properties
have been intensively investigated for electron-ion bulk systems, see Refs. [55, 57]. In this work, the inhomogeneous
case of finite clusters in local thermal equilibrium will be discussed. The response of inhomogeneous systems is not
only dependent on the difference of the positions, but on ~r and ~r′ separately. Therefore, spatially resolved current
density correlation functions 〈~j(~r);~j(~r′)〉ω can not be diagonalized by spatial Fourier transform. Instead of plane
waves, other basis functions have to be found in order to characterize the collective excitations of electrons.

III. MD SIMULATIONS OF FINITE PLASMAS

Finite plasma systems have been investigated using the restricted molecular dynamics (RMD) simulations, see
Raitza et al. [28]. A two-component system of singly charged ions and electrons will be described using an error
function pseudo potential for the interaction of particles i and j

Verf(rij) =
ZiZje

2

4πε0rij
erf

(rij
λ

)

, (9)

where Zi is the charge of the ith particle. The Coulomb interaction is modified at short distances, assuming a Gaussian
wave function for electrons motivated by the account of quantum effects. Considering a sodium like system, the
potential parameter λ = 0.318 nm was chosen in order to reproduce the ionization energy of IP = Vei(r → 0) = −5.1 eV
for solid sodium, as already discussed for MD simulations by Suraud et al. [58].
The velocity Verlet algorithm [59] was applied to solve the classical equations of motion for electrons and ions. This

method takes into account the conservation of the total energy of the finite system, as long as there is no external
potential. To follow the fast electron dynamics, time steps of 0.01 fs were taken to calculate the time evolution.
Contrary to bulk MD simulations no periodic boundary conditions are applied.
Icosahedral arrangements of 55, 147, and 309 ions, see [28], were considered as initial configuration for the ion

positions. For these nearly spherically, homogeneously distributed ions, the ion density typical for solid sodium is
given by an ionic next neighbor distance of d0 = 0.212 nm. In addition, randomly distributed ion configurations
within a given sphere were considered for comparison and the number of ions was increased up to 1000 particles.
Starting with a neutral cluster, the electrons have been positioned nearby the ions with small, randomly distributed
deviations from the ion positions.
To simulate experiments where clusters are excited by short pulse lasers, MD simulations are performed under

the influence of an electric field, assuming a Gaussian shape and pulse duration of about 100 fs. Due to the largely
increased kinetic energy of the electrons, ionization processes occur. After the laser field is switched off, the ionization
degree of the cluster is determined by the number of electrons found outside the cluster radius with positive total
energy, so that they can escape from the cluster. Due to ion excitation on larger time scales, a slow expansion of the
positively charged cluster is obseved [60], leading to Coulomb explosion experimentally.
Considering the single-time properties, it was found in [28] that already local thermodynamic equilibrium (LTE)

is established within a few fs after the electron heating. In particular, at each time step, the momentum distribution
of electrons is well described by a Maxwell distribution, and the spatial density profile agrees with a Boltzmann
distribution with respect to the average potential that is determined by the actual ion configuration and the self-
consistent electronic mean field. The fact that electrons are considered within sub fs time intervals, while the ion
configuration remains nearly unchanged, enables us to separate the electron dynamics from the ion dynamics.
Subsequently, the dynamical properties of the electron subsystem can be calculated for a frozen ionic configuration

thus referring to a specific time. This is considered as an adiabatic approximation to the true dynamical properties
of the electron subsystem which have to take into account the slow change in the ion configuration. More rigorously,
non-stationary time dependent correlation functions have to be treated for the full charged particle system.
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FIG. 1. (Color online) Simulation data of the cluster charge Z (symbols) and a power fit (solid line) for clusters with different
numbers of ions Ni at different temperatures is shown.

Using the RMD simulations scheme as introduced in [28], the ions are kept fixed acting as external trap potential.
Starting from an initial state, the many-electron trajectory {~rl(t), ~pl(t)} is calculated, solving the classical equations
of motion of the electrons. From this, all further physical properties of the electron subsystem inside the cluster
are determined. Within RMD simulations, we consider no temporal variation of the plasma parameters that are
determined by the frozen ion distribution, the electron temperature and the degree of ionization. A long-time run can
be performed in order to replace the ensemble average by a temporal average. This has been successfully done for the
single-time properties such as the momentum distribution and the density profile, see [28] and will now be applied to
the two-time correlation functions.
Using classical MD simulation techniques, the results are valid for non-degenerate plasmas. This restricts the

temperature range to T ≥ 1 eV where our simulations can be compared with realistic sodium clusters. Values for the
plasma parameter Γ > 1 can be treated since we are not confined to the weak coupling limit as, e.g., in perturbation
theory.
In our RMD calculations, we start from a homogeneous ion configuration (icosahedral or randomly distributed)

inside the cluster at fixed ion density. In the case of random distribution, we perform averaging over different initial
configurations of ions. The Langevin thermostat was used to heat the electrons at an initial stage. We have chosen the
Langevin thermostat introducing a friction term with suitable sign to adjust the intended kinetic energy. Furthermore,
a random source term is applied that thermalizes the system. Hot electrons are emitted during this stage so that
the cluster becomes ionized. Evaluating the trajectories of electrons, sufficient time of about 200 fs has to be allowed
before a stationary ionization degree is established. Then the thermostat is switched off and a data taking is performed
using an ensemble at fixed number of density, volume and energy. It is checked that the mean cluster charge Z and
the system temperature do not change any more. In Fig. 1, the cluster charge Z depending on cluster size Ni is
shown. A power fit Z(Ni) = ANB

i with, for example, A = 0.165 and B = 0.197 for Te =1 eV shows the trend of the
size dependent ionization degree.
Using the trajectories of all Ne electrons obtained from the RMD simulations scheme, the local current density

~je(~r, t) at position ~r was calculated for each time step t

~je(~r, t) = lim
∆V~r→0

e

me

1

∆V~r

Ne
∑

l=1

~pl(t) δ∆V~r
(~rl(t)), (10)

which is the sum over all electron momenta ~pl inside a small volume ∆V~r at position ~r, where δ∆V~r
(~rl(t)) = 1, and

δ∆V~r
(~rl(t)) = 0 for electrons found outside ∆V~r . The size of the volume determines the spatial resolution of the local

current density ~je(~r, t). However, it must be taken sufficiently large to reduce statistical fluctuations.
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The bi-local correlation tensor of the normalized spatially-resolved current density is calculated according to Eq. (2)
as

(

~je(~r, 0);~je(~r
′, t)

)

=

∑Nτ

i=1
~je(~r, i · τ)⊗~je(~r

′, i · τ + t)

Nτ · 〈~j2e 〉
, (11)

with ~je the total current density. Typical values are Nτ = 105 − 106 and τ ∼ 0.1 fs. Its Laplace transform reads

〈~je(~r);~je(~r′)〉ω =

∫ ∞

0

dt eiωt
(

~je(~r, 0);~je(~r
′, t)

)

. (12)

In the following, we restrict ourselves to the diagonal components 〈j||e ; j||e 〉ω of this tensor, where only parallel compo-
nents of the current density vectors are correlated as already introduced in Sec. II. As it will be shown in the following
sections, this bi-local current-density correlation is important to understand the excitation modes of nano plasmas.
The non-diagonal components of the bi-local correlation tensor are small in comparison to the diagonal components.
Beside the bi-local current density correlation function considered here, the bi-local density fluctuation correlation

〈δn(~r), δn(~r′)〉ω as well as the bi-local force correlation 〈~F (~r), ~F (~r′)〉ω are useful quantities in the context of optical
properties. These correlations can be evaluated from the trajectory in a similar way and are related to the bi-local
current density correlation. This will be discussed in an upcoming paper.
Because of the spherical symmetry of the cluster geometry during excitation and expansion, the volume is divided

into sections ∆V~r according to Nr, Nθ, Nφ equidistant intervals of spherical coordinates, i.e. the distance r to the
center of the cluster, the inclination angle θ as well as the azimuthal angle φ, respectively. The cluster radius Ri is
given by the root mean square radius of ions according to R2

i = 5/3〈r2〉. The sections are numbered by a single counter
a = NφNθ (k − 1) + Nφ (j − 1) + i with three independent counters according to the three coordinates: i = 1..Nφ,

j = 1..Nθ and k = 1..Nr. With respect to Eq. (11) the bi-local correlation matrix Da;a′(t) =
(

j
||
e (~ra, 0); j

||
e (~ra′ , t)

)

for

the spatially resolved cluster and its Laplace transform Da;a′(ω) =
∫∞

0
dt eiωtDa;a′(t) have been calculated.

The total current density ACF can be calculated from the trajectories directly. Please note, that it can be also
calculated from the bi-local current density correlation matrix

〈j||e ; j||e 〉ω =
1

V 2
cl

∑

a,a′

Da,a′(ω)∆Vi,j,k∆Vi′,j′,k′ , (13)

using the cluster volume Vcl =
4π
3 R3

i and the individual cell volumes

∆Vi,j,k =

∫ 2πi/Nφ

2π(i−1)/Nφ

dφ

∫ πj/Nθ

π(j−1)/Nθ

dθ

∫ Rik/Nr

Ri(k−1)/Nr

dr r2 sin θ

=
2π

3Nφ

(

Ri

Nr

)3
(

3k2 − 3k + 1
)

(

cos

[

π

Nθ
(j − 1)

]

− cos

[

π

Nθ
j

])

. (14)

The consistency of these expressions has been checked throughout our explicit calculations.

IV. FROM BI-LOCAL CORRELATION FUNCTION TO EXCITATION MODES

In the following, we discuss calculations for the current-density ACF, Eq. (13), and the bi-local current-density
correlation spectrum Da,a′(ω). Exemplarily, we present results for the Na309 cluster at electron temperature Te = 1
eV, cluster charge Z = 16 and ionic density ni = 2.80 ·1022 cm−3. The electrons form a nano plasma with nonideality
parameter Γ = 6.964 and degeneracy parameter Θ = 0.664. Starting with a solid density cluster, these are typical
parameters obtained directly after the interaction with a short pulse laser of 100 fs duration and intensity of I = 5·1011
Wcm−2. Calculations of other cluster sizes will be presented in the following sections.

The real part of the total current-density ACF Re〈j||e ; j||e 〉ω is shown in Fig. 2. Three maxima are obtained. This
feature differs from the bulk behavior and is interpreted as different resonances of the electron system. To investigate
the origin of the different maxima as collective excitations of the nano plasma, the bi-local current-density correlation
matrix was calculated as well.
The following spatial symmetries in the matrix Da;a′(ω) were found

Di,j,k; i′,j′,k′(ω) = D|i−i′|+1,j,k; |i−i′|+1,j′,k′(ω), (15)

Di,j,k; i′,j′,k′(ω) = Di,Nθ−j+1,k; i′,Nθ−j′+1,k′(ω), (16)

Di,j,k; i′,j′,k′(ω) = Di,j,k′; i′,j′,k(ω). (17)
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FIG. 2. (Color online) Frequency spectrum of the real part of the current-density ACF of a Na309 cluster at electron temperature
Te = 1 eV, cluster charge Z = 16 and ionic density ni = 2.80 · 1022 cm−3.

In our case, the N2
sec elements of the full matrix can be reduced to Nind = (Nr Nθ + 1)Nr Nθ (Nφ +Nφmod2) /4

independent elements due to the symmetries Eq. (15) - Eq. (17), thus improving statistics via averaging equal elements.
Because of the different size of section volumes in spherical coordinates there are large variations in the mean

number of particles in a section. Provided that we have Ne = 50− 1000 electrons and Nsec = NφNθNr = 128 sections
the average number of particles in some sections can be even smaller than unity. In this case, the local current density
Eq. (10) is affected by strong fluctuations due to the discrete number of particles. This problem is reduced, when you

consider the current ~Je(~r, t) = je(~r, t)∆V~r as the contribution of smaller cells will be damped. Therefore, we used the
non-normalized form of the correlation function for further analysis

Ka,a′(ω) = Da;a′(ω)∆Vi,j,k∆Vi′,j′,k′ , (18)

for which the following eigenproblem was solved,

∑

a′

ReKa,a′(ω)Ψµ,a′(ω) = Kµ(ω)Ψµ,a(ω). (19)

Thus, the matrix is decomposed into eigenvectors Ψµ,a(ω) = Ψµ,i,j,k(ω) as well as their eigenvalues Kµ(ω) at each
frequency. The eigenvectors represent the spatial structure of the mode (Ψµ,i,j,k(ω) → Ψµ(~r, ω)). The orthonormality
condition

∫

d3~rΨµ(~r, ω)Ψµ′(~r, ω) = δµ,µ′ . (20)

holds.
For two selected frequencies, the 10 strongest eigenvalues of the Na309 cluster are shown in Fig. 3. At ω = 4.42

fs−1 (black), a resonance frequency was found with one outstanding, leading eigenvalue. The second and third largest
eigenvalue are of same strength, which suggests degeneracy due to the symmetry of the correlation matrix. At off-
resonant frequencies, i.e. at ω = 5.50 fs−1 (shaded, red online), all eigenvalues are of the same order of magnitude.

In Fig. 4 (a) the strongest eigenvalues Kµ(ω) of the Na309 cluster are shown in dependence of frequency. They are
colored according to their strength and numbered ascending with descending strength. In the shown frequency range,
modes Kµ(ω) with well defined maxima are found. The spatial oscillation structure can be identified by analyzing
the eigenvectors.
In Fig. 4 (b), the spectra of eigenvalues are sorted in an alternative way, according to the spatial structure of the

eigenvector which is obtained over the whole frequency range. Overall, the black solid mode is the strongest. Its
resonance frequencies are also found in the total current-density ACF (indicated via vertical blue dashed lines) and
are therefore of particular interest. Resonances in the total current-density ACF, shown in Fig. 2, are only possible
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FIG. 3. (Color online) Eigenvalues of the Na309 cluster sorted by size for the resonant case at ω = 4.42 fs−1 (black) and a
non-resonant case at ω = 5.50 fs−1 (shaded, red online), for parameters as in Fig. 2.

in the case of non-zero total current, which is caused by a dipole-like oscillation. Thus, resonances which are seen in
the total current-density ACF are oscillation modes with a dipole moment. Other resonance structures, for example,
are breathing modes that have no dipole moment. After characterization of the resonance structures, the dipole-like
resonances will be investigated in more detail.
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FIG. 4. (Color online) Spectrum of the 6 highest eigenvalues Kµ(ω) of the Na309 cluster for same parameters as in Fig. 2 (a).
Eigenvalues of the same cluster selected in terms of the corresponding spherical harmonics Yl,m(θ, φ) (b).

V. ANALYSIS OF THE COLLECTIVE MODES

The decomposition of the locally resolved current correlation matrix into eigenvalues Kµ(ω), as shown in Fig. 4,
gives a very complex set of resonance structures in comparison to the 1D case, see [30]. The spatial mode structures in
1D chains were characterized by their wave number k. To analyze the more complicated spatial oscillation structure
of 3D clusters, a spherical Fourier decomposition of the eigenvectors into the spherical Bessel function jl(kn,lr) and
spherical harmonics Yl,m(θ, φ) was performed according to

Ψµ(~r, ω) =

Nn
∑

n=1

Nl
∑

l=0

l
∑

m=−l

Sn,l,m(ω)Nn,ljl(kn,lr)Yl,m(θ, φ), (21)



9

where Sn,l,m(ω) is the spherical Fourier component with ordinal numbers n, l,m. The normalization factor Nn,l as
well as the wave number kn,l are chosen in the way that the eigenvector has a root at the cluster surface.
In Fig. 4 (b), the four strongest eigenvalue modes are characterized by pairs of ordinal numbers l,m which deter-

mine the main angular part of the eigenvector by the spherical harmonics Yl,m(θ, φ). The leading dipole-like mode,
represented via solid black lines in Fig. 4 (b), is characterized by the overlap of the spherical harmonic functions
Y0,0(θ, φ) and Y2,0(θ, φ). For the Na309 cluster, one can find three resonance frequencies which are identical to the
ones found in the total current-density ACF. The latter are indicated by vertical dashed lines (blue online) in Fig. 4
(b).
In our investigations, we looked at other cluster parameters as well and found similar behavior. Comparisons will

be made in the following chapters. For further analysis of the exication modes, we now consider a larger cluster
consisting of 1000 ions. There, four pronounced dipole-like resonances were found. In Fig. 5, the spatial structures of

the current-density j
||
e (~r) ∼ Ψ(~r)

∆V (~r) is shown for the Na1000 cluster at the resonance frequencies of the leading dipole-like

mode. The behavior is shown in the z − x−plane at a fixed azimuthal angle φ on which it does not depend.

ω = 4.80 fs−1 ω = 6.18 fs−1 ω = 9.15 fs−1 ω = 8.23 fs−1

-1.0

-0.5

0.0

0.5

1.0

A
m

pl
itu

de

FIG. 5. (Color online) Selected eigenvectors of the dipol-like mode in the Na1000 clusters for same parameters as in Fig. 2 but
Z = 19.

At the resonance frequency ωR = 4.80 fs, the electrons are oscillating with a current density j
||
e (r) = v(r)ne(r). As

shown in Fig. 5 (a), all electrons of this mode are moving in the same direction and no nodes can be seen. Assuming
a constant velocity field amplitude v = const, the change of the current density with distance r is directly related to
the density profile ne(r) of the electrons.
The modes in Fig. 5 (c) and (d) are similar to a plane wave oscillation of electrons, but trapped inside the cluster.

To identify a wave number of the plane wave oscillation, a Fourier decomposition of plane waves in z-direction was
done. A maximum at k = 1.6 nm−1 and k = 4.7 nm−1, respectively, is found which identify the wavelengths of the
plane wave oscillations. Only in the large cluster with 1000 ions, a plane wave oscillation with higher wavenumber
was found. All other modes can be seen in smaller clusters as well. The resonance structure in Fig. 5 (b) looks like a
mix of the first and the third resonance structure.
We want to point out one further feature of the mode spectra in Fig. 4 (b). The dashed red line represents in

fact two resonance structures with exactly the same eigenvalues at all frequencies. The eigenvectors are orthogonal
since they are characterized by the same spherical harmonic function Y1,1(θ, φ) but have a phase shift in φ-direction:

Y
(1)
1,1 (θ, φ) = Y

(2)
1,1 (θ, φ + π

2 ). Further degenerations are obtained for weaker eigenvalue modes as well.

All eigenvectors Ψµ(~r, ω) are decomposed into a superposition of spherical Bessel functions jl(kn,lr) with a set of
ordinal numbers n. No leading ordinal number n was found, which characterizes the spatial resonance structure in r
direction.

A. Resonance frequency of the rigid oscillation

The total current density ACF shown in Fig. 2 as well as the leading eigenvalue mode in Fig. 4 (right) show
the strongest resonance at the frequency ωR ≈ 4.42 fs−1. This resonance belongs to the dipole-like mode with the
eigenvector shown in Fig. 5 on the left hand side. We will now analyze this collective excitation mode in terms of a
rigid oscillation.
The electrons with density profile ne(~r) are assumed to move nearly rigidly in the external potential Vext,ei(~r) due

to the fixed ions. The potential energy of the electrons due to a small shift with respect to the ions reads

Ue(z) =

∫

d3~r ne(~r)Vext,ei(~r − z~ez). (22)
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The change of the potential energy Ue(z) in z direction is due to the restoring force on the electron profile. In harmonic
approximation of the equation of motion, the resonance frequency is identified as

meNeω
2
R = − ∂2 Ue(z)

∂ z2

∣

∣

∣

∣

z=0

. (23)

For small rigid shifts z → 0, assuming radially dependent electron density profiles and external potentials in Eq. (22)
the integration over the angular dependence of the potential energy calculation can be executed. The resonance
frequency Eq. (23) is then given according to

ω2
R =

4π

3meNe

∫ ∞

0

dr ne(r) r
2

(

V ′′
ext,ei(r) + 2

V ′
ext,ei(r)

r

)

. (24)

As a first example for a density profile, we assume a homogeneously charged ion sphere with radius Ri =
(3Ni/(4πni))

1/3 and an electron sphere with radius Re = (3Ne/(4πne))
1/3. The densities of the electron and

ion spheres is equal (ne = ni). Therefore, the difference of ion and electron radius is determined by the cluster charge,
basically the difference of the simulated electron number Ne and ion number Ni. Thus, in the case of positively charged
clusters, as discussed here, the electron sphere radius is smaller than the ion radius (Re < Ri). The error function
potential Eq. (9) was taken as electron-ion-interaction potential for the calculation of the resonance frequency, as it
was used for the MD simulation as well. The resonance frequency than reads

ω2
R(Ri, Re) = ω2

Mie

[

R3
i +R3

e

2R3
e

erf

(

Ri +Re

λ

)

− R3
i −R3

e

2R3
e

erf

(

Ri −Re

λ

)

+

e−
R2

i
+R2

e

λ2

√
πR3

e

([

λ3

2
− λ

(

R2
i +R2

e

)

]

sinh

(

2RiRe

λ2

)

− λRiRecosh

(

2RiRe

λ2

))



 . (25)

In the limit of large clusters with high number of ions the resonance frequency equals the Mie frequency,
limRi→∞ ωR(Ri) = ωMie. Assuming only a weak charged cluster, the sphere radii have nearly the same size (Re → Ri)
and the system is nearly neutral. The limit for small clusters, down to just one atom, depends strongly on the pseu-
dopotential. In our case, the resonance frequency limNi→1 ωR(Ni) = e2/4πε0 · 4/(3

√
πλ3me) is due to the oscillation

of a single electron in the ionic error-function pseudo-potential Eq. (9).
In Fig. 6 (a), the resonance frequency ωR of the dipole-like mode is shown in dependence on the size of the ion

sphere. Results from MD simulations (empty circles) for Na55, Na309 and Na1000 cluster at ni = 2.80 · 1022 cm−3 as
well as the Na55 cluster at ni = 2.15 · 1022 cm−3 are shown. The resonance frequencies have been calculated using
Eq. (25) for ion densities of ni = 2.15 · 1022 cm−3 (solid shaded line, red online) and ni = 2.80 · 1022 cm−3 (solid black
line). The limits of large clusters, the Mie frequency ω2

Mie = e2ni/(3ε0me), are given as dotted lines colored according
to the two densities.

3 4 5 6 7 8 9 10

N
i

1/3

2

3

4

5

6

7

ω
R
 [

fs
-1

]

ω
Mie

charged sphere
density profile n

e
 (r)

simulation

(a)

1 2 3 4 5

k [nm
-1

]

5
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11

ω
 (

k)
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fs
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]

ω
pl

dispersion
simulation

1000

309
147

55

1000

55

(b)

FIG. 6. (Color online) Cluster size dependent resonance frequency ωR(Ri) (a). Simulation results (empty circles) and analytical
calculations (solid lines) using Eq. (25) are shown for ni = 2.15 · 1022 cm−3 (shaded, red online) and ni = 2.80 · 1022 cm−3

(black). The Mie frequencies are given as dashed lines. Numerical calculations using Eq. (24) are presented (full dots).
Dispersion Eq. (32) of a plane wave in a homogeneously charged sphere (solid line) for ne = 2.80 · 1022 cm−3 as well as
simulation results (empty symbols) and bulk plasmon frequency (b).

Additionally, the electron density profile ne(r) was deducted from MD simulations for all cluster sizes and used to
derive the resonance frequency ωR solving Eq. (24) numerically. As a result (full circles in Fig. 6 (a)), the resonance
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frequency of the dipole-like mode is obtained with a deviation to the direct simulation results of less than 5%. Using
homogeneously charged ion and electron spheres leads to reasonable agreement in the limits of large clusters as well
as for small clusters. Taking the spatial structure of the density profile into account, there is good agreement with
the direct simulation results in the intermediate cluster size regime as well.

B. Dispersion of the plane wave mode

While the Mie-like resonance, discussed in the previous subsection, is almost spherically symmetric, we obtain an
increasing plane wave character of the dipole-like mode with increasing frequency. The third resonance frequency of
the total current density ACF for the Na309 cluster at ωR = 8.14 fs−1, see Fig. 2, is mainly caused by a plane wave like
eigenvector, which is similar to the eigenvector of the Na1000 cluster, shown in Fig. 5 (right). This mode is discussed
by Kresin et al. [19] as compressional volume plasmon. Here, oscillations of electrons in opposite directions must
be taken into account for the analytical calculation of the resonance frequency. We assume homogeneously charged
spheres for the electrons with radius Re and for the ions with radius Ri as it was already discussed in the previous
subsection. The electron motion is treated as a hydrodynamical liquid using the Euler equation

∂~j(~r, t)

∂ t
= −div

[

~j(~r, t)⊗ ~v(~r, t)
]

− 1

me
grad p(~r, t)− ne(~r, t)

me
gradVext(~r, t), (26)

where ~j(~r, t) = ne(~r, t)~v(~r, t) is the spatially resolved current density of the electrons, p(~r, t) is the pressure of the
electron gas and Vext = Vext,ei + Vext,ee is the external potential, composed of contributions from the electrons and
ions. Using the following ansatz

jz(~r, t) = δj~eze
i(kz−ωt), (27)

vz(~r, t) = δv~eze
i(kz−ωt), (28)

ne(~r, t) = ne,0(r) + δnee
i(kz−ωt), (29)

Vext(~r, t) = Vext,0 + δVext(~r), (30)

we consider small perturbations in z-direction restricting ourselves to longitudinal effects. One is able to linearize the
Euler equation. The system is assumed to be in LTE, described by the quantities ne,0(r), ~j0(~r) = 0, ~v0(~r) = 0 as
well as Vext,0(r). Electrons are moving in the external field of ions and in the mean field of electrons. The external
potential is

Vext(~r, t) =

∫

d3~r1

(

ni(r1)−
ne,0(r1)

2

)

Ve,i(~r1 − ~r) +
1

2

∫

d3~r1δne(r1, t)Ve,e(~r1 − ~r),

Vext(~r, t) = Vext,0(r) + δVext(~r, t). (31)

The external potential has a equilibrium part and a perturbative part δVext(~r, t), which is mainly dependent on the
linear density perturbation δne(~r, t).
Assuming Boltzmann distribution we express the ideal gas pressure of the electrons p(~r, t) via the electron density.

Using the equation of continuity, one is able to express the Euler equation in terms of linear perturbations of the
density. Thus, the equilibrium part of the external potential compensates the pressure term on the right hand side of
Eq. (26). Restricting ourselves to linear perturbations of the Euler equation, only the third term on the right hand
side of Eq. (26) remains, which is connected to the external potential. Finally, all terms of the Euler equation Eq. (26)
are lead back to a linear density fluctuation δne(~r, t). Thus, one ends up with

ω2(k) =
ωpl

4
e−

k
4 (kλ

2+4iRe)

(

ieikRe

[

erfi

(

kλ2 − 2ikRe

2λ

)

− erfi

(

kλ2 + 2ikRe

2λ

)]

− e
k2λ2

4

[

1 + e2ikRe
]

erf

(

Re

λ

))

. (32)

This relation leads to real valued solutions for the resonance frequencies for standing waves with kn = nπ/Re only
and scales with the plasma frequency ωpl. In the limit k → 0 we find ω(0) = ωpl which coincides with the bulk limit.
From the eigenvector of the plane wave mode, one can derive the wave number k = π/Re, which corresponds to

n = 1. This means the dispersion of the plane wave mode is determined by the radius of the electron cloud. Results
for this case are shown in Fig. 6 (b) for different cluster sizes and are compared with the simulation data. For the
cluster with 1000 ions a plane wave mode with k = 3π/Re and n = 3 was found as well. In Fig. 6 (b), it is marked
with an empty square. Its spatial structure is shown in Fig. 5 (d). The simulation data for the Na1000 cluster fit the
dispersion Eq. (32) as well. Deviations of the plane wave resonance for smaller clusters are caused by to the radial
dependence of the electron density profile.
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VI. CONCLUSION

We have investigated collective excitation modes of a nano plasma in highly excited metal clusters. The collective
excitation of electrons inside the cluster are obtained from bi-local current density correlation functions by solving
the eigenvalue problem of the current-density correlation matrix. Using RMD simulations, the local current density
~j(~r, t) for excited clusters of 55 up to 1000 ions with densities of ni = 2.15 · 1022 cm−3 as well as 2.80 · 1022 cm−3 and
temperatures of Te = 1 eV have been investigated. Pseudo-potentials of sodium were used to calculate the electron
dynamics without consideration of degeneration effects any further. For the analysis of electron dynamics at lower
temperatures, the inclusion of quantum effects for the calculation of the local current density ~j(~r, t) of cluster electrons
is an open question at this point. It would be useful to go beyond present classical description to discuss for example
cold, non-excited clusters.
The spectrum of dipole-like modes was investigated in more detail. Using analytical calculations, it was possible

to relate the position of resonance modes in the frequency domain to their spatial mode structure. Results for the
cluster size dependence of the resonance frequency have been shown. A smooth transition to the bulk behavior has
been obtained. The analysis of further resonance frequencies and also other modes including breathing modes would
be desirable. The width of mode resonances and the role of collision-less damping effects as well as the collision
frequency need to be investigated in the future. The systematic change of the collision frequency with cluster size up
to the bulk limit remains an interesting field.
From RMD simulations, different collective excitations have been found in nano plasmas, including dipole-like

and breathing modes. These collective excitations will influence the scattering and absorption properties of clusters,
see [19]. Collective effects of electron motion play a role when analyzing ultraviolet (UPS) or x-ray photo-electron
spectroscopy (XPS) experiments, as has been pointed out by Andersson et al. [22]. It is a challenge to experimentalists
to confirm the occurence of different collective excitations in nano plasmas.
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(1999).
[5] R. Schlipper, R. Kusche, B. v. Issendorff, and H. Haberland; Phys. Rev. Lett. 80, 1194 (1998).
[6] V. P. Krainov and M. B. Smirnov; Physics Uspekhi 43, 901 (2000).
[7] P.-G. Reinhard, and E. Suraud; Introduction to Cluster Dynamics, Wiley, New York, 2003.
[8] U. Saalmann, Ch. Siedschlag and J. M. Rost; J. Phys. B 39, R39 (2006).
[9] T. Döppner, T. Diederich, A. Przystawik, N. X. Truong, T. Fennel, J. Tiggesbäumker, and K. - H. Meiwes-Broer; Phys.
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[37] J. Köhn, R. Redmer, K.-H. Meiwes-Broer, and T. Fennel; Phys. Rev. A 77, 033202 (2008).
[38] U. Saalmann, I. Georgescu, and J. M. Rost; New J. Phys. 10, 25014 (2008).
[39] P. Hilse, M. Schlanges, T. Bornath, and D. Kremp; Phys. Rev. E 71, 56408 (2005).
[40] W. Ekardt; Phys. Rev. B 29, 1558 (1984).
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