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SOLUTION ALGEBRAS OF DIFFERENTIAL EQUATIONS AND
QUASI-HOMOGENEOUS VARIETIES

YVES ANDRE

ABSTRACT. We develop a new connection between Differential Alge-
bra and Geometric Invariant Theory, based on an anti-elguiea of
categories betweesolution algebrasassociated to a linear differential
equation i.e. differential algebras generated by finitely many polyno-
mials in a fundamental set of solutions), aaffine quasi-homogeneous
varieties(over the constant field) for the differential Galois grodphe
equation.

Solution algebras can be associated to any connection ampath
affine variety. The spectrum of a solution algebra is an akjeliber
space over the base variety, with quasi-homogeneous fiteeal$ dis-
cuss the relevance of this result in Transcendental Numhbeory.

1. STATEMENT OF THE MAIN RESULTS

1.1. Introduction. Let K be a field endowed with a non-zero derivation
0, with algebraically closed constant field = Ker 0. Let

o(y) ="y + 10"y 4+ +agy =0

be a linear differential equation with coefficients in K, and let
v1,--.,,Yyn form aC-basis of solutions in some differential extension of
K with constant field”.

This paper presents, from a Galoisian viewpoint, a systemsaidy of
“solution algebras”, that isi{-algebrasS generated by finitely many poly-
nomialspy (y1, .-, Yn), - -, Pm(y1, - - -, yn), together with their derivatives.

Traditional differential Galois theory deals with the sigécase when
thep;’s are (all of) they;'s (or resp.all monomials of degreé in they;’s).
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It shows that, after inverting the wronskiafi,then becomes the (Picard-
Vessiot) algebra of a principal homogeneous space avender the dif-
ferential Galois groug- of ¢ (resp. under the image ofy in the d** sym-
metric representation). Through Kolchin’s work, this hagi a source of
motivation and applications in the early development ofttieory of lin-
ear algebraic groups and their principal homogeneous seic¢8, chap.
V).

However, traditional differential Galois theory has &ttb say about so-
lution algebras beyond the Picard-Vessiot case - for icgtaout the al-
gebraic relations between a single solutigrand its derivatives (a problem
which occurs in transcendental number theory for instante1.8). In
fact, the study of solution algebras involves finer notiorsmf geomet-
ric invariant theory: as we shall see, the whole theory ohaffjuasi-
homogeneous varieties comes into play. More precisely, stebésh an
anti-equivalencef categories between solution algebras as above and affine
guasi-homogeneous-varieties over'.

After pioneering work by Grosshans, Luna, Popov, Vinberd athers
in the seventies, the study gliasi-homogeneouS-varieties i.e. alge-
braic GG-varieties with a densé&r-orbit, has now become a rich and deep
theory. The precise dictionary given below between thertheb affine
guasi-homogeneous varieties and differential Galoisrthsloould thus en-
rich considerably the latter, and may provide a source ofivatibn and
applications for the former.

1.2. Picard-Vessiot fields ¢f. [13][17]). Let (K, 0) be a differential field
with algebraically closed constant fietd = K? of characteristi®). Let
K (0) denote the corresponding ring of differential operatorst /' be a
differential module ovets, that is, ak (0)-module of finite dimensiom
over K (for instanceM = K(0)/K (0)¢, where¢ is a differential operator
as above). The finite direct sums of tensor proddéts® (M¥)®7 and their
subquotient differential modules form a tannakian cateddf)® overC.

A Picard-Vessiot fieldK’ for M is a differential field extension oK
with constant fieldC, in which M and its dualMV are solvable i(e.
Sol(M, K') := Homp gy (M, K') andSol(M", K') have dimensiom over
(), and which is minimal for this property. Such a differehfiald exists
and is unique up to non-unique isomorphism. The differé@&ois group
of M,

G = Auta K,/K,
is a linear algebraic group ovérwhich acts faithfully onSol(M, K).

The differential Galois correspondence is an order-réwgitsijection be-
tween intermediate differential extensioRs C L. ¢ K’ and closed sub-
groupsH < G, given byH = Auty K'/L andL = (K')",
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1.3. Solution fields.

1.3.1.Definition. A solution field(L, 0) for M is a differential field exten-
sion of (K, @) with constant field.? = C, which is generated by the image
of a K (0)-morphismv : M — L.

In the next theorem, “solution field” means “solution field fmmeN €
(M)®”. For instance, the Picard-Vessiot field’ is a solution field for

1.3.2.Theorem. (1) Any solution field. embeds as differential sub-
field of the Picard-Vessiot field’.

(2) Conversely, an intermediate differential field ¢ L ¢ K'is a
solution field if and only if the corresponding subgrolp< G is
observablgi.e. G/H is quasi-affine). In factH is the isotropy
group of any solution € Sol(N, K’) whose image generatés

(3) For any solution field. = (K")#, Auty L/K = Ng(H)/H.

1.4. Picard-Vessiot algebras.Even though this result is formulated in
terms of traditional differential Galois theory of differigal fields, we do not
know how to prove it within this framework. Our proof uses temeralized
differential Galois theory for differential rings devekxb in [3] (working
over differential rings rather than fields is natural, useimd sometimes
necessary in several context§, e.g.1.8 below).

Let (R, 0) be a differential ring with constant field. We assume that
(R, 0) is simple,i.e. has non no-zero proper differential ideal. It is then
known thatR is a domain, and we denote I3y its quotient field.

Let M be a differential module of finite type oveR. It can be
shown that)M is projective, and so are all the finite direct sums of ten-
sor productsM®" @ (M")®/ and their subquotient differential modules,
which form a tannakian categoty/)® over C' (equivalent to{ M )®), cf.
2.2.1 below. The Picard-Vessiot algebka for M is the R-subalgebra
of the Picard-Vessiot fields” for My generated by(M, Sol(M, K'))
and (MY, Sol(MY, K")), its spectrum is a torsor undérg, and G =
Auta<R,/R).

1.5. Solution algebras.
1.5.1. Definition. A solution algebra(S, 0) for M is a differential R-

algebra without zero-divisor, whose quotient field has tamtgieldC, and
which is generated by the image ofig0)-morphismv : M — S.

The link with the previous definition is the followingf( 4.2.2): a differ-
ential algebra extensia$/ R is a solution algebra fab/ if and only if it is
a finitely generatedz-algebra without zero-divisor and its quotient figld
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is a solution field forM; any solution fieldZ for My is the quotient field
of a solution algebra foi/.

In the next theorem, “solution algebra” means “solutioredlg for some
N € (M)®”

1.5.2.Theorem. (1) Any differential finitely generated suB-algebra
of the Picard-Vessiot algebr&’ is a solution algebra.

(2) If S is a solution algebra, then for any embedding of the quotient
field L of S into K’, S is contained in the Picard-Vessiot algebra
R.

(3) For any solution algebra generated by a solution, Spec (Sx+)?
is the closureG.v of the orbit G.v C Sol(M, K'). This pro-
vides an antiequivalenceof categories between solution algebras
and affine quasi-homogeneotsvarieties.

(4) If H < G is observable(R')! is a solution algebra if and only if
H is Grosshans (i.eC'[G/ H] is finitely generated).

(5) A solution algebraS is simple (as differential ring) if and only if it
is generated by a solution for which the orbitG.v is closed. In
that caseS = (R')".

(6) A solution fieldL is the quotient field of a unique solution algebra
S if and only if the image of H in the reductive quotier® of G
is reductive andVy(H)/H is finite. In that case$' is simple.

(7) Assume thar is finitely generated ovet’. Then, etale-locally on
Spec R, the spectrum of a solution algebfagenerated by a solu-
tion v is isomorphic to G.v) (in particular, it is an algebraic fiber
bundle overSpec R).

1.6. From affine quasi-homogeneous varieties to differential mdules.
On combining the previous theorem with the constructiveitsmh [14] of
inverse differential Galois problem and the triviality [1& torsors for re-
ductive groups ovef’|z|, one obtains the following

1.6.1.Theorem. (1) The differential Galois groupg: of any semisimple
differential moduleM over (C[z], -) is connected reductive, and
the spectrum of any solution algebfafor M satisfiesSpec S =
Z¢r.) for some affine quasi-homogenedusariety Z overC.

(2) Conversely, to any connected reductive graemver C' and any
affine quasi-homogeneous-variety Z, one can attach in a con-
structive way a semisimple differential modulé over C[z] with
differential Galois group’, and a solution algebra for M such
that Spec S = Z¢y,).
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Using work by Arzhantsev and Timashev [5] on quasi-homogese&a-
rieties with infinitely many orbits, one can construct insthvay solution
algebras oveC’[z] or C(z) which arenot artinian as differential rings
this occurs for any connected reductive differential GalgioupG and
Z = G/H, for the unipotent radical{ of any non-minimal parabolic sub-
group ofG.

On the other hand, the negative solution of Hilbert’s Xigroblem pro-
vides observable subgroupswhich are not Grosshans, and one can con-
struct in that way integrally closed solution algebfasver C|z] or C(z)
whose maximal localizatio@(S) N R’ = (R')" in the Picard-Vessiot alge-
bra is not finitely generated.

The classification of solution algebras is an arduous tag everC|z]
or C'(z): for instance(”(z)-algebras generated by polynomials in solutions
of the Airy equationfi—g = zy, and their derivatives, correspond to affine
quasi-homogeneousL (2)-varieties; the normal ones are classified by dis-
crete invariants, but the non-normal ones may foontinuous familiefg].

1.7. Homogeneous relations.Let S be a solution algebra generated by a
solutionv : M — S. Thenwv extends to a surjective homomorphism of
differential ringsv’ : Sym'M — S. Let S be the quotient ofSym M by
the (differential) ideal generated by homogeneous relatwith respect to
M in Kerv'.

1.7.1. Theorem. (1) S'is homogeneous (i.& = S) if and only if there
existg € G and )\ € C, not a root of unity, such thatv = Av.

Assume thaR is finitely generated over'. Then

(2) Proj S is an algebraic fiber bundle ovepec R (locally trivial for
the etale topology).

(3) K is algebraically closed i, « all fibers of Spec S are integral
= all fibers of Proj S are integral.

1.8. Relevance to transcendental number theorylLet us consider a so-
lutiony = 3" a,,2™ € Q[[]] of a linear differential equation(y) = 0 of
ordern with coefficients in? = Qlz, 7.

1.8.1. Corollary. Assume thatQ(z) is algebraically closed in

Qz,y,...,y" " = L) Let¢ € Q be in the domain of con-
vergence ofy, and not a zero of the polynomidl.

Assume that the transcendence degree (resp. homogenemssdn-
dence degree) @[y (¢),, ...,y 1 (¢)] overQ equals the transcendence
degree (resp. homogeneous transcendence degre@) ofy, ...,y Y]

over Q(z).
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Then any polynomial relation (resp. homogeneous polyniomli@tion)
with coefficients ifQ betweeny(¢), ...,y (¢) is the specialization at
¢ of a polynomial relation (resp. homogeneous polynomiadtieh of the
same degree) with coefficients i betweeny, . ..,y Y.

In particular, if the functiongy, .. .,y are linearly independent over
Q(2), their valuesy(¢), . .., y™ =Y (&) are linearly independent ovep.

Indeed, sinceQ(z) is algebraically closed in the solution field =
Q(z,y, ...,y 1), the fiber of Spec S (resp. ProjS) at¢ is integral ac-
cording to 1.7.1 (3). It contains the affineg$p. projective) variety defined
by the fesp.homogeneous) polynomial relations with coefficientQibe-
weeny(¢), ...,y V(). Hence thes@-varieties coincide if they have the
same dimension.

The assumptions of the corollary are notably satisfied whenan £-
function (for instance; = sin z), or more generally an arithmetic Gevrey
series of negative rational order2], i.e. when the absolute logarithmic
height of(a;.1!7%, ..., a,,.m!~*) grows at most linearly im. In that case,
L consists of meromorphic functions @ henceQ(z) is algebraically
closed inL, and the condition about transcendence degrees is edlgentia
the classical Siegel-Shidlovsky theorem, which can be aéstved rather
directly from the fact (proven in [1]) that differential of@@ors¢ of mini-
mal order annihilating such serighave no non trivial singularities at finite
distance.

In [7], Beukers uses this fact to deduce, foifunctions, the conclusion
of the above corollary from the Siegel-Shidlovsky theorems{vering an
old question of Lang [11, p. 100]). However, as we have seénglso
6.5), such a deduction actually follows from general ressoit(generalized)
differential Galois theory, independently of [1].

2. GENERALIZED PICARD-VESSIOT THEORY A REMINDER AND SOME
COMPLEMENTS TO[3]

2.1. In order to extend the scope of our results and cover the ¢asmolta-
neous action of several derivations, and connections drehigimensional
varieties, we shall work with generalized differentialggnas in [3], which
keeps the spirit of classical differential algebra.

Let R = (R, d : R — ) be ageneralized differential ringi.e. the
data of a commutative ringg and a derivationl : R — () to a R-module
2, which we always assume to Ipgojective of finite rankthe classical
notion of differential ring corresponds to the cd3e= R). We denote by
C = Ker d the ring of constants.
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An extensionS/R consists in a ring extensiofi/ R and an extension
S — Q ®p S of the derivationd.

A differential moduleM = (M, V) overR is an R-module M with a
connectionV, i.e. an additive mapV/ — M ®p 2 satisfying the Leibniz
rule. We write MY for the kernel ofV (aC-module).

A differential idealZ is a differential submodule R (equivalently, the
data of an ideal of R such that2V,dI) C I.

One says thaR is simpleif it has no non-zero proper differential ideal.

Examplesif X is an affine smooth geometrically connected variety over
afieldC and$? = I'( X, Qﬁqc), then(O(X), d) is a simple differential ring.

Local rings of complex analytic manifolds are simple diéfetial rings.

2.1.1. Lemma.Let us assume th& is simple. Then
(1) Cis afield.

Assume thathar C' = 0. Then
(2) Risadomain,i.e. has no zero-divisor.

(3) There is a unigue extension éto the quotient field< of R which
defines a differential extensid®y/ R, with constant ring”.

Proof. For items (1) and (3), see [3, 2.1.3.5]. The proof of (2) giwefl7,
Lemma 1.17]in the case = A extends to the general case: one first shows
that every zero-divisoi € R is nilpotent (considering the differential ideal
of elementd such thai™b = 0 for somem); then that the nilradical oR

is a differential ideal (the image by aiye Q¥ of a nilpotent element is a
zero-divisor). O

2.1.2. Lemma.Let M = (M, V) be a differential module over a simple
differential ring’R. Then the natural morphisd/V @ R — M is injective.

Proof. cf.[3, 3.1.2.1]. O

2.1.3. Corollary. For any field extension” /C, R is simple.

Proof. Let Z C R be a proper differential ideal, and 1a#l = R¢. /7.
Then MY containsC’, and the natural projectioRc — M can be writ-
ten as the compositioRcr — MY ®c R — M, and is injective by the
previous lemma, whencg = 0. O

2.2. In algebraic geometry, it is well-known that coherent medulith
integrable connection over a smooth basis are locally ftes.less known
that the integrability condition is unnecessary. An alw$texplanation is
provided by the following theorem.

We assume henceforth thRtis simpleandchar C' = 0, and denote by
K = (K, d) its quotient field (considered as a differential extensib®n
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2.2.1. Theorem.Let M be a differential module oveR. Assume that the
underlyingR-module) is finitely generated.

(1) Then)M is projective. The same holds for any subquotientbf

(2) The finite direct sums of tensor produgts® @ (M")%/ and their
subquotient differential modules form a tannakian catggovt)®
over(C, and the naturalz-functor (M)® — (M)® is an equiva-
lence.

Proof. (1) M is anR-lattice in the vector spac¥ in the sense of Bourbaki
[9, VII.4.1], i.e. a sub&-module which spand/x and is contained in a
finitely generated?-submodule. According ttoc. cit. , for any R-lattice
N, M ®g N is a lattice inMyx ®x N andHompg(M, N) is a lattice in
Homg (Mg, Ni) (in particular the dual¥ is a lattice in(Mg)").

It follows that if A" is another differential module, of finite type ovAr
(or more generally such thaf is a lattice inNy), the natural’-linear map
Hom(M,N) — Hom(My, Nx) is injective. It is surjective as well: if
f € Hom(My, Nx), f(M) is anR-differential submodule o). and the
quotientf(M)/(f(M) N N) is anR-differential module, finitely gener-
ated and torsion oveR, Its annihilator is a non-zero differential ideal in
R. SinceR is simple, we conclude thgt(M)/(f(M)NN) = 0, hence
f € Hom(M,N).

In particular the canonical coevaluation morphigim— M ® M)
comes from a coevaluation morphisth— M ® MY. Writing the image
of 1 inthe form)_ m; ® m}, thenm — > (m., m)m, is the identity on\/
(since itis inMx), which shows thail/ is projective.

Any quotient of M is again finitely generated ovét, hence projective.
And so is any subobject, viewed as the kernel of a quotienphism.

(2) The finite direct sums of tensor produdts®  (M)®/ and their sub-
quotient differential modules form an abelighlinear @-category(M)®
with unit R, andEnd R = C'. By item (1), this is a rigid»-category. The
forgetful functor

J: (M) = Projg, N— N

is a fiber functor. HencéM)® is tannakian oveC'. We have already
shown that thex-functor (M)® — (M)® is fully faithful. Itis essentially
surjective because gived € (M)®, every subobjecP in (M)® of N
comes from a subobject ¢f (with underlyingR-moduleN N P). O

2.3. We assume henceforth thatis algebraically closed of characteristic
0. It follows that(M)® admits a fiber functor

w: (M) — Vece,
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which is unique up to non-unique isomorphism Aifis finitely generated
over(, one may takev = ¥, = the fiber at any closed pointof Spec R,
i.e. the reduction modulo any maximal ideal Bj.

The automorphism group schemeuois thedifferential Galois group of
M (“pointed atw”)

G = Gal(M,w) = Aut® w,

a closed subgroup a¥L(w(M)), and one has equivalences of tannakian
categorieSM)® = (Mx)® = RepG. In particular, M is semisimple if
and only if the faithfulG-module is semisimple, which is equivalent (G:
is reductive (sincehar C' = 0).

The isomorphism scheme

¥ =1Is0® (w®c R, V)
is a torsor under the right action 6f (thetorsor of solutionof M).

2.4. A solutionof M in a differential extensior’s /R is a morphism of
differential modules\t = S overR. SinceM is projective of finite rank,
this is the same as an element (M"Y @z S)V.

We say thatM is solvablein S if the solutions of M in S generate
Hompg(M, S) overS. Assume thas is simple with constant field’. Then,
by Lemma 2.1.2M is solvable inS if and only if (M$)Y ®@c S = M.

If moreoverS is faithfully flat over R, and bothM and M"Y are solvable in
S, then anyNV € (M)® is solvable inS andws := (— @ S)V is a fiber
functor on(M)® with values inVecc (cf. [3, 3.1.3.2]).

A Picard-Vessiot algebrak’ for M is a faithfully flat simple differential
extension ofR with constant field”' in which M and M" are solvable,
and which is minimal for these properties (which amountsaigrgy thatS
is generated byM, w(MY)) and(M"Y, w(M))).

Starting with a fiber functap, there is a canonical structure of differential
ring on O(X) which makes it a Picard-Vessiot algebra fof, andw is
canonically isomorphic tar. (cf. [3, 3.4.2.1]). Any Picard-Vessiot algebra
for M arises in this way up to isomorphism. Identifying the difetial
Galois group& with its group ofC-points, one has

G = AutR'/R,

in compatibility with theG-action onw (M) in the pairingV¥ @ cw(M) —
R'. For all this, we refer to [33.2, 3.4].

2.4.1. Remark. It is worth pointing out that we haven’'t assumed any finite-
ness condition o, nor any integrability condition oo\. At first, it might
seem strange that a non-integrable connection is solvalsieme differen-
tial extensiorR’ /R. This is discussed in detail in [3, 3.1.3.3]: the point is
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that if for two commuting derivation®;, D, € Q" (viewed as derivations
of A), the defect of commutation &V, and Vp, is no obstruction for
solvability in a differential extensio®’ in which the extension ob; and
D, may not commute any longer.

2.4.2.Lemma. (1) Foranyfield extensio6’/C, the differential Galois
group of M is G, andRy, is a Picard-Vessiot algebra fok1 .
(2) R is the Picard-Vessiot algebra fov1.

Proof. (1) Note thatR. and R, are simple with constant field” by
Corollary 2.1.3. On the other hand/ .- and its dual are solvable iR.;
and R, is generated by M/, (MR/C,)V) and (M¢, ( 7v2’c,)v>' Hence
R is a Picard-Vessiot algbra fo¥1.,. Hence the torsor of solutions of
M is Eer, its right automorphism group 6, and one concludes that
the differential Galois group & .

(2) follows from the equivalence of categories establishatem (2) of
the previous theorem. 0

2.5. We still denote byw the equivalence of ind-tannakian categories
w=(—®r R)Y: Ind (M)® — Ind Rep G.

Note thatind Rep G is nothing but the category of ration@modulesj.e.
C-vector spaces on whiafi acts as a group of automorphisms, and which
are sums of finite-dimensionél-stable subspaces on which the given ac-
tion of GG is by some rational representatioh e.g. [10, p. 7]. For any
N € Ind (M)®, there is a canonical isomorphismBf-differential mod-
ules

2.1) WN) @R 3N @ R

(coming from the canonicaR’-point of ). SinceR’ is faithfully flat over
R, we conclude that

2.5.1. Corollary. For any objectV in Ind (M)®, the underlying?-module
N is faithfully flat. O

Via w, differential algebra extensions & in Ind (M)® correspond to
rational G-algebras (for instanc®’ correspond t@’'[G] with G-action by
left translations), and their differential ideals corresg toG-ideals.

2.5.2. Corollary. Assume that? is finitely generated ovef’. LetS €
Ind (M)® be a differential algebra extension &. Then locally for the
etale topology ofSpec R, Spec S is isomorphic tdSpecw(S) x¢ R.
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Proof. By (2.1), S andw(S)r become isomorphic after smooth surjective
base chang8pec R — Spec R, hence after etale surjective base change
sinceSpec R = ¥ — Spec R is smooth surjectivecf. [EGAIV, 17.6.3]).

O

3. SOLUTION ALGEBRAS AND AFFINE QUASFHOMOGENEOUS
VARIETIES

Here again,R is a simple (generalized) differential ring with alge-
braically closed field of constants of characteristid), K is its quotient
field, andM is a finitely generated differential module.

3.1. Let S/R be a differential extension.

3.1.1. Definition. § is asolution algebrdor M if
(1) S is a domain,

(2) the constant field of its quotient field (viewed as a differential
extensionC of K) is C,

(3) there is a solutiom of M in S (i.e. a morphismM % S of dif-
ferential modules oveR) such that the image af generates the
R-algebras.

A solution algebra fo{M)® is a solution algebra for som& € (M)®.

Example. A Picard-Vessiot algebr&k’ for M is a solution algebra
for M" & (MY)", with r = rkM (the solutionv being given by
(U1, .., 00,0, .o 0Y), where(vy, ..., v,) is aC-basis of solutions of\t

in R and(vy,...,v)) is the dual basis).

»Er

3.1.2. Remark. Condition (2) is stronger than requiring that the constant
ring of S is C. For instance, ifR = (Clz].,d = L), M = (C[z]*,V =
d—-(1,2)), S = C|x,y,z], with dx = z,dy = 2y, andv sends the
canonical basis of/ to (z,y), then the constant ring & is C, but the
constant field of its quotient field '@(%), so thatS is not a solution algebra
for M in the sense of Definition 3.1.1 (but its quotient by the défdial

ideal generated by — 22 is a solution algebra fat).

3.1.3. Proposition. Any solution algebra fofM)® belongs tolnd(M)®,
hence is faithfully flat over.

Proof. The morphismv : A/ — S extends to a morphism : Sym' N —
S which is surjective by item (3) of Definition 3.1.1, hen§ec Ind(M)®.
Faithful flatness overk follows by the previous corollary. O
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We fix a fiber functorw : (M)® — Vece. Let G € GL(w(V)) be the
differential Galois group of\, and letR’ be the Picard-Vessiot algebra of
M,sothatR' = O(X), w= (- ®r R)V.

3.1.4. Theorem. (1) Any solution algebra for (M)® embeds as a dif-
ferential sub-extension &' /R.

(2) Conversely, any differential sub-extensiénof R'/R which is
finitely generated oveRr is a solution algebra for( M)®.

(3) GivenN € (M)®, S — Sk, Sk — ScN'R’ are inverse bijections
between solution algebras fdy" in R’ and solution algebras for
N/C in R;C

Proof. (1) Since the Picard-Vessiot algebra/gfembeds irR/, it suffices
to deal with\V = M.

Let R’ be a Picard-Vessiot algebra fd ., and consider the quotie&t
of L&k R by a maximal differential ideal. Thes$j is simple, its constant
field C is a field extension of'. and£ andR’, embed intaS;. Any object
of (Mx)® is solvable inS;, whence a fiber a functor on th& -tannakian
category(Me,)® = (M, )® (cf. 2.2.1 (2)). The coordinate ring of the
associated torsor of solutions is a Picard-Vessiot algi§réor M, con-
tained inS;, with constant field”;. SinceR} contains(M.g,, ( gim, it
also containsS¢, by condition (3) in Definition 3.1.1.

By Lemma 2.4.2, there is an isomorphigtp, = R}, which we fix. By
condition (2) of Definition 3.1.1 and Lemma 2.1.2, the natunarphism
L ®c Cy — S isinjective, hence so iS¢, — Ry, = Rj.

In order to descend the constant field framto C, we shall use a spe-
cialization argument. Note that, is a finitely presente®, -algebra, and
Sc, is finitely generatedi, -algebra, henc&,, is also a finitely presented
Sc,-algebra €f. [EGAIV, Prop. 1.4.3, 1.4.6]). Writing”; as a filtered
colimit of finitely generated -algebras, one may find suctCaalgebraC,
such thatS¢;, — R, comes from a morphisific, — R,. Moreover, the
quotientRy, /S¢, is Re, -flat sinceR' /S € Ind M (by Proposition 3.1.3).
Therefore we may assume thi, /Sc, is R¢,-flat, henceC-flat, so that
theCs-embeddingc, — Ry, is pure, hence remains injective after tensor-
ing by the quotient” of C; by any maximal ideal. This yields the desired
R-embeddingS — R’.

(2) According to§2.5, w(S) is a rationalGG-algebra, of finite type over
C. Letwvy,...,v,, be generators. Th&-moduleV; generated by; can be
writtenw(N;") for someN; € (M)®. One haso((NV;, v;)) = (w(N;), v;) =
(VY ) = V; C w(S). Hencev;(N;) = (N;,v;) C S, and the image of
the solutionv = > v; of ' = @& N generates th&-algebraS. Since
Q(S)Y c (K")Y = C, we conclude tha$ is a solution algebra fok/.
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(3) follows from the equivalence of categories establishatem (2) of
theorem 2.2.1. O

3.2. Let us further apply the considerations§@f5 to solution algebras. In
the following theorem, “solution algebra” means “solutaigebra for some
N € (M)® " They form a category (a full subcategory of the category of
algebras ifind (M)®).

3.2.1. Theorem. (1) S — Z = Specw(S) gives rise to an anti-
equivalence of categories between solution algebrag.fdy® and
affine quasi-homogeneoutsvarieties.

(2) More precisely, it gives rise to a bijection between intednage so-
lution algebrasR € S C R’ and pairs (Z,v) (up to unique iso-
morphism) whereZ is an affine quasi-homogeneodGsvariety 7
andv € Z is a closed point of the dense orbit.

(3) Differential ideals ofS correspond to close@-subsets of.

(4) For any solution algebra& c R’, R’ is flat (and even smooth) over
S. Moreover, R’ is faithfully flat overS < S is simples 7 is a
homogeneou&-variety.

Proof. (1)(2) Let us embed into the Picard-Vessiot algebf&’ (Theorem
3.1.4 (1)) and applw to the following morphisms of differential algebra

extensions oRR in Ind (M)®: Sym' M 2 S < R/, one gets morphisms
of rationalG-algebras

Clw(MY)] = Sym’ w(M) 2 w(S) — w(R') = C[q).

Identifying v with a point in the vector spadé = w(MY), the composed
morphismC[V] — w(S) — C]G] is nothing but the comorphism of the
morphismG — V given byg — g¢.v, which factors through the dominant
morphismr : G — Z = Spec w(S). It follows that the closed subsgt of

V is the closure7.v C V.

The ®-equivalencelnd (M)® = Ind Rep G thus induces a fully faith-
ful contravariant functor from solution algebr&gor (M)® to affine quasi-
homogeneous:-varieties Z, and an injection from intermediate solution
algebrasR ¢ S C R’ to pairs(Z, n(1)).

Conversely, letZ be an affine quasi-homogenedauis/ariety, andv € 7
be in the dense orbit, whence a domin&Mmorphism ¢ = 7 =
Spec w(S), v = 7w(1). SinceC[Z] is a rationalG-algebra, it is a quo-
tient of Sym VY for some finiteG-moduleV'. This provides a close@'-
embeddingZ — V. SinceZ is quasi-homogeneous, it is the closure of a
G-orbit G.v € V.
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Let NV € (M)® be such thato(N) = V'V, let S be the algebra in
Ind (M)® such thato(S) = C[Z], and letv : N' — S be the morphism
whose image by is the given pointv € V. ThenSym' N’ — S is an
epimorphism sinc&ym V'V — (C[Z] is. The choice ofv specifies the
dominantG-morphismG — Z, and corresponds via to an embedding
S — R'. It follows that S is a domain and that the field of constant of
its quotient field isC. We conclude thaf is a solution algebra fofM)®
generated by the image of the solutian

(3)isclear: Z «+» Spec w(S/Z).

(4) Applying the isomorphism (2.1) t& = S andN = R/, smoothness
(resp. faithful flatness) ofRR’ over S’ follows from smoothnessé€sp. is
equivalent to faithful flatness) @f — Z. By item (3), one hasS is simple
& Gou=Guve G — Zisfaithfully flat. O

3.2.2. Remark. Any solution algebras is a domain by definition, but the
associated quasi-homogeneous varigty- G.v may be reducible. It may
even occur tha is connected but its dense orltit.v is disconnected, as

the following example showsM = (C(2)?,V =d — (E _1)), S =
4z 2z

C(2)[eV?, VzeV?] = C(2)[a,y]/(y* — 22%) C R' = C(2)[e*V7, V2], and
v sends the canonical basis df to (eV#,0). ThenZ is the union of the
axes inw(MY) = C?% which are permuted by, C G = G,, X pio.

This example also shows that, wherd#ds always a smootl§-algebra,
S may not be a smootR-algebra.

3.2.3. Remark. An integral quotientS’ = S/7 of a solution algebra faMm
is a solution algebra faM if and only if the constant field of)(S’) is C.
This occurs if and only if thé&7-variety Spec w(S’) is quasi-homogeneous.

4. SOLUTION FIELDS AND OBSERVABLE SUBGROUPS

4.1. Let K be the quotient field oR as in the previous section.

The quotient fieldC’ of R’ is aPicard-Vessiot fielflor M. It is minimal
among the differential field extensions/efwith constant field”' in which
M and M are solvable. The differential Galois group.bft, (or M) is
G =AuK'/K.

The (generalized)differential Galois correspondencés an order-
reversing bijection between intermediate differentigkasionsC C £ C
K’ and closed subgroug$ < G, given byH = Aut K'/L£ andL = (K')H.
MoreoverK'’ is a Picard-Vessiot field foM -, and £ is a Picard-Vessiot
field for someN € (M )®is and only ifH < G, cf. [3, 3.5.2.2].

4.1.1. Remark. Let Vecﬁ,'c be the category of triplegP, W, . whereP is
a finite-dimensional<-vector spacel}V is a finite-dimensional’-vector
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space and : W ®¢ K' — P ®x K'is anisomorphism. This is actually a
tannakian category ovér. One has a&-functor (M)® — Vec?'c which
sendsNi to (P = Ng, W = (Ng ®k K')V), canonical isomorphisn).
This makes(M)® a tannakian subcategory Uécfc (one easily checks
that any subobject afNy, (Nx @ K')V), 1) comes from(M)®).

4.2. Let L/K be a differential field extension, and let: M, — £ be a
solution of M in L (i.e. a morphism of differential modules).

4.2.1. Definition. £ is asolution fieldfor M if its constant field i~ and
there is a morphisnM . — L of differential modules ovekX’ whose image
generates the field extensian K.

A solution field for(M)® is a solution field for som@/ic € (My)®.

4.2.2.Lemma. (1) The quotient field of a solution algeb&for M is
a solution field forM .

(2) Conversely, any solution field for My is the quotient field of a
(non unique) solution algebr& for M.

Proof. (1) is immediate. For (2), let be theR-subalgebra of. generated
by v(M). Itis clear that this is a differential algebra with quotiéeld L,
and the conditions for a solution algebra are satisfied. O

4.2.3. Theorem.LetK'/K be a Picard-Vessiot field fok1.

(1) Any solution fieldZ for (M)® embeds as a differential sub-
extension ok’ /K.

(2) If £ C K'is the quotient field of a solution algeb&for (My)®,
thenS C R'.

(3) An intermediate differential fieldC ¢ £ c K’ is a solution field
for (My)® ifand only if H = Aut K'/L is anobservable subgroup
of G = AutK'/K.

In fact, H is the isotropy group of any solutiom : Ny — L
whose image generatés

(4) For any solution fieldZ = (K') for (Mx)®, Ng(H)/H =
Aut L/K.

There are many equivalent characterizations of obsensldbgroups
H < @G, cf. [10, Th. 2.1]. One is thatr/ H is quasi-affine. Another is that
every finite-dimensional rationdf-module extends to a finite-dimensional
rational G-module. A third one is that/ is the isotropy group of a vector
v in some rationalz-module (and one may even require ti#ais also the
stabilizer of the lineC'v, cf. [15]).
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Proof. (1) is a consequence of Theorem 3.1.4 via item (2) of Lemm&4.2
(2) Let; be the given embedding — K’. By Theorem 3.1.4 again,
there is an embeddin§ — R’, which gives rise to a second embedding
1o L — K'. SinceK’ is a Picard-Vessiot field faM ; with automorphism
groupH, v; = h o, forsomeh € H C G. SinceG preservesk’ and

12(S8) C R', one has,(S) C R'.

In (3) and (4), one may replack by its quotient field/C (taking into
account item (3) of Theorem 3.1.4).

(3) LetV be afinite-dimensionak-module, and? be the isotropy group
of a vectorv € V. Let us writeV = w(N") for someN € (M)®. Then
(K')H is the subfield ofx” generated byN, v).

Indeed, letH < H' < G be the intermediate group attached to this
subfield. Then for any. € N and anyh € H', (n,h.v) = h((n,v)) =
(n,v), and one concludes thatv = v, whenceH = H'.

Now, any observable subgroupis such an isotropy group, and the pre-
vious observation shows that= (k') is a solution field generated hy
Conversely, ifL is a function field generated by a solutioof N € (M)®,
and H' is the subgroup attached fo = (K’)’, the previous observation
shows thatf{’ coincides with the isotropy groufi of v in w(ANV), hence is
observable.

(4) One haso((R)H) = C[G]" = C|G/H], henceAut (R")/K =
Autgw((R)H) = Autg C|G/H] = Autqg G/H = Ng(H)/H (acting on
G/H bynH - gH = gn~'H).

Note that( is the quotient field ofL N R’ = (R')# (this follows from
item (2) above and the previous lemma); heAee (R')" /K C Aut L/K.

It remains to show that any automorphismpreservegR’)?. One ob-
serves that\ut £/ permutes the differential subalgebrastivhich are
finitely generated oveK, hence preserves their union. This union is con-
tained in(R’)#, in fact equal to it since it is an algebralind (M)®. [

4.2.4. Remark. Aut S/R may be smaller thaAut £/K. Equality occurs
precisely when the corresponding quasi-homogeneoustyérie is very
symmetrian the sense of [44.3], cf. also [5,52] (this is the case whenever
H is asphericalobservable subgroup of a connected reductive gréup

On the other handAut R’/S coincides withAut K'/L = H since H
preservesR’ and. is the quotient field of.

5. HOMOGENEOUS SOLUTION ALGEBRAS

5.1. Let S be a solution algebra generated by a solutianM — S, and
let v” be its canonical extension to a surjective homomorphismiftefrdn-
tial ringsSym' M — S. LetS be the quotient ofym M by the graded
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ideal I generated by homogeneous relationdir v*, which is clearly a
differential ideal:

I=0T, T =Ker(Sym'M = S), S=a 5, §' = (Sym'M)/T" — S.

We first observe that, like, S is a domain if a,b € S have homo-
geneous decompositions a; and ) b; respectively, and satisfy.b = 0,
then the product of_ a;t and " bt must bed in @ S't' ¢ S[t] (sincesS
is a graded ring), hence goesitin S[t]. SinceS|t] is a domain, ane> S't’
maps injectively intaS[t], we conclude that = 0 or b = 0.

On the other hand$ € Ind (M)®, hence is faithfully flat ove? by
Corollary 2.5.1. Thuroj S is an integral closed subschemeR(f\/),
faithfully flat over R.

5.2. Note thatw(S) is a gradedG-algebra, andProj S is a closedG-
subvariety of the projective spad®(w(M)) of lines in V = w(MVY),
which contains the imagé = [Cv] € P(w(M)) of v € V. Let H be
the isotropy group of in G. The isotropy grougd of v is normal ind and
the quotientFI/H is a closed subgroup &f,,.

If S =5, one has a commutative square

G/H —— (Specw(S))\ 0

| !

G/H ——  Projw(S).

Since the horizontal morphisms are immersions, the top @@glopen,
and since the right vertical morphism is the quotient maishy one must
haveH /H = G,y,.

Conversely, assume théi[/H = @G,,. It can be considered as a closed
subgroup ofNg(H)/H = Aut L/K (Th. 4.2.3 (4)). Denoting by * ¢ the
action oft € C*on/ € L, one hastx(v'(n)) = (t'v*)(n), forany: > 0 and
anyn € Sym‘M, so that the actiom induces a graduation &f compatible
with Sym'M — S. This means thaf = S.

In that caseProj w(S) is a projective quasi-homogenedusvariety: in-
deed, in the above commutative diagram, the top and righphm&ms are
dominant, hence the bottom morphism is dominant as well.

5.2.1. Remark. This situation occurs for instance whéeih is a quasi-
parabolic subgroupf G, i.e. the isotropy subgroup of a highest weight
vector in some irreduciblé-module. In that case, the horizontal maps of
the above commutative diagram are isomorphisthg416]).
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6. PROOF OF THE STATEMENTS OK1

These statements concern classical differential rings the case) =
R), but extend to the case of generalized differential ringsgre 2 is any
projective R-module of finite rank.

6.1. Theorem 1.3.2 follows immediately from Theorem 4.2.3.

6.2. Proof of Theorem 1.5.2.(1) follows from Theorem 3.1.4 (2).

(2) follows from Theorem 4.2.3 (2).

(3) follows from Theorem 3.2.1 (1).

(4) follows from the fact thalR'! € Ind (M)® corresponds via to
C|G)" = C[|G/H]. HenceR'" is generated by some object {iM1)® if
and only if C[G/H] is generated by a finité-module, which amounts to
saying thatH is Grosshans.

(5) follows from Theorem 3.2.1(4) (note that & is simple,G/H is
affine, hence is the spectrum©fG/H| = w(R")? = w(R'H).

(6): let £ = (K') be a solution field fo{ M )®. ThenL is the quotient
field of a unique solution algebré (necessarily contained iR'") if and
only if there is a unique affine quasi-homogeneous varietyith dense
orbit G/H (henceZ = G/H). In the terminology of invariant theory,
G/H is affinely closed. According to Luna [12], in caégis reductive,
and to Arzhantsev and Timashev [8.3] in general, this occurs precisely
when the imagé? of H in the reductive quotient’ of G is reductive and
Na(H)/H is finite.

(7) follows from Corollary 2.5.2.

6.3. Proof of Theorem 1.6.1.(1) M is semisimple if and only it is
reductive. For anyV € Rep G such that the action @ fators through a fi-
nite groupG’, the corresponding Picard-Vessiot algebra is a finite cotenle
torsor undel’ overC'[z], hence’ = {1}. ThereforeG is connected. Ac-
cording to Raghunathan and Ramanathan [18], any torsor arctenected
reductive group ove€'[] is trivial, hence the torsor of solutions g# is
trivial, which means that,) = 9 (cf. §2.3). In particularw(S)c.) = S
as R-algebras, and = Spec w(S) is a quasi-homogeneodsvariety by
Theorem 3.2.1 (1).

(2) Let G be connected reductive, and et be an affine quasi-
homogeneoué&/-variety. As in the proof of 3.2.1 (2), one can embeéas
a closed>-subset in a finite-dimensionél-moduleV” (which we may as-
sume to be faithful). The constructive solution (by Mitsahd Singer [14])
of inverse differential Galois theory attachesGio— GL(V') a (semisim-
ple) differential module\ overC[z] with differential Galois groujg:. The-
orem 3.2.1 (1) shows how to construct a solution algebfar M, with
w(S) = C[Z], and by the previous item;(S)¢[, = S asR-algebras.
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6.4. Proof of Theorem 1.7.1.(1) has been proven ib.

(2) follows from Corollary 2.5.2.

(3) SinceSpec S is an algebraic fiber bundle ovepec R, all fibers are
integral if and only if the generic fiber is geometricallyagtal,i.e. K is
algebraically closed i = Q(S). Assume that this is the case.

SinceProjS is an algebraic fiber bundle ovEpec R, all fibers are in-
tegral if and only if the generic fiber of the affine cone is getmoally
integral. One may assume th&t= K, and one has to show that for any
finite extensionk; /K in S, S ®x K, is a domain. This is done by the
same argument as §%, taking into account the fact that @, K7)[t] is a
domain.

6.5. Final remarks. (1) In the context of Corollary 2.5.2, one can deduce
directly the homogeneous case from the inhomogeneous asdellows.
Let P(y,...,y™ ) = 0 be a polynomial relation of degree with coef-
ficients in R, which becomes homogeneous of degfe€ D after special-
ization atz = £. Let P; be the homogeneous part of degreef P, and
write P = P, + (z — £)Q. Thenq@ (resp. P;) maps naturally to an element
of S=P = im(S=<P — S) (resp.S¢ = im(S? — S)). The quotients=P /54

is a finitely generated differentid-module, hence torsion-free singeis
simple. Sincgz — £)Q goes to0 in S<P /5%, so doegy, i.e. there isQ,
homogeneous of degrdesuch that P; + (z — £)Q4)(y, - . ., y™ V) = 0.

(2) One question frequently asked by algebraic geometgesdang dif-
ferential Galois theory is: is there a “sheaf-theoreticsian” valid over any
smooth connected algebraitvariety X (not necessarily affine)? Here is
an answer.

The generalized differential ring is replaced by X, dx : Ox — Q).
Being in characteristio ensures thakKer d y is the constant shedf. Dif-
ferential extensions§ /R have to be replaced by (not necessarily smooth)

morphismsy Lx together with a retractiop : Q. — f*Q} of the natu-
ral morphismf*Q}, — Q1. (assumed to be injective); whence a derivation
d=pody: Oy — f*Qk extendingf~'dy.

Let M be a coheren® y-module with a (not necessarily integrable) con-
nection. The underlying module is locally free and the catg@f subquo-
tients of finite direct sums aM®* ® (MV)®7 is neutral tannakian ovef.
The fiber at any closed pointis a fiber functotu, with values inVec.. The
differential Galois group pointed atis G, = Aut®w,. One constructs the
torsor of solutions,, as in the affine case; it is a torsor under the affihe
group(G, ) x, and it admits a canonical structure of differential extensn
the above sense. All this is a straightforward modificatibf2, 2.3, 2.4.
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(3) We expect that a similar theory of solution algebras satdchar-
acteristicp, provided one uses Schmidt “iterated derivatives” or (ighleir
dimension) the ring of differential operators in the sens&mthendieck
[EGAIV, §16.8].

We also expect a similar theory for difference equations,mixed
difference-differential equations (for instangedic differential equations
with Frobenius structure), and we even expect a common fremkewith
the above theory, using non-commutative bimod€les in [3] (which uni-
fies differential algebra and difference algebra). One khbawever pay
attention to the fact that simple difference rings may haam zlivisors. In
the definition of (difference) solution algebras, one stdoeblace the con-
dition thatS is a domain by the condition that it is contained in a simple
difference algebra.
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