
ar
X

iv
:1

10
7.

12
62

v1
  [

m
at

h.
A

G
] 

 6
 J

ul
 2

01
1

ECHELON MODIFICATIONS OF VECTOR BUNDLES

ZIV RAN

ABSTRACT. We study a filtered generalization of the operation of elementary modifica-
tion of vector bundles. The generalization is motivated by applications to the degenera-
tion theory of linear systems.

The notion of elementary modification of a vector bundle along a divisor on a scheme is
well known and is a standard method for constructing vector bundles. The purpose of
this note is to define a generalization of this to a certain filtered setting, on both the bundle
and divisor sides. The generalization, whose main properties are given in Theorem 2.2
below, is motivated by situations which occur in the study of linear systems on a family
of curves with reducible fibres. The construction made here will be applied in [4] to
yield boundary modifications of the Hodge bundle on the moduli space of curves. These

modifications will play a key role in our work on the closure in Mg of gr
d loci in Mg.

See also [5].
We will work in a general setting of vector bundles on a scheme. However, we wish to

draw attention to a couple of relatively subtle points arising in the construction, which
may seem surprising from such a general vantage point, and which are both motivated
by the applications. One is the need for an appropriate ’persistence condition’, which is
needed to ensure that the divisor filtration and the bundle filtration interact well. The
other is the fact that the divisors involved in the echelon modifications are, in a sense,
smaller than the ’obvious’ divisors one could work with. In the situation of curve fami-
lies with reducible fibres, this implies working on the total space of the family (or some-
thing like it), and constructing modifications that are not a pullback from the base. This
feature is moreover critical for the universal property of echelon modifications (Theorem
2.2, (iii)).

This note was mostly contained in [4] originally, but will be published separately.

1. ECHELON DATA AND THEIR NORMAL FORMS

Our purpose here is to define the notion of echelon datum on a scheme. Roughly speak-
ing, such a datum consists of a vector bundle E together with a descending chain of
full-rank locally free subsheaves Ei, such that the degeneracy loci of the inclusion maps
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Ei → E form a (usually non-reduced) divisorial chain, more specifically that Ei has min-
imal generators that have zeros of size δj, j ≤ i as sections of E, where δ1 ≤ δ2... is a
suitable ascending chain of divisors. The definition is as follows.

Definition 1.1. • A pre-echelon datum of length m, (E., δ.) on a scheme X consists of
the following items

(i) a descending chain of locally free sheaves of the same rank

E = E0 ⊃ E1... ⊃ Em;

(ii) a collection of Cartier divisors δ0 = 0, δ1, ..., δm, such that dδi := δi − δi−1 is
effective;

which satisfy the following
’persistence condition’: for all i, we have Ei ⊃ Ei−1(−dδi) and the quotient

Ei/Ei−1(−dδi) maps isomorphically to a locally free, locally split Odδi
-submodule of

Ej ⊗Odδi
, for all j < i.

• An echelon datum χ = (E., δ., D.) consists of a pre-echelon datum (E., δ.) plus a
collection of Cartier sub-divisors (D. ≤ δ.) such that dDi := Di −Di−1 is effective and
Di has no components in common with D†

i := δi − Di.

Remark 1.2. Note that for all 0 ≤ j < i, Ei contains Ej(δj − δi), so that

Ei/Ej(δj − δi) ⊂ Ej ⊗Oδi−δj

is a well-defined subsheaf, and we have commutative

Ei/Ej(δj − δi) → Ei/Ei−1(−dδi)
↓ ↓

Ej ⊗Odδi
← Ei−1 ⊗Oδi

The persistence condition means that the right arrow is an isomorphism to a locally
free and cofree (i.e. split) subsheaf of its target, and likewise for the composite of the
right and bottom arrows. See example 1.5 for motivation for the persistence condition.

Remark 1.3. An echelon datum is said to be scalar if δi = niδ, Di = niD for all i and fixed
effective divisors δ, D. This cases considered in this paper have this property.

Example 1.4. One (scalar) example to keep in mind is the following: π : X → B is a
proper morphism (e.g. a family of curves), L is a line bundle on X, E = π∗(π∗(L)),
δ1 = π∗(δ), D = D1 is a component of δ1, and

Ei = π∗(π∗(L(−iD))). �

In analyzing echelon data locally, a useful tool is a normal form called echelon decom-
position, constructed as follows. Let ti be an equation for δi − δi−1. Using the persistence
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condition, we can find a free submodule A0 of Em which maps isomorphically to its
image in Em−1, and a free complement to the latter, A′1 ⊂ Em−1, so that

Em = A0 ⊕ tm A′1 ⊂ Em−1 = A0 ⊕ A′1

By assumption, A0 persists in Em−2; therefore we can find free submodules A1, A′2 ⊂
Em−2 so that

Em−1 = A0 ⊕ A1 ⊕ tm−2A′2 ⊂ Em−2 = A0 ⊕ A1 ⊕ A′2,

therefore as submodule of Em−2, we have

Em = A0 ⊕ tmA1 ⊕ tmtm−1A′m−2

Continuing in this way and setting finally A′m = Am we obtain what we will call an
echelon decomposition

E = A0 ⊕ ...⊕ Am

such that

Ei = A0 ⊕ ...⊕ Am−i ⊕ ti Am−i+1⊕ ...⊕ ti...t1Am, i = 0, ..., m.(1)

In particular,

Em = A0 ⊕ tm A1 ⊕ tmtm−1A2 ⊕ ...⊕ tm...t1Am.

Example 1.5 (Example 1.4, cont). In the situation of the last example, where ti = t = xy is
an equation for δ and y is an equation for D, the summand A0 ⊕ ...⊕ Am−i corresponds

to the image of general sections of L(−iD) (divisible by yi as section of L); tAm−i+1

comes from sections of L(−iD) divisible by x, etc.; ti Am comes from sections of L(−iD)
divisble by xi. Because multiplication by y does not affect linear independence modulo
x, it is easy to see that the persistence condition is satisfied.

2. ECHELON MODIFICATION

Our purpose is to associate to an echelon datum χ = (E., δ., D.) a type of birational
modification of the bundle E = E0 which generalizes the familiar notion of elementary
modification. This echelon modification will be an ascending chain of vector bundles

E = E0 ⊂ E1... ⊂ Em = Mod(χ, E),

all equal to E off Dm.
�

: Ei , Ei. The process works iteratively, first producing E1

carrying an echelon datum of length m− 1, etc.
Let (E., δ., D.) denote an echelon datum on X. For i ≥ 1, set

dDi = Di − Di−1, Li = OdDi
(dDi), i ≥ 1, D0 := 0.

Li is an invertible O(dDi)-module. Also let

Gi = coker(Ei → Ei−1), Hi = Ei/O(−dδi)E
i−1

3



which are by assumption locally free Oδi
-modules. We have a locally split exact se-

quence of locally free Oδi
-modules

0→ Hi → Ei−1⊗Odδi
→ Gi → 0(2)

This yields a similar exact sequence upon restriction on dDi. In particular, the kernel

of the natural map Ei−1 → Gi ⊗OdDi
is generated by Ei and E(−Di). For Hi, there is

another exact sequence

0→ Ei−1(−δi)→ Ei → Hi → 0(3)

In term of a local echelon decomposition (1), we have

Hi = (A0 ⊕ ...⊕ Am−i)⊗Odδi

To start our ascending chain, define a subsheaf E1 ⊂ E(D1) by the exact diagram

0→ E1(D1) → E(D1) → G1(D1) → 0
↓ || ↓

0→ E1 → E(D1) → G1 ⊗ L1 → 0.
(4)

Because the right vertical map is surjective with kernel E ⊗OD†
1
, D†

1 := δ1 − D1, E1 is

generated by E and E1(D1), i.e.

E1 = E1(D1) + E ⊂ E(D1).(5)

Because G1 is locally free over Oδ1
, it follows that G1 ⊗ L1 is a locally free OD1

-module,
hence E1 is an elementary modification of E and in particular is locally free over X. Also,
the snake lemma yields exact

0→ E1(D1)→ E1 → G1 ⊗OD†
1
→ 0.(6)

In particular, E1 is just E1(D1) if D1 = δ1. We have another the exact diagram

0 0
↓ ↓
E = E
↓ ↓

0→ E1 → E(D1) → G1 ⊗ L1 → 0
↓ ↓ ‖

0→ H1⊗ L1 → E⊗ L1 → G1 ⊗ L1 → 0
↓ ↓
0 0

(7)

In terms of a local decomposition as in (1), we can write, where generally ti = xiyi with
yi an equation for dDi,

E1 =
1

y1
(A0 ⊕ ...⊕ Am−1)⊕ Am.
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Next, define subsheaves Ei
1 ⊂ E1 by

Ei
1 = Ei+1(δ1) ∩ E1 ⊂ E(δ1).

In particular,

E1
1 = E2(δ1) ∩ E1.

In terms of a local echelon decomposition, we have

Ei
1 =

1

y1
(A0 ⊕ ...⊕ Am−i−1⊕ ti+1Am−i ⊕ ...⊕ ti+1...t2Am−1)⊕ ti+1...t2Am

Then set, analogously to the above,

E2 = E1
1(dD2) + E1 ⊂ E1 ⊗ dD2

In terms of an echelon decomposition, this is

E2 =
1

y1y2
(A0 ⊕ ...⊕ Am−2)⊕

1

y1
Am−1⊕ Am

Then we have exact
0→ E1 → E2 → H2⊗O(D2)→ 0

Note the natural inclusion

E2(D2)→ E2(8)

In general, we define inductively

Ei
j = Ei+1

j−1(dδj) ∩ Ej, i ≥ 1

Ej+1 = E1
j (dDj+1) + Ej ⊂ Ej(dDj+1).

(9)

Again we have an inclusion, ∀i,

Ei(Di)→ Ei.

In terms of a local echelon decomposition as in (1), we can describe the Ei as follows.

Ei =
1

y1...yi
(A0 ⊕ ...⊕ Am−i)⊕

1

y1...yi−1
Am−i+1⊕ ...⊕ Am,

Em =
1

y1...ym
A0 ⊕

1

y1...ym−1
A1 ⊕ ...⊕

1

y1
Am−1 ⊕ Am

(10)

Remark 2.1. Note that via the various exact sequences (e.g. (6), (7)) above, K(X)- group
elements, Chern classes and similar attributes of the modifications Ei are computable in
terms of similar attributes of the echelon data.

We summarize some of the main properties of elementary modifications as follows.
All of them follow directly from the explicit construction and local forms given above.
Property (iii), the universal property of echelon modifications, is from our perspective
the main raison d’etre for the construction.
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Theorem 2.2. Let (E, χ) be an echelon datum on an integral scheme X.

(i) Mod(χ, E) is a locally free sheaf containing and generically equal to E, and depends
functorially on (χ, E).

(ii) If f : Y → X is a dominant morphism from another integral scheme, then

f ∗ModX(χ, E) = ModY( f ∗(χ), f ∗(E)).

(iii) If φ : E → L is a map to a line bundle, such that for each i, φ(Ei) ⊂ L(−Di), then φ
extends to a map

Mod(χ, φ) : Mod(χ, E) → L.

If E′ is any locally free sheaf containing and generically equal to E such that φ extends
to E′, then E′ is contained in Mod(χ, E).

3. POLYECHELON DATA

In practice, one needs to work with multiple echelon data on a given bundle. This
is feasible provided the data satisfy a reasonable condition of transversality , a strong
version of which follows.

Definition 3.1. Let (χj = (E.
j, δj., Dj.)) be a collection of echelon data of respective lengths mj

on a given bundle E. This collection is said to be mutually transverse if for any choice of subset
S ⊂ {1, ..., m} and assignment S ∋ j 7→ i(j),

• the sequence of divisors (Dj,i(j) − Dj,i(j)−1 : j ∈ S) is regular, i.e. its intersection has

codimension |S|;

• for all i < S, (Ek
i ∩

⋂

j∈S
E

i(j)
j , δi,k, Di,k : k = 0, ..., mi) is an echelon datum on

⋂

j∈S
E

i(j)
j .

A polyechelon datum is a mutually transverse collection of echelon data as above.

Now a key, albeit elementary, observation is the following. If χ, χ′ are transverse ech-
elon data, with corresponding filtrations F.(E), (F′).(E), then for each k, there is an ech-

elon datum (F.(E) ∩ (F′)k(E), δ., D.) and performing the corresponding echelon modi-

fications leads to a new bundle Mod(χ, (F′)k(E). Together these bundles form echelon
datum

Mod(χ, χ′) = (Mod(χ, (F′)k(E), δ′k, D′k : k = 0, ..., m′).

This is an echelon datum on Mod(χ, E).
This operation can be iterated: given a transverse collection of echelon data (χ1, ..., χk),

echelon modifications yield a new transverse collection of echelon data

(χ1,2 = Mod(χ1, χ2), ..., χ1,k = Mod(χ1, χk))

on M1 = Mod(χ1, E), etc. Iterating, we get an increasing chain

E = M0 ⊂ M1 ⊂ ... ⊂ Mk
6



and we will call this sequence (or sometimes just its last member) the poly-echelon modi-
fication of E with respect to the poly-echelon data (χ.), denoted respectively

(M.) = (Mod .(χ., E)), Mk = Mod(χ., E).

The following is elementary

Proposition 3.2. Notations as above,
(i) (Mod .(χ., E)) is a sequence of locally free sheaves and generic isomorphisms;
(ii) Mod(χ., E) is independent of the ordering or the sequence (χ.).

Example 3.3. This is the sort of situation we have in mind for echelon data. Let

π : X → B

be a family of nodal curves and δ ⊂ B a boundary component corresponding to a relative
separating node θ. We assume the boundary family Xδ splits globally as

LX ∪ RX,

with the two components having local equations x, y, respectively with xy = t a local
equation of δ. Let L be a line bundle on X and

(n.) = (n0 = 0 < n1 < ... < nm)

be an increasing sequence of integers with the property that for each i,

Ei := π∗L(−ni RX)

is locally free and its formation commutes with base-change, as will be the case when-
ever R1π∗L(−ni RX) is locally free or equivalently, h1(Xt, L(−ni RX)⊗OXt

) is indepen-
dent of t. Let RDi = ni RX. Then

Rχ = (E., n.δ, n. RD)

is an echelon datum on X. Likewise for the analogous Lχ. Clearly Rχ and Lχ are
transverse. We may construct the two echelon modifications of (E.)

RM = Mod( Rχ, E), LM = Mod( Lχ, E)

and
Mθ = Mod(Mod( Rχ, Lχ), LM) = Mod(Mod( Lχ, Rχ), RM).

A fundamental point here, which follows from Theorem 2.2, is that the natural map
E→ L factors through Mθ . Heuristically that is because a section s of Ei yields a section
of L vanishing to order ni on RX, hence s/yni still yields a regular section of L.
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