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Abstract

The inelastic interaction between heavy ions and an electron plasma in the presence of an intense radiation
field (RF) is investigated. The stopping power of the test ionaveraged with a period of the RF has been calculated
assuming thatω0 > ωp, whereω0 is the frequency of the RF andωp is the plasma frequency. In order to
highlight the effect of the radiation field we present a comparison of our analytical and numerical results obtained
for nonzero RF with those for vanishing RF. It has been shown that the RF may strongly reduce the mean energy
loss for slow ions while increasing it at high–velocities. Moreover, it has been shown, that acceleration of the
projectile ion due to the RF is expected at high–velocities and in the high–intensity limit of the RF, when the
quiver velocity of the plasma electrons exceeds the ion velocity.
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1 Introduction

The interaction of charged particles with a plasma in the presence of radiation field (RF) has been a subject of
great activity, starting with the work of Tavdgiridze, Aliev, Gorbunov and other authors (Tavdgiridze & Tsintsadze,
1970; Alievet al., 1971; Aristaet al., 1989; Akopyanet al., 1997; Nersisyan & Akopyan, 1999). A comprehensive
treatment of the quantities related to inelastic particle–solid and particle–plasma interactions, like scattering rates
and differential and total mean free paths and energy losses, can be formulated in terms of the dielectric response
function obtained from the electron gas model. The results have important applications in radiation and solid–state
physics (Ritchieet al., 1975; Tung & Ritchie, 1977; Echenique, 1987), and more recently, in studies of energy de-
position by ion beams in plasma fusion targets (Arista & Brandt, 1981; Mehlhorn, 1981; Maynard & Deutsch,
1982; Arista & Piriz, 1987; Avanzoet al., 1993; Couillaudet al., 1994). On the other hand, the achievement
of high–intensity laser beams with frequencies ranging between the infrared and vacuum–ultraviolet region has
given rise to the possibility of new studies of interaction processes, such as electron–atom scattering in laser
fields (Kroll & Watson, 1973; Weingartshoferet al., 1977, 1983), multiphoton ionization (Lompreet al., 1976;
Baldwin & Boreham, 1981), inverse bremsstrahlung and plasma heating (Seely & Harris, 1973; Kim & Pac, 1979;
Lima et al., 1979), screening breakdown (Mirandaet al., 2005), and other processes of interest for applications in
optics, solid–state, and fusion research.

In this paper we present a study of the effects of intense RF onthe interaction of nonrelativistic particles with
an electron plasma. The problem is formulated using the random–phase approximation (RPA), and includes the
effects of the RF in a self–consistent way. The electromagnetic field is treated in the long–wavelength limit, and
the electrons are considered nonrelativistic. These are good approximations provided that (i) the wavelength of
the RF (λ0 = 2πc/ω0) is much larger than the typical screening length (λs = vs/ωp with vs the mean velocity
of the electrons andωp the plasma frequency), and (ii) the ”quiver velocity” of theelectrons in the RF (vE =
eE0/mω0) is much smaller than the speed of lightc. These conditions can be alternatively written as (i)ω0/ωp ≪
2πc/vs, (ii) WL ≪ 1

2n0c(mc
2)(ω0/ωp)

2, whereWL = cE2
0/8π is the RF intensity. As an estimate in the case of

dense gaseous plasma, with electron densityn0 = 1018 cm−3, we get12n0mc
3 ≃ 1.2 × 1015 W/cm2. Thus the

limits (i) and (ii) are well above the values obtained with currently available high–power RF sources, and so the
approximations are well justified.

We have calculated the effects of the RF on the mean energy loss (stopping power) of the test ion considering
two somewhat distinct cases with slow and fast projectiles moving in a classical and fully degenerated electron gas,
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respectively. In the latter case the degenerated electron gas is treated within a simple plasmon–pole approximation
proposed by Basbas and Ritchie (Basbas & Ritchie, 1982). It has been shown, that besides usual stopping in a
plasma it is possible to accelerate the charged particles beam through RF. This effect is expected for fast projectiles
and in the high–intensity limit of the RF, when the ”quiver velocity” of the plasma electrons exceeds the projectile
ion velocity.

2 RPA formulation

We consider the time–dependent Hamiltonian for the plasma electrons in the presence of both a radiation field
(RF) with vector potentialA(t) = (c/ω0)E0 cos(ω0t), and a self–consistent scalar potentialϕ(r, t) (Aristaet al.,
1989; Nersisyan & Akopyan, 1999), i.e.,

H(t) =
∑

p

1

2m

(
p− e

c
A(t)

)2
c+p cp − e

∑

p,k

ϕ(k, t)c+p+kcp, (1)

wherecp, c+p are annihilation and creation operators for electrons withmomentump, respectively, andϕ(k, t) is
the Fourier transform ofϕ(r, t).

The potentialϕ(k, t) is produced by the external charge and by the induced electronic density, viz.,

k2ϕ(k, t) = 4πρ0(k, t) − 4πe
∑

p

Np(k, t) (2)

beingρ0(k, t) the Fourier transform of the external charge densityρ0(r, t), andNp(k, t) = (c+
p−k

cp)t is the
electrons number operator.

The time evolution of the operatorNp(k, t) is determined by the equation

i~
∂Np(k, t)

∂t
= [Np(k, t), H(t)] . (3)

In particular, for an oscillatory fieldA(t) and within random–phase approximation (RPA) Eq. (3) has thesolution
(Aristaet al., 1989; Nersisyan & Akopyan, 1999)

Np(k, t) =
ie

~
(fp−k − fp)

∫ t

−∞

dt′ϕ(k, t′) exp

[
i

~
(εp−k − εp) (t− t′)

]
(4)

× exp [−iζ (sin(ω0t)− sin(ω0t
′))] ,

whereζ = k · a, a = eE0/mω
2
0 is the oscillation amplitude of the electrons driven by the RF (quiver amplitude),

εp = p2/2m is the electron energy with momentump. Herefp is the equilibrium distribution function for the
electron plasma.

Finally, using Eq. (2) and making a further Fourier transformation we obtain a solution for the potentialϕ in
the form

ϕ̃(k, ω) =
4πρ̃0(k, ω)

k2ε(k, ω)
, (5)

where we have introduced the frequency transformsϕ̃(k, ω), ρ̃0(k, ω) of the quantities
(
ρ̃0(k, t)
ϕ̃(k, t)

)
=

(
ρ0(k, t)
ϕ(k, t)

)
eiζ sin(ω0t), (6)

andε(k, ω) is the RPA dielectric function (Lindhard, 1954; Lindhard & Winther, 1964).
In the case of a heavy particle with velocityv and chargeZe we neglect the effect of the RF on the particle

andρ0(r, t) = Zeδ(r− vt). We obtain

ρ̃0(k, ω) = 2πZe

∞∑

n=−∞

Jn(ζ)δ (ω − k · v + nω0) , (7)

whereJn is the Bessel function ofnth order. Using Eqs. (5)–(7) for the self–consistent potential ϕ(r, t) we finally
obtain

ϕ(r, t) =
Ze

2π2

∞∑

m,n=−∞

ei(n−m)ω0t

∫
dk
eik·(r−vt)Jm (ζ)Jn (ζ)

k2ε(k,k · v − nω0)
. (8)
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This result represents the dynamical response of the mediumto the motion of the test particle in the presence of
the RF; it takes the form of an expansion over all the harmonics of the field frequency, with coefficientsJn(ζ) that
depend on the intensityWL ∝ a2.

From Eq. (8) it is straightforward to calculate the electricfield E(r, t) = −∇ϕ(r, t), and the time average
(with respect to the period2π/ω0 of the laser field) of the stopping fieldEstop = 〈E(vt, t)〉 acting on the particle.
Then, the averaged stopping power (SP) of the test particle becomes

S ≡ −Zev
v
·Estop =

2Z2e2

(2π)2v

∞∑

n=−∞

∫
dk

k · v
k2

J2
n(ζ) Im

−1

ε(k,Ωn(k))
(9)

with Ωn(k) = nω0 + k · v.
To illustrate the effects of the RF it is convenient to take into account the symmetry of the integrand in Eq. (9),

with respect to the changek, n → −k,−n. Using also the property of Bessel functions,J2
−n(ζ) = J2

n(ζ), we
obtain

S =
Z2e2

2π2v

∫
dk

k · v
k2

[
J2
0 (ζ) Im

−1

ε(k,k · v) + 2
∞∑

n=1

J2
n(ζ) Im

−1

ε(k,Ωn(k))

]
. (10)

Hence, the SP depends on the particle velocityv, the frequencyω0 and the intensityWL = cE2
0/8π of the RF

(the intensity dependence is given through the quiver amplitudea). Moreover, since the vectork in Eq. (10)
is spherically integrated,S becomes also a function of the angleϑ between the velocityv, and the direction of
polarization of RF, represented bya.

By comparison, the SP in the absence of the RF is given by (Deutsch, 1986; Peter & Meyer-ter-Vehn, 1991)

SB =
Z2e2

2π2v

∫
dk

k · v
k2

Im
−1

ε (k,k · v) . (11)

In the presence of the RF the SPSB is modified and is given by the first term in Eq. (10) (”no photon” SP)

S0 =
Z2e2

2π2v

∫
dk

k · v
k2

J2
0 (ζ) Im

−1

ε (k,k · v) . (12)

Next we consider the case of a weak radiation field (a < λs, whereλs is the characteristic screening length) at
arbitrary angleϑ betweenv andE0. In Eq. (10) we keep only the quadratic terms with respect to the quantitya
and for the stopping powerS we obtain

S = SB +
Z2e2

4π2v

∫
dk

k2
(k · v)(k · a)2 Im

[
1

ε(k, ω0 + k · v) −
1

ε(k,k · v)

]
, (13)

whereSB is the field-free SP given by Eq. (11). Note that due to the isotropy of the dielectric functionε(k, ω) the
angular integrations in Eqs. (10)–(13) can be easily done.

It is well known that within classical description un upper cutoff parameterkmax = 1/rmin (wherermin

is the effective minimum impact parameter) must be introduced in Eqs. (11) and (13) to avoid the logarithmic
divergence at largek. This divergence corresponds to the incapability of the classical perturbation theory to
treat close encounters between the projectile particle andthe plasma electrons properly. Forrmin we use the
effective minimum impact parameter excluding hard Coulombcollisions with a scattering angle larger thanπ/2.
The resulting cutoff parameterkmax ≃ m(v2 + v2th)/|Z|e2 is well known for energy loss calculations (see, e.g.,
Zwicknagelet al. (1999); Nersisyanet al. (2007) and references therein). Herevth is the thermal velocity of the
electrons. In particular, at low projectile velocities this cutoff parameter readskmax = T/|Z|e2, whereT is the
plasma temperature given in energy units.

3 Energy loss of slow ions

In this section subsequent derivations are performed for the classical plasma and in the low–velocity limit of the
ion. In this case the RPA dielectric function is given by (Fried & Conte, 1961)

ε(k, ω) = 1 +
1

k2λ2D
W

(
ω

kvth

)
, (14)

whereλD is the Debye screening length, andW (z) = g(z)+if(z) is the plasma dispersion function (Fried & Conte,
1961) with

g(z) = 1− ze−z2/2

∫ z

0

et
2/2dt, f(z) =

√
π

2
ze−z2/2. (15)
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Figure 1: The dimensionless quantitiesΞ(γ, a, ϑ) (the lines with symbols) andΞav(γ, a) (the solid line without symbols) vs
the intensity parameter of the laser fielda/λD for ϑ = 0 (solid line),ϑ = π/4 (dashed line),ϑ = π/2 (dotted line) and for
ω0 = 1.2ωp.

Consider now the SP determined by Eq. (10) in the limit of low–velocities, whenv ≪ vth. In this limit from
Eqs. (10)–(15) we obtain

S(γ, a, ϑ) = SBΞ(γ, a, ϑ), (16)

where
Ξ(γ, a, ϑ) = Ξ1(γ, a) + Ξ2(γ, a) sin

2 ϑ, (17)

Ξs(γ, a) =
6

ψ(ξ)

{∫ ξ

0

k3dk

(k2 + 1)2

∫ 1

0

J2
0 (Akµ)fs(µ)dµ (18)

+2

√
2

π

∞∑

n=1

∫ ξ

0

Im

[
W1(n/kγ)k

3dk

(k2 +W (n/kγ))2

] ∫ 1

0

J2
n(Akµ)fs(µ)dµ

}
.

Heres = 1, 2, andf1(µ) = µ2, f2(µ) = 1
2 (1 − 3µ2). Note that at the absence of the laser field (i.e., ata → 0)

Ξ1(γ, a) → 1, Ξ2(γ, a) → 0. In this case the SP is determined by the quantitySB in Eq. (11) (Deutsch, 1986;
Peter & Meyer-ter-Vehn, 1991)

SB =

√
2

π

Z2e2

6λ2D

v

vth
ψ(ξ), (19)

where

ψ(ξ) = ln(1 + ξ2)− ξ2

1 + ξ2
(20)

is the Coulomb logarithm withξ = kmaxλD. Also in Eqs. (16)–(18) we have introduced the angleϑ between the
velocityv and the polarizationa vectors,W1(z) = dW (z)/dz,A = a/λD, γ = ωp/ω0 < 1. Note that while the
k integral in Eq. (11) diverges logarithmically in a field–free case, Eqs. (12) and (18) are finite and do not require
any cutoff. The Bessel functions involved in these expressions due to the radiation field guarantee the convergence
of thek–integrations. However, since in the sequel we shall compare Eqs. (16)–(18) with field–free SPSB, for
consistency the upper limits of thek–integrals in Eq. (18) are kept finite with the same upper cutoff parameter as
in Eqs. (11) and (19).

In many experimental situations, the ions move in a plasma with random orientations ofϑ with respect to the
direction of the polarization of laser fielda. The stopping power appropriate to this situation may be obtained by
carrying out a spherical average overϑ of S(γ, a, ϑ) in Eqs. (16) and (17). We find

Sav(γ, a) = SB

[
Ξ1(γ, a) +

2

3
Ξ2(γ, a)

]
≡ SBΞav(γ, a). (21)

The study of the effect of a radiation field on the SP is easier in the case of low-intensitiesWL whena < λD.
Then considering in Eqs. (16)–(18) only the quadratic termswith respect toa for the SPS(γ, a, ϑ) we obtain

S(γ, a, ϑ) = SB

[
1− a2

5λ2D
(2 cos2 ϑ+ 1)D(γ, ξ)

]
, (22)
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where

D(γ, ξ) =
1

ψ(ξ)

∫ ∞

1/ξ

dx

x3

{
1

(x2 + 1)2
−
√

2

π
Im

[
W1(x/γ)

(1 + x2W (x/γ))2

]}
. (23)

Taking into account thatγ < 1 andξ ≫ 1 from Eqs. (22) and (23) we finally obtainD(γ, ξ) ≃ 3/4γ2. It is seen
that at low–velocities the SPS(γ, a, ϑ) decreases with the intensity of radiation field.

In Fig. 1 the quantitiesΞ(γ, a, ϑ) andΞav(γ, a) are shown vs the intensity parametera/λD of the laser field
for three values of anglesϑ = 0, ϑ = π/4, ϑ = π/2 and forω0 = 1.2ωp. It is convenient to represent the intensity
parametera/λD in the forma/λD = 0.18λ20

√
n0WL/T , where the wavelength (λ0) and the intensity (WL) of

the laser field and the density (n0) and the temperature (T ) of plasma are measured in unitsµm, 1015 W/cm2,
1020 cm−3 and keV, respectively. As an example consider the case when the electron quiver amplitude reaches
the Debye screening length,a = λD. For the values of the RF and plasma parameters withλ0 = 0.5 µm, n0 =
1018 cm−3, T = 0.1 keV, the above condition is fulfilled at the radiation field intensityWL = 4.94×1018 W/cm2.

From Fig. 1 it is seen that the intense laser field may stronglyreduce the SP of the low–velocity ion. And as
expected the effect of the radiation field is maximal forϑ = 0. Note that in this case and ata = λD the radiation
field reduces the energy lossSB approximately by 15 %. For explanation of the obtained result let us consider a
simple physical model. The stopping power of the ion is defined asS = −(1/v)〈dW/dt〉, where〈dW/dt〉 is the
averaged (with respect to the period of the radiation field) energy loss rate. We assume that the frequency of the
radiation fieldω0 is larger than the effective frequency of the pairwise Coulomb collisionsνeff . Also assuming
that in the low–velocity limit the energy loss of the ion on the collective plasma excitations is negligible and is
mainly determined by the Coulomb collisions we obtain〈dW/dt〉 ∼ νeffW . On the other handνeff ∼ 1/v3eff ,
whereveff is the averaged relative velocity of the colliding particles. At v < vth and for vanishing radiation
field veff ≃ vth. However, in the presence of the radiation field the averagedrelative velocity of the collisions is
veff ≃ (v2th + v2E)

1/2 and increases with the intensity of the laser field. Thus the effective collision frequencyνeff
and hence the stopping power of the ion are reduced with increasing the intensity of the radiation field.

At the end of this section we consider a practical example. Let us consider the stopping of theα–particles in
the corona of the laser plasma. Although the thermonuclear reactions mainly occur far below the critical surface
the stopping length of theα–particles is larger than the characteristic length scale of plasma inhomogeneity and
some part of theα–particles transfer the energy to the plasma corona before they reach to the critical surface
(Max, 1982). In the vicinity of the plasma critical density the intensity of the radiation field is very large and the
stopping capacity of the plasma may be strongly reduced. In this example the typical temperature isT = 10 keV
and thereforevα/vth = 0.22 (Eα = MαV

2
α /2 = 3.5 MeV, whereEα, Mα, vα are the energy, the mass and the

velocity of theα–particles). Forλ0 = 0.5 µm,WL = 2 × 1017 W/cm2, andω0 = ωp

√
2 (the plasma density is

n0 = nc/2, wherenc is the plasma critical density) we finda ≃ λD. In this parameter regime the radiation field
reduces the SP of theα–particles by 20 %.

4 Energy loss of fast ions

In this section we consider the energy loss of a fast heavy ionmoving in a fully degenerate plasma (which means
that the partially degenerate case could be postponed to a further presentation) in the presence of a radiation
field. The longitudinal dielectric function of the degenerated electron gas is determined by Lindhard’s expression
(Lindhard, 1954; Lindhard & Winther, 1964). However, here we consider the simplest model of the dielectric
function of a jellium. Previously a plasmon–pole approximation toε(k, ω) for an electron gas was used for calcu-
lation of the SP (Basbas & Ritchie, 1982; Deutsch, 1995; Nersisyan & Das, 2000). In order to get easily obtainable
analytical results, Basbas & Ritchie (1982) employed a simplified form that exhibits collective and single–particle
effects

Im
−1

ε(k, ω)
= πω2

p

|ω|
ω

[
δ
(
ω2 − ω2

p

)
H(kc − k) + δ

(
ω2 − ω2

k

)
H(k − kc)

]
, (24)

whereH(x) is the Heaviside unit–step function,ωk = ~k2/2m, kc = (2mωp/~)
1/2, andωp is the plasma

frequency. The cutoff parameterkc is determined by equating the arguments of the two delta–functions in Eq. (24)
atk = kc. The first term in Eq. (24) describes the response due to nondispersive plasmon excitation in the region
k < kc, while the second term describes free–electron recoil in the rangek > kc (single–particle excitations). Note
that this approximate dielectric function satisfies at arbitrary k the usual frequency sum rule (Basbas & Ritchie,
1982; Deutsch, 1995; Nersisyan & Das, 2000).

In contrast to the previous section we consider here the fastprojectile ion withv & vc (wherevc = ωp/kc =
(~ωp/2m)1/2) which justifies the approximation (24) valid only in this specific case (Basbas & Ritchie, 1982).

It is constructive to consider first the case of a weak radiation field (kca < 1) at arbitrary angleϑ betweenv
anda. In this case the SP is determined by Eq. (13), where the field–free SPSB in the high–velocity limit is given
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by (Lindhard, 1954; Lindhard & Winther, 1964; Deutsch, 1986, 1995)

SB =
Z2e2ω2

p

v2
ln

(
2mv2

~ωp

)
. (25)

Inserting Eq. (24) into (13) for the stopping power we obtain

S =
2Z2Σ0

λ2

{
lnλ+

(kca)
2

4

[
Φ1(λ, γ) +

1

2
Φ2(λ, γ) sin

2 ϑ

]}
, (26)

whereΣ0 = e2k2c = 2~ωp/a0, a0 is the Bohr radius,Φ1 = Φ1c+Φ1s,Φ2 = Φ2c+Φ2s, λ = v/vc, γ = ωp/ω0 < 1.
Also

Φ1c(λ, γ) =
1

2λ2

[
6

γ2
lnλ+

(
1

γ
+ 1

)3

ln
γ

1 + γ
−
(
1

γ
− 1

)3

ln
γ

1− γ

]
, (27)

Φ2c(λ, γ) = −3

[
Φ1c(λ, γ) +

1

2γ2λ2

]
, (28)

Φ1s(λ, γ) =
1

4λ2

[
1

2

(
β2
1 + η21 − α2

1 − δ21
)
+

3

γ
(β1 + δ1 − α1 − η1) (29)

− 1

γ3

(
1

β1
− 1

α1
− 1

η1
+

1

δ1

)
+

3

γ2
ln
β1η1
α1δ1

+ 1− λ4
]
,

Φ2s(λ, γ) =
β1 − α1

4

(
1− 9

γλ2

)
+
η1 − δ1

4

(
1 +

9

γλ2

)

− 3

8λ2
(
β2
1 + η21 − α2

1 − δ21
)
+

3

4γ3λ2

(
1

β1
− 1

α1
− 1

η1
+

1

δ1

)
(30)

+
1

4γ

(
ln
β1δ1
α1η1

− 9

γλ2
ln
β1η1
α1δ1

)
+

1

4

(
1− 1

λ2

)(
λ2 + 3

)
,

(
αn

ηn

)
= max



(
λ

2
−
√
λ2

4
∓ n

γ

)2

; 1


 , (31)

(
βn
δn

)
=

(
λ

2
+

√
λ2

4
∓ n

γ

)2

.

In Eq. (31)n is a positive integer (n = 1, 2, ...). The first term in Eq. (26) corresponds to the field–free SP (25)
represented in a dimensionless form. The remaining terms proportional to the intensity of the radiation field (a2),
describe the collective (proportional toΦ1c; 2c(λ, γ)) and single–particle (proportional toΦ1s; 2s(λ, γ)) excitations.
It should be noted that the stopping power Eq. (26) is not vanishing only at high–velocities whenλ > 2/

√
γ.

Consider next the angular distribution of the SP at low–intensities of the RF. An analysis of the quantity
P = (S−SB)/SB (the relative deviation ofS fromSB) for the proton projectile shows that at moderate velocities
(λ & 2/

√
γ) the angular distribution ofP has a quadrupole nature. At0 6 ϑ 6 ϑ0(λ, γ), whereϑ0(λ, γ) is some

value of the angleϑ, the excitation of the waves with the frequenciesω0 ± ωp leads to the additional energy loss.
At ϑ0(λ, γ) 6 ϑ 6 π/2 the proton energy loss changes the sign and the total energy loss decreases. When the
proton moves at the angleϑ = ϑ0(λ, γ) with respect to the polarization vectora the radiation field has no any
influence on the SP. However, at very large velocities (λ≫ 2/

√
γ) the relative deviationP is negative for arbitrary

ϑ and the radiation field systematically reduces the energy loss of the proton.

Let us now investigate the influence of the intense radiationfield on the stopping process whenv is parallel to
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Figure 2: Left panel, the ratioR(a) = S(a)/SB as a function of dimensionless quantitykca at v = 8.6vc, ω0 = 1.2ωp

(solid line),ω0 = 1.6ωp (dashed line),ω0 = 2ωp (dotted line),ω0 = 3ωp (dash–dotted line). Thin solid line corresponds
to R0(a) = S0(a)/SB (see Eq. (33)). Right panel, same as in left panel but atω0 = 1.2ωp, v = 3vc (solid line),v = 7vc
(dashed line),v = 11vc (dotted line),v = 17vc (dash–dotted line).

a. It is expected that the effect of the RF is maximal in this case. From Eqs. (10) and (24) we obtain

S = S0 +
Z2Σ0

λ2

{
n
−∑

n=1

(
n

γ
+ 1

)
J2
n (Apn) ln

λ

n/γ + 1

−
n+∑

n=1

(
n

γ
− 1

)
J2
n (Aqn) ln

λ

n/γ − 1
(32)

+
1

2

N∑

n=1

∫ βn(λ)

αn(λ)

dx

x2

(
n

γ
+ x

)
J2
n (APn(x))

−1

2

∞∑

n=1

∫ ηn(λ)

δn(λ)

dx

x2

(
n

γ
− x

)
J2
n (AQn(x))

}
,

whereA = kca, Pn(x) = (1/λ)(n/γ + x), Qn(x) = (1/λ)(n/γ − x), pn = Pn(1), qn = Qn(1), and

S0 =
Z2Σ0

λ2

[
J2
0

(
A

λ

)
lnλ+

1

2

∫ λ

1/λ

dx

x
J2
0 (Ax)

]
(33)

is the SP without emission or absorption of the photons. Alsowe have introduced the notations

n± = int

(
kcv ± ωp

ω0

)
= int [γ (λ± 1)] , (34)

N = int

(
mv2

2~ω0

)
= int

(
γλ2

4

)
,

whereint(x) is the integer part ofx. The quantitiesαn(λ), βn(λ), δn(λ), ηn(λ) in Eq. (32) are determined by
Eq. (31). We note that in Eq. (32) the terms involvingn± andN photons are not vanishing atλ > 1/γ ∓ 1 and
λ > 2/

√
γ, respectively. Similarly the SP (33) is not vanishing atλ > 1.

The first term in Eq. (33) describes the collective excitations while the second term corresponds to the single–
particle excitations. From Eq. (33) it is seen thatS0 oscillates with the intensity of the laser field. However, the
radiation field suppresses the excitation of the collectiveand the single–particle modes and the SPS0 is less than
the field–free SPSB. As follows from Eq. (33) at high–intensities of the RF the SPS0 is close to zero when
A/λ ≃ µm (or alternatively atγ(vE/v) ≃ µm) with m = 1, 2, . . ., whereµm are the zeros of the Bessel function
J0(µm) = 0 (µ1 = 2.4, µ2 = 5.52, µ3 = 8.63. . . ). Then the energy loss of the ion is mainly determined by the
other terms in Eq. (32) and is stipulated by excitation of plasma waves with frequenciesnω0±ωp. The first and the
last pairs of terms in Eq. (32) describe the excitation of thecollective and single–particle modes, respectively, with
emission or absorption several photons. The number of photons (n±, N ) involved in the process of the inelastic
interaction are determined by the energy–momentum conservations (see the arguments of the delta–functions in
the dielectric function (24)).
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The results of the numerical evaluation of the SP (Eqs. (32) and (33)) are shown in Fig. 2, where the ratio
R(a) = S(a)/SB is plotted as a function of the laser field intensity (kca = 5.38W

1/2
L ω−2

0 r
−3/4
s , wherers is the

Wigner–Seitz density parameter andWL andω0 are measured in units1015 W/cm2 and1016 sec−1, respectively).
For instance, for Al target withrs = 2.07, ~ωp = 15.5 eV, andvc = 1.2 × 108 cm/sec. From Fig. 2 it is seen
that the SP exceeds the field–free SP and may change sign due toplasma irradiation by intense (kca ≫ 1) laser
field. Similar properties of the SP has been obtained previously for a classical plasma (Nersisyan & Akopyan,
1999). However, due to the higher density of the degenerate electrons (in metals typicallyn0 ∼ 1023 cm−3)
the acceleration rate of the projectile particle is larger than similar rate in the case of a classical plasma. The
acceleration effect occurs atvE/v ≃ µm/γ (with m = 1, 2, . . .) when the SPS0 nearly vanishes. It should
be noted that in the laser irradiated plasma a parametrical instability is expected (Silin, 1973) with an increment
increasing with the intensity of the radiation field. This restricts the possible acceleration time with stronger
condition than in the case of a classical plasma. Finally, let us note that the effect of the enhancement of the SP
of an ion moving in a laser irradiated plasma is intensified atsmaller frequency (Fig. 2, left panel) of the radiation
field (ω0 ≃ ωp butω0 > ωp) or at larger incident kinetic energy of the projectile ion (Fig. 2, right panel) when the
numbersn± andN of the photons involved in the inelastic interaction process are strongly increased (Eq. (34)).
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