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CONVEX HYPERSPACES OF PROBABILITY MEASURES AND

EXTENSORS IN THE ASYMPTOTIC CATEGORY

DUŠAN REPOVŠ AND MYKHAILO ZARICHNYI

Abstract. The objects of the Dranishnikov asymptotic category are proper metric spaces
and the morphisms are asymptotically Lipschitz maps. In this paper we provide an exam-
ple of an asymptotically zero-dimensional space (in the sense of Gromov) whose space of
compact convex subsets of probability measures is not an absolute extensor in the asymp-
totic category in the sense of Dranishnikov.

1. Introduction

The notion of absolute extensor plays an important role in different branches of mathemat-
ics. In asymptotic topology, the absolute extensors are used in constructing the homotopy
theory and the asymptotic dimension theory. Among the two categories widely used in as-
ymptotic category, the Dranishnikov and the Roe categories (see the definition below), it
turns out that it is the Dranishnikov category (the category of proper metric spaces and the
asymptotically Lipschitz maps) in which a richer extensor theory can be developed.

It was proved in [10] that in general, the space of probability measures of a metric space
is not an absolute extensor for the Dranishnikov category. This provided a negative answer
to a question formulated by Dranishnikov [2, Problem 12], in connection with existence of
the homotopy extension theorem in this category. This leads to an open problem of search-
ing functorial constructions that preserve the class of absolute extensors in the asymptotic
categories.

In the present paper we deal with the hyperspaces of compact convex subsets of probability
measures. Note that these hyperspaces play an important role in the decision theory, math-
ematical economics and finance, in particular, in the maximum (maxmin) expected utility
theory (cf. e.g. [3]).

In the case of compact metric spaces as well as in the case of compact spaces of weight
ω1, the hyperspaces of compact convex subsets of probability measures are known to be abso-
lute extensors [1]. However, the extension properties of these hyperspaces in the asymptotic
category remained unknown. Our aim is to demonstrate that the example presented in [10]
also works for the hyperspaces compact convex subsets of probability measures. Thus the
main result of this paper is that the spaces mentioned above are not in general, asymptotic
extensors in the asymptotic category.
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2. Preliminaries

2.1. Asymptotic category. Together with Roe’s category of proper metric spaces and
coarse maps [8], the asymptotic category A introduced by Dranishnikov [2] turned out to
be an important universe for developing asymptotic topology.

A typical metric will be denoted by d. A map f : X → Y between metric spaces is called
(λ, ε)-Lipschitz for λ > 0, ε ≥ 0 if d(f(x), f(x′)) ≤ λd(x, x′)+ ε for every x, x′ ∈ X . A map is
called asymptotically Lipschitz if it is (λ, ε)-Lipschitz for some λ, ε > 0. The (1, 0)-Lipschitz
maps are also called short. The set of all short functions on a metric space X is denoted by
LIP(X).

A metric space is proper if every closed ball in it is compact. A map of metric spaces is
(metrically) proper if the preimages of the bounded sets are bounded. The objects of the
category A are the proper metric spaces and the morphisms are the proper asymptotically
Lipschitz maps.

A metric space Y (not necessarily an object of A) is an absolute extensor (AE) for the
category A if for every proper asymptotically Lipschitz map f : A → Y defined on a closed
subset of a proper metric space X there exists a proper asymptotically Lipschitz extension
f̄ : X → Y of f .

2.2. Asymptotic dimension. The notion of asymptotic dimension was introduced by Gro-
mov [4]. Let X be a metric space. A family C of subsets of X is said to be uniformly bounded

if there exists M > 0 such that diam A ≤ M for every A ∈ C. Given D > 0, we say that a
family C of subsets of X is D-disjoint if inf{d(a, a′) | a ∈ A, a′ ∈ A′} > D for every A,A′ ∈ C,
A 6= A′.

We say that the asymptotic dimension of X is ≤ n (written asdimX ≤ n) if for everyD > 0
there exists a cover U of X such that U = U0 ∪ · · · ∪ Un, where every family U i is D-discrete.
If we require in the definition of the absolute extensor that asdimX ≤ n, then the definition
of the absolute extensor in asymptotic dimension n (briefly AE(n)) is obtained.

It is easy to see that for a proper metric space X , the inequality asdimX ≤ 0 is equivalent
to the condition that for every C > 0 the diameters of the C-chains in X (i.e. the sequences
x1, x2, . . . , xk with d(xi, xi+1) ≤ C for every i = 1, 2, . . . , k − 1) are bounded from above.

2.3. Convex hyperspaces of probability measures. Let P (X) denote the space of prob-
ability measures of compact supports on a metrizable space X . For any x ∈ X , we denote the

Dirac measure concentrated at x by δx. If d is a metric on X , we denote by d̂ the Kantorovich
metric generated by d,

d̂(µ, ν) = sup

{∣

∣

∣

∣

∫

ϕdµ−
∫

ϕdν

∣

∣

∣

∣

| ϕ ∈ LIP(X)

}

(cf. e.g. [5]).
By ccP (X) we denote the set of all nonempty compact convex subsets in P (X); as usual,

a subset A ⊂ P (X) is convex if tµ+ (1 − t)ν ∈ A, for all µ, ν ∈ P (X) and t ∈ [0, 1]. The set

ccP (X) is endowed with the Hausdorff metric, which we shall denote by d̂H :

d̂H(A,B) = inf{r > 0 | A ⊂ Or(B), B ⊂ Or(A)}
(here Ot(Y ) stands for the t-neighborhood of Y ⊂ P (X)). Note that, clearly, the map
x 7→ {δx} : X → ccP (X) is an isometric embedding.

Given a map f : X → Y of metric spaces, we define the map P (f) : P (X) → P (Y ) as
follows:

∫

ϕdP (f)(µ) =
∫

ϕfdµ. The map ccP (f) : ccP (X) → ccP (Y ) is then defined by the
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formula:
ccP (f)(A) = {P (f)(µ) | µ ∈ A}.

It can be easily seen that the map ccP (f) is short if such is f .
Let b : P (Rn) → R

n denote the barycenter map. Recall that this map assigns to every
µ ∈ P (Rn) the unique point b(µ) with the property that L(b(µ)) =

∫

Ldµ, for every continuous
linear functional L on R

n. Since b is known to be continuous and linear, the image b(A) of
every A ∈ ccP (Rn) is a compact convex subset of Rn, i.e., an element of the space cc(Rn) of
compact convex subsets in R

n endowed with the Hausdorff metric.
Let p : cc(Rn) → R

n denote the map defined by the condition:

y = π(A) ⇔ y ∈ A and ‖y‖ = inf{‖z‖ | z ∈ A}.
The proof of the following statement uses simple geometric arguments and will therefore

be omitted.

Lemma 2.1. The map π is well-defined and short.

3. The Example

Our example described below is a modification of the second author’s example of a proper
metric space whose space of probability measures is not an AE (even AE(0)) in the asymp-
totic category [11]. For the sake of completeness we shall provide here the details of the
construction.

For every n, the Euclidean space R
n can naturally be identified with the subspace {(xi) |

xi = 0 for all j > n} of the space ℓ2. We endow the subspace X ′ =
⋃

n∈N
{n2} ×R

n ⊂ R× ℓ2

with the metric

d((m, (xi)), (n, (yi))) = (|m− n|2 + ‖(xi)− (yi)‖2)1/2.
Obviously, X is a proper metric space. For every n we denote by pn : X

′ → R
n a map defined

by the formula pn(m, (xi)) = (x1, . . . , xn). Clearly, pn is a short map.
It was shown in [6] (cf. Theorem 1.5 therein) that for any n ≥ 2 there exists a metric space

Xn which contains the Euclidean space R
n as a metric subspace and such that there is no

(λ, ε)-Lipschitz retraction from Xn onto R
n with λ < n1/4. In the sequel we shall need an

explicit construction of these spaces. Following [6], for every natural k and natural n ≥ 2 we
define graphs Gn,k as follows: the set of vertices V (Gn,k) is the union of I(Gn,k) and T (Gn,k),
where

I(Gn,k) ={x = (x1, . . . , xn) ∈ R
n | |xi| = k for all i},

T (Gn,k) ={x = (x1, . . . , xn) ∈ R
n | |xi| = 2k for all i};

the set of edges E(Gn,k) is defined by the condition: {x, y} ∈ E(Gn,k) if and only if x, y ∈
V (Gn,k) and either ‖x− y‖ = 2k or y = 2x (we suppose that the spaces Rn are endowed with
the Euclidean metric).

The set V (Gn,k) is equipped with the metric d = dn,k,

d(x, y) = inf

{

l
∑

i=1

‖xi−1 − xi‖∞ | (x = x0, x1, . . . , xl = y) is a path in Gn,k

}

(as usual, ‖x‖∞ denotes the max-norm of x ∈ R
n.)

Define spaces X and Y as follows:

X =

∞
⋃

n=2

∞
⋃

k=n

{n2} × T (Gn2,k2), Y =

∞
⋃

n=2

∞
⋃

k=n

{n2} × V (Gn2,k2)
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where the metric on X is inherited from X ′ and the metric on Y is the maximal metric that
agrees with the already defined metric on X and the metric dn,k on every V (Gn,k). It easily
follows from the construction that X and Y are proper metric spaces, i.e. objects of the
category A.

We are going to show that asdimY = 0 (and consequently asdimX = 0). Let C > 0 and
suppose that y1, . . . , ym is a C-chain in Y . Denote by k the minimal natural number such
that C < (k + 1)2. If

{y1, . . . , yn} ⊂
k
⋃

j=2

k
⋃

l=j

{j2} × V (Gj2,l2)

then diam {y1, . . . , yn} ≤
√

(k2) + (3k2)2 ≤
√
10C. Otherwise

{y1, . . . , yn} ∩ Y \
k
⋃

j=2

k
⋃

l=j

{j2} × V (Gj2,l2) 6= ∅

and {y1, . . . , yn} is a singleton.
It was proved in [6] that the following holds for the spaces

Xn2 = R
n2 ∪

∞
⋃

k=n

{n2} × V (Gn2,k2)

endowed with the maximal metric which agrees with the initial metric on R
n2

and the metric
on

⋃

∞

k=n{n2} × V (Gn2,k2) inherited from Y (note that these two metrics coincide on the

intersection of their domains): there is no (λ, ε)-retraction of Xn2 to R
n2

with λ <
√
n.

Now, let f : X → ccP (X) be the map that sends x ∈ X to {δx} ∈ ccP (X). The map f is
an isometric embedding and we are going to show that there is no asymptotically Lipschitz
extension of f onto the whole space Y . Assume the contrary and let f̄ : Y → ccP (X) be such
an extension. We regard f̄ as a map into F (X ′) ⊃ ccP (X). Then there exist λ > 0 and ε > 0
such that

d(f̄(x), f̄ (x′)) ≤ λd(x, x′) + ε

for all x, x′ ∈ Y .

Let n > λ2. Since the maps ccP (pn2), b : P (Rn2

) → R
n2

and π are short, we conclude that
the map

x 7→ π({b(µ) | µ ∈ ccP (pn2)(f̄(x))}) : Xn2 → R
n2

is a (λ, ε)-Lipschitz retraction from Xn2 onto R
n2

, which contradicts to the choice of λ. This
demonstrates that the space ccP (X) is not an AE(0) for the asymptotic category A.

4. Epilogue

We conjecture that the spaces of capacities (non-additive measures; cf. e.g. [13, 14]) are
always absolute extensors in the asymptotic category A. Note that the scheme of our proof
of the main result of this paper does not work for non-additive situation, because one does
not have the “barycenter map” in this case.
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