MOMENT INEQUALITIES FOR TRIGONOMETRIC POLYNOMIALS WITH SPECTRUM IN CURVED HYPERSURFACES

J. Bourgain

(0). Summary

In this note we develop further the technique from [B-G], based on the multi-linear restriction theory from [B-C-T], to establish some new inequalities on the distribution of trigonometric polynomials on the n-dimensional torus $\mathbb{T}^{n}, n \geq 2$, of the form

$$
\begin{equation*}
f(x)=\sum_{z \in \mathcal{E}} a_{z} e^{2 \pi i x . z} \tag{0.1}
\end{equation*}
$$

where \mathcal{E} stands for the set of \mathbb{Z}^{n}-points on some dilate D.S of a fixed compact, smooth hypersurface S in \mathbb{R}^{n} with positive definite second fundamental form. More precisely, we prove that for $p \leq \frac{2 n}{n-1}$ and any fixed $\varepsilon>0$, the bound

$$
\begin{equation*}
\|f\|_{L^{p}\left(\mathbb{T}^{n}\right)} \leq C_{\varepsilon} D^{\varepsilon}\|f\|_{L^{2}\left(\mathbb{T}^{n}\right)} \tag{0.2}
\end{equation*}
$$

holds.
In particular, if Δ stands for the Laplacian on \mathbb{T}^{n} and

$$
\begin{equation*}
-\Delta f=E f \tag{0.3}
\end{equation*}
$$

we have that for $p \leq \frac{2 n}{n-1}, n \geq 2$

$$
\begin{equation*}
\|f\|_{L^{p}\left(\mathbb{T}^{n}\right)}<_{\varepsilon} E^{\varepsilon}\|f\|_{L^{2}\left(\mathbb{T}^{n}\right)} \tag{0.4}
\end{equation*}
$$

Recall that if $n=2$, one has the inequality, for f satisfying (0.3),

$$
\begin{equation*}
\|f\|_{L^{4}\left(\mathbb{T}^{2}\right)} \leq C\|f\|_{L^{2}\left(\mathbb{T}^{2}\right)} \tag{0.5}
\end{equation*}
$$

due to Zygmund and Cook. For $n=3$, arithmetical considerations permit to obtain a bound

$$
\begin{equation*}
\|f\|_{L^{4}\left(\mathbb{T}^{3}\right)} \ll{ }_{\varepsilon} E^{\varepsilon}\|f\|_{L^{2}\left(\mathbb{T}^{3}\right)} \tag{0.6}
\end{equation*}
$$

For $n \geq 4$, no estimate of the type (0.4) for some $p>2$ seemed to be known. Recall also that it is conjectured that one has uniform bounds

$$
\begin{equation*}
\|f\|_{L^{q}\left(\mathbb{T}^{n}\right)} \leq C_{q}\|f\|_{L^{2}\left(\mathbb{T}^{n}\right)} \text { if } q<\frac{2 n}{n-2} \tag{0.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\|f\|_{L^{q}\left(\mathbb{T}^{n}\right)} \leq C_{q} E^{\frac{1}{2}\left(\frac{n-2}{2}-\frac{n}{q}\right)}\|f\|_{L^{2}\left(\mathbb{T}^{n}\right)} \text { if } q>\frac{2 n}{n-2} \tag{0.8}
\end{equation*}
$$

if f satisfies (0.3). The inequality (0.8) was proven in [B1] (using the HardyLittlewood circle method) under the assumption

$$
\begin{equation*}
q>\frac{2(n+1)}{n-3} \tag{0.9}
\end{equation*}
$$

(up to an E^{ε}-factor).
Another application of (0.2) relates to the periodic Schrödinger group $e^{i t \Delta}$. For $n \geq 1$, one has the Strichartz' type inequality

$$
\begin{equation*}
\left\|\left(e^{i t \Delta} f\right)(x)\right\|_{L^{q}\left(\mathbb{T}^{n+1}\right)} \ll R^{\varepsilon}\|f\|_{L^{2}\left(\mathbb{T}^{n}\right)} \tag{0.10}
\end{equation*}
$$

for $q \leq \frac{2(n+1)}{n}$ and f satisfying supp $\hat{f} \subset \mathbb{Z}^{n} \cap B(0, R)$.
Combined with results from [B3], (0.10) implies that for $q>\frac{2(n+3)}{n}$

$$
\begin{equation*}
\left\|\left(e^{i t \Delta} f\right)(x)\right\|_{L^{q}\left(\mathbb{T}^{n+1}\right)} \leq C_{q} R^{\frac{n}{2}-\frac{n+2}{q}}\|f\|_{L^{2}\left(\mathbb{T}^{n}\right)} \tag{0.11}
\end{equation*}
$$

for f as above. Note that inequality (0.11) is optimal. This result is new (and of interest to the theory of the nonlinear Schrödinger equations with periodic boundary conditions) for $n \geq 4$. (See [B3] for more details).

More generally, fix a smooth function $\psi: U \rightarrow \mathbb{R}$ on a neighborhood U of $0 \in \mathbb{R}^{n}$ such that $D^{2} \psi$ is positive definite. For $q \leq \frac{2(n+1)}{n}$ and $R \rightarrow \infty$,

$$
\begin{align*}
& {\left[\int_{[0,1]^{n+1}}\left|\sum_{z \in \mathbb{Z}^{n},|z|<R} a_{z} e^{2 \pi i\left(x \cdot z+R^{2} t \psi\left(\frac{z}{R}\right)\right)}\right|^{q} d x d t\right]^{1 / q}} \\
& \ll R^{\varepsilon}\left(\sum\left|a_{z}\right|^{2}\right)^{\frac{1}{2}} . \tag{0.12}
\end{align*}
$$

Taking $\psi(x)=\alpha_{1} x_{1}^{2}+\cdots+\alpha_{n} x_{n}^{2}, \alpha_{1}, \ldots, \alpha_{n}>0$, generalizes (0.10) to irrational tori (cf. [B]).

(1). Multilinear Estimates

Fix a smooth, compact hyper-surface S in \mathbb{R}^{n} with positive definite second fundamental form. For $x \in S$, denote $x^{\prime} \in S^{(n-1)}=[|x|=1]$ the normal vector at the point x and let $\sim: S^{(n-1)} \rightarrow S$ be the Gauss map. Thus $\tilde{x^{\prime}}=x$ for $x \in S$. Let σ be the surface measure of S.

The estimates below depend on the multi-linear theory developed in [BCT] to bound oscillatory integral operators. We recall the following version for later use. Let

$$
\begin{equation*}
\phi(x, y)=x_{1} y_{1}+\cdots+x_{n-1} y_{n-1}+x_{n}\left(\langle A y, y\rangle+O\left(|y|^{3}\right)\right) \tag{1.1}
\end{equation*}
$$

where $x \in \mathbb{R}^{n}, y \in \mathbb{R}^{n-1}$ is restricted to a small neighborhood of 0 and A is symmetric and definite (in particular, A is non-degenerate).

Denote

$$
\begin{equation*}
Z(x, y)=\partial_{y_{1}}\left(\nabla_{x} \phi\right) \wedge \cdots \wedge \partial_{y_{n-1}}\left(\nabla_{x} \phi\right) \tag{1.2}
\end{equation*}
$$

Fix $2 \leq k \leq n$ and disjoint balls $U_{1}, \ldots, U_{k} \subset \mathbb{R}^{n-1}$ such that the transversality condition holds

$$
\begin{equation*}
\left|Z\left(x, y^{(1)}\right) \wedge \cdots \wedge Z\left(x, y^{(k)}\right)\right|>c \text { for all } x \text { and } y^{(i)} \in U_{i} \tag{1.3}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left\|\left(\prod_{i=1}^{k}\left|T f_{i}\right|\right)^{\frac{1}{k}}\right\|_{L^{q}\left(B_{R}\right)} \ll R^{\varepsilon}\left(\prod_{i=1}^{k}\left\|f_{i}\right\|_{2}\right)^{\frac{1}{k}} \tag{1.4}
\end{equation*}
$$

with $q=\frac{2 k}{k-1}$, provided $\operatorname{supp} f_{i} \subset U_{i}$.

(2). Preliminary Lemmas

We recall a few estimates from $[B-G], \S 3$.

Lemma 1.

Let $U_{1}, \ldots, U_{n} \subset S$ be small caps such that $\left|x_{1}^{\prime} \wedge \cdots \wedge x_{n}^{\prime}\right|>c$ for $x_{i} \in U_{i}$.
Let M be large and $\mathcal{D}_{i} \subset U_{i}(1 \leq i \leq n)$ discrete sets of $\frac{1}{M}$-separated points.

Let $B_{M} \subset \mathbb{R}^{n}$ be a ball of radius M. Then, for $q=\frac{2 n}{n-1}$

$$
\begin{equation*}
\int_{B_{M}} \prod_{i=1}^{n}\left|\sum_{\xi \in \mathcal{D}_{i}} a(\xi) e^{i x . \xi}\right|^{q / n} \ll M^{\varepsilon} \prod_{i=1}^{n}\left[\sum_{\xi \in \mathcal{D}_{i}}|a(\xi)|^{2}\right]^{\frac{q}{2 n}} \tag{2.1}
\end{equation*}
$$

where \int denotes the average.

Proof.

This is just a discretized version of (2.4) with $k=n$; our assumption ensures the required transversality condition (1.3)

We can assume B_{M} centered at 0 . Introduce functions g_{i} on U_{i} defined by

$$
\left\{\begin{array}{l}
g_{i}(\zeta)=a(\xi) \text { if }|\zeta-\xi|<\frac{c}{M}, \xi \in \mathcal{D}_{i} \tag{2.2}\\
g_{i}(\zeta)=0 \text { otherwise }
\end{array}\right.
$$

($c>0$ a small constant). One may then replace $\sum_{\xi \in \mathcal{D}_{i}} a(\xi) e^{i x . \xi}$ by $c^{\prime} M^{n-1} \int_{S} g_{i}(\zeta) e^{i x \cdot \zeta} \sigma(d \zeta)$ if $x \in B_{M}$. Hence

$$
\begin{align*}
& \int_{B_{M}} \prod_{i=1}^{n}\left|\sum_{\zeta \in \mathcal{D}_{i}} a(\xi) e^{i x . \xi}\right|^{q / n} d x \lesssim \\
& M^{(n-1) q} \int_{B_{M}} \prod_{i=1}^{n}\left|\int_{S} g_{i}(\zeta) e^{i x \zeta} \sigma(d \zeta)\right|^{q / n} d x \stackrel{(1.4)}{<} \\
& M^{(n-1) q+\varepsilon} \prod_{i=1}^{n}\left\|g_{i}\right\|_{L^{2}\left(U_{i}\right)}^{q / n} \sim M^{\frac{n-1}{2} q+\varepsilon} \prod_{i=1}^{n}\left[\sum_{\xi \in \mathcal{D}_{i}}|a(\xi)|^{2}\right]^{\frac{q}{2 n}} . \tag{2.3}
\end{align*}
$$

Since $\int_{B_{M}}$ refers to the average, (2.1) follows, since $q=\frac{2 n}{n-1}$.

Lemma 2.

Let $S \subset \mathbb{R}^{n}$ be as above and $2 \leq m \leq n$. Let V be an m-dimensional subspace of $\mathbb{R}^{n}, P_{1}, \ldots, P_{m} \in S$ such that

$$
\begin{equation*}
P_{1}^{\prime}, \ldots, P_{m}^{\prime} \in V \text { and }\left|P_{1} \wedge \cdots \wedge P_{m}\right|>c \tag{2.4}
\end{equation*}
$$

and $U_{1}, \ldots, U_{m} \subset S$ sufficiently small neighborhoods of P_{1}, \ldots, P_{m}.
Let M be large and $\mathcal{D}_{i} \subset U_{i}(1 \leq i \leq m)$ discrete sets of $\frac{1}{M}$-separated points $\xi \in S$ such that $\operatorname{dist}\left(\xi^{\prime}, V\right)<\frac{c}{M}$. Let $g_{i} \in L^{\infty}\left(U_{i}\right)(1 \leq i \leq m)$. Then
letting $q=\frac{2 m}{m-1}$

$$
\begin{align*}
& \int_{B_{M}} \prod_{i=1}^{m}\left|\sum_{\xi \in \mathcal{D}_{i}}\left(\int_{|\zeta-\xi|<\frac{c}{M}} g_{i}(\zeta) e^{i x \cdot \zeta} \sigma(d \zeta)\right)\right|^{q / m} d x \ll \\
& M^{\varepsilon}\left\{\int_{B_{M}} \prod_{i=1}^{m}\left[\sum_{\xi \in \mathcal{D}_{i}}\left|\int_{|\zeta-\xi|<\frac{c}{M}} g_{i}(\zeta) e^{i x \cdot \zeta} \sigma(d \zeta)\right|^{2}\right]^{1 / 2 m}\right\}^{q} \tag{2.5}
\end{align*}
$$

Proof.

Performing a rotation, we may assume $V=\left[e_{1}, \ldots, e_{m}\right]$ and denote $\tilde{V} \subset S$ the image of $V \cap S^{(n-1)}$ under the Gauss map. Let again B_{M} be centered at 0 . For each $\xi \in \bigcup_{i=1}^{m} \mathcal{D}_{i}$ there is by assumption some $\hat{\xi} \in \tilde{V} .|\xi-\hat{\xi}|<\frac{c}{M}$. Write

$$
\begin{equation*}
\int_{|\zeta-\xi|<\frac{c}{M}} g_{i}(\zeta) e^{i x \cdot \zeta} \sigma(d \zeta)=e^{i x \hat{\xi}} \int_{|\zeta-\xi|<\frac{c}{M}} g_{i}(\zeta) e^{i x \cdot(\zeta-\hat{\xi})} \sigma(d \zeta) \tag{2.6}
\end{equation*}
$$

Since in the second factor of $(2.6),|\zeta-\hat{\xi}|=o\left(\frac{1}{M}\right)$, we may view it as constant $a(\xi)$ on $B_{M} \subset \mathbb{R}^{n}$.

Thus we need to estimate

$$
\begin{equation*}
\int_{B_{M}}\left\{\prod_{i=1}^{m}\left|\sum_{\xi \in \mathcal{D}_{i}} e^{i x . \hat{\xi}^{2}} a(\xi)\right|^{q / m}\right\} d x \tag{2.7}
\end{equation*}
$$

Writing $x=(u, v) \in B_{M}^{(m)} \times B_{M}^{(n-m)},(2.7)$ may be bounded by

$$
\begin{equation*}
\left.\max _{v \in B_{M}^{(n-m)}} \int_{B_{M}^{(m)}}\left\{\prod_{i=1}^{m}\right\}\left|\sum_{\xi \in \mathcal{D}_{i}} e^{i u \cdot \pi_{m}(\hat{\xi})} a_{v}(\xi)\right|^{q / m}\right\} d u \tag{2.8}
\end{equation*}
$$

with $a_{v}(\xi)=e^{i v . \hat{\xi}} a(\xi)$.
Since S has positive definite second fundamental form, $\pi_{m}(\tilde{V}) \subset V=$ [e_{1}, \ldots, e_{m}] is a hypersurface in V with same property and the normal vector at $\pi_{m}(\hat{\xi})=(\hat{\xi})^{\prime} \in V$. Since (2.4), application of (2.1) with n replaced by m and \mathcal{D}_{i} by $\left\{\pi_{m} \hat{\xi} ; \xi \in \mathcal{D}_{i}\right\}$ gives the estimate on (2.7)

$$
\ll M^{\varepsilon} \prod_{i=1}^{m}\left[\sum_{\xi \in \mathcal{D}_{i}}|a(\xi)|^{2}\right]^{q / 2 m}
$$

and (2.5) follows .

Lemma 3. Let

$$
p=\frac{2 n}{n-1}
$$

Take $K_{n} \gg K_{n-1} \gg \cdots \gg K_{1} \gg 1$. For $1 \leq j \leq n$, denote by $\left\{U_{\alpha}^{(j)}\right\}$ a partition of S in cells of size $\frac{1}{K_{j}}$. Then, for $R>K_{n}$ and $g \in L^{2}(S)$,

$$
\begin{align*}
\left\|\int g(\xi) e^{i x \cdot \xi} \sigma(d \xi)\right\|_{L^{p}\left(B_{R}\right)} & \ll \varepsilon \\
C\left(K_{n}\right) R^{\varepsilon}\left[\int_{S}|g(\xi)|^{2} \sigma(d \xi)\right]^{\frac{1}{2}} & +\sum_{2 \leq j \leq n} C\left(K_{j-1}\right) K_{j}^{\varepsilon}\left\{\sum_{\alpha}\left\|\int_{U_{\alpha}(j)} g(\xi) e^{i x \cdot \xi} \sigma(d \xi)\right\|_{L^{p}\left(B_{R}\right)}^{2}\right\}^{\frac{1}{2}} \\
& +\left\{\sum_{\alpha}\left\|\int_{U_{\alpha}^{(1)}} g(\xi) e^{i x \xi} \sigma(d \xi)\right\|_{L^{p}\left(B_{R}\right)}^{2}\right\}^{\frac{1}{2}} \tag{2.9}
\end{align*}
$$

where $C(K)$ denotes some polynomial function of K.
Proof. We follow the analysis from $\S 3$ in [B-G].
For $x \in B_{R}$, let

$$
(2.10)=\int_{S} g(\xi) e^{i x . \xi} \sigma(d \xi)
$$

Start decomposing $S=\bigcup_{\alpha} U_{\alpha}\left(\frac{1}{K_{n}}\right)$ in caps of size $\frac{1}{K_{n}}$ and write

$$
(2.10)=\sum_{\alpha} \int_{U_{\alpha}\left(\frac{1}{K_{n}}\right)} g(\xi) e^{i x . \xi} \sigma(d \xi)=\sum_{\alpha} c_{\alpha}(x) .
$$

Fixing x, there are 2 possibilities
(2.11) There are $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ such that

$$
\begin{equation*}
\left|c_{\alpha_{1}}(x)\right|, \ldots,\left|c_{\alpha_{n}}(x)\right|>K_{n}^{-(n-1)} \max _{\alpha}\left|c_{\alpha}(x)\right| \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\xi_{1} \wedge \cdots \wedge \xi_{n}\right| \gtrsim K_{n}^{-n} \text { for } \xi_{i} \in U_{\alpha_{i}} \tag{2.13}
\end{equation*}
$$

(2.14) The negation of (2.11), which implies that there is an $(n-1)$-dim subspace V_{n-1} such that

$$
\left|c_{\alpha}(x)\right| \leq K_{n}^{-(n-1)} \max _{\alpha}\left|c_{\alpha}(x)\right| \text { if } \operatorname{dist}\left(U_{\alpha}, \tilde{V}_{n-1}\right) \gtrsim \frac{1}{K_{n}}
$$

If (2.11), it follows from (2.12) that

$$
\left|\int_{S} g(\xi) e^{i x \cdot \xi} \sigma(d \xi)\right| \leq K_{n}^{n-1} \max \left|c_{\alpha}(x)\right| \leq K_{n}^{2 n-2}\left[\prod_{i=1}^{n}\left|c_{\alpha_{i}}(x)\right|\right]^{\frac{1}{n}}
$$

and the corresponding contribution to the $L_{B_{R}}^{p}$-norm of (4.1) is bounded by

$$
\begin{align*}
\int_{B_{R}}^{(2.11)} \mid & \left|\int_{S} g(\xi) e^{i x . \xi} \sigma(d \xi)\right|^{p} \\
& \lesssim K_{n}^{2 p(n-1)} \sum_{\substack{\alpha_{1}, \ldots, \alpha_{n} \\
(2.13)}} \int_{B_{R}} \prod_{i=1}^{n}\left|\int_{U_{\alpha_{i}\left(\frac{1}{K_{n}}\right)}} g(\xi) e^{i x . \xi} \sigma(d \xi)\right|^{\frac{p}{n}} \tag{2.15}
\end{align*}
$$

In view of (2.13), the [BCT]-estimate (1.4) with $k=n$ applies to each (2.15) term. Thus

$$
\begin{equation*}
\int_{B_{R}} \prod_{i=1}^{n}\left|\int_{U_{\alpha_{i}\left(\frac{1}{K_{n}}\right)}} g(\xi) e^{i x . \xi} \sigma(d \xi)\right|^{\frac{2}{n-1}} d x \ll C\left(K_{n}\right) R^{\varepsilon}\left[\int_{S}|g(\xi)|^{2} \sigma(d \xi)\right]^{\frac{n}{n-1}} \tag{2.16}
\end{equation*}
$$

Next consider the case (2.14).Thus

$$
\begin{aligned}
& |(2.10)| \leq\left|\int_{\text {dist }\left(\xi, \tilde{V}_{n-1}\right)<\frac{1}{K_{n}}} g(\xi) e^{i x . \xi} \sigma(d \xi)\right|+\max _{\alpha}\left|\int_{U_{\alpha}\left(\frac{1}{K_{n}}\right)} g(\xi) e^{i x \cdot \xi} \sigma(d \xi)\right| \\
& =(2.17)+(2.18)
\end{aligned}
$$

where V_{n-1} depends on x.
Note however that, from its definition, we may view $\left|c_{\alpha}(x)\right|$ as 'essentially' constant on balls of size K_{n}. Making this claim rigorous requires some extra work and one replaces $\left|c_{\alpha}(x)\right|$ by a majorant $\left|c_{\alpha}\right| * \eta_{K_{n}}, \eta_{K}(x)=\frac{1}{K^{n}} \eta\left(\frac{x}{K}\right)$ and η a suitable bump-function. We may then ensure that $\left|c_{\alpha}\right| * \eta_{K_{n}}$ is approximately constant at scale K_{n}. But we will not sidetrack the reader with these technicalities that may be found in [B-G], $\S 2$.

Thus, upon viewing the $\left|c_{\alpha}\right|$ approximatively constant at scale K_{n}, the bound $(2.17)+(2.18)$ may clearly be considered valid on $B\left(\bar{x}, K_{n}\right)$ with the same linear space V_{n-1}.

Obviously

$$
(2.18) \leq\left(\sum_{\alpha}\left|\int_{\substack{U_{\alpha}\left(\frac{1}{k_{n}}\right) \\ 7}} g(\xi) e^{i x \cdot \xi} \sigma(d \xi)\right|^{p}\right)^{\frac{1}{p}}
$$

and the corresponding $L_{B_{R}}^{p}$-contribution is bounded by

$$
\begin{equation*}
\left\{\sum_{\alpha}\left\|\int_{U_{\alpha}\left(\frac{1}{K_{n}}\right)} g(\xi) e^{i x . \xi} \sigma(d \xi)\right\|_{L_{B_{R}}^{p}}^{2}\right\}^{1 / 2} \tag{2.19}
\end{equation*}
$$

Consider the term (2.17). Proceeding similarly, write for $x \in B\left(\bar{x}, K_{n}\right)$

$$
\begin{align*}
& \int_{\operatorname{dist}\left(\xi, V_{n-1}\right) \lesssim \frac{1}{K_{n}}} g(\xi) e^{i x \cdot \xi} \sigma(d \xi)= \tag{2.20}\\
& \sum_{\alpha} \int_{U_{\alpha}\left(\frac{1}{K_{n-1}}\right) \cap\left[\operatorname{dist}\left(\xi, \tilde{V}_{n-1}\right) \lesssim \frac{1}{K_{n}}\right]} g(\xi) e^{i x \cdot \xi} \sigma(d \xi)=\sum_{\alpha} c_{\alpha}^{(n-1)}(x) .
\end{align*}
$$

We distinguish the cases
(2.20) There are $\alpha_{1}, \ldots, \alpha_{n-1}$ such that

$$
\begin{equation*}
\left|c_{\alpha_{1}}^{(n-1)}(x)\right|, \ldots,\left|c_{\alpha_{n-1}}^{(n-1)}(x)\right|>K_{n-1}^{-(n-2)} \max _{\alpha}\left|c_{\alpha}^{(n-1)}(x)\right| \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\xi_{1}^{\prime} \wedge \ldots \wedge \xi_{n-1}^{\prime}\right| \gtrsim K_{n-1}^{-(n-1)} \quad \text { for } \quad \xi_{i} \in U_{\alpha_{i}}\left(\frac{1}{K_{n-1}}\right) \tag{2.22}
\end{equation*}
$$

(2.23) Negation of (2.20), implying that there is an ($n-2$)-dim subspace $V_{n-2} \subset V_{n-1}$ (depending on x) such that

$$
\left|c_{\alpha}^{(n-1)}(x)\right|<K_{n-1}^{-(n-2)} \max _{\alpha}\left|c_{\alpha}^{(n-1)}(x)\right| \text { for } \operatorname{dist}\left(U_{\alpha}, \tilde{V}_{n-2}\right) \gtrsim \frac{1}{K_{n-1}} .
$$

This space V_{n-2} can then again be taken the same on a K_{n-1}-neighborhood of x.

We analyze the contribution of (2.20). By (2.21)

$$
\begin{equation*}
|(2.19)|<K_{n-1}^{2 n-4}\left[\prod_{i=1}^{n-1}\left|c_{\alpha_{i}}^{(n-1)}(x)\right|\right]^{\frac{1}{n-1}} \tag{2.24}
\end{equation*}
$$

and hence

$$
\begin{gather*}
\left.\int_{\substack{B\left(\bar{x}, K_{n}\right) \\
x \text { satisfies (2.20) }}} \int_{\substack{ \\
\operatorname{dist}\left(\xi, \tilde{V}_{n-1}\right) \lesssim \frac{1}{K_{n}}}} g(\xi) e^{i x \cdot \xi} \sigma(d \xi)\right|^{p} \leq \\
K_{n-1}^{p(2 n-4)} \sum_{\substack{\alpha_{1}, \ldots, \alpha_{n-1} \\
(2.22)}} \int_{B\left(\bar{x}, K_{n}\right)}\left\{\prod_{i=1}^{n-1}\left|\int_{U_{\alpha_{i}}\left(\frac{1}{K_{n-1}}\right) \cap\left[\operatorname{dist}\left(\xi, \tilde{V}_{n-1}\right) \lesssim \frac{1}{K_{n}}\right]} g(\xi) e^{i x \cdot \xi} \sigma(d \xi)\right|^{p / n-1}\right\} . \tag{2.25}
\end{gather*}
$$

We use the bound (2.5) to estimate the individual integrals
(2.26) $\int_{B\left(\bar{x}, K_{n}\right)}\left\{\prod_{i=1}^{n-1}\left|\int_{U_{\alpha_{i}}\left(\frac{1}{K_{n-1}}\right) \cap\left[\operatorname{dist}\left(\xi, \tilde{V}_{n-1}\right) \lesssim \frac{1}{K_{n}}\right]} g(\xi) e^{i x \cdot \xi} \sigma(d \xi)\right|\right\}^{\frac{q}{n-1}}$ with $q=\frac{2(n-1)}{n-2}$.

Thus $m=n-1, V=V_{n-1}$ and P_{i} is the center of $U_{\alpha_{i}}\left(\frac{1}{K_{n-1}}\right)$. Let $M=K_{n}$ and \mathcal{D}_{i} the centers of a cover of $U_{\alpha_{i}}\left(\frac{1}{\left.K_{n-1}\right)} \cap\left[\operatorname{dist}\left(\xi, \tilde{V}_{n-1}\right) \lesssim \frac{1}{K_{N}}\right]\right.$ by caps $U_{\alpha}\left(\frac{1}{K_{n}}\right)$.

By (2.5) we get an estimate
$(2.26) \ll K_{n}^{\varepsilon} C\left(K_{n-1}\right)\left\{\int_{B\left(\bar{x}, K_{n}\right)} \prod_{i=1}^{n-1}\left[\sum_{\alpha}^{(i)}\left|\int_{U_{\alpha}\left(\frac{1}{K_{n}}\right)} g(\xi) e^{i x . \xi} \sigma(d \xi)\right|^{2}\right]^{\frac{1}{2(n-1)}}\right\}^{q}$
where in $\sum^{(i)}$ the sum is over those α such that $U_{\alpha}\left(\frac{1}{K_{n}}\right) \subset U_{\alpha_{i}}\left(\frac{1}{K_{n-1}}\right)$ and $U_{\alpha}\left(\frac{1}{K_{n}}\right) \cap \tilde{V}_{n-1} \neq \phi$. Hence, we certainly have

$$
(2.26) \ll K_{n}^{\varepsilon} C\left(K_{n-1}\right)\left\{\int_{B\left(\bar{x}, K_{n}\right)}\left[\sum_{\alpha}\left|\int_{U_{\alpha}\left(\frac{1}{K_{n}}\right)} g(\xi) e^{i x . \xi} \sigma(d \xi)\right|^{2}\right]^{\frac{1}{2}}\right\}^{q}
$$

and therefore, since $p<q$,

$$
\begin{equation*}
(2.25) \ll K_{n}^{\varepsilon} C\left(K_{n-1}\right)\left\{\int_{B\left(\bar{x}, K_{n}\right)}\left[\sum_{\alpha}\left|\int_{U_{\alpha}\left(\frac{1}{K_{n}}\right)} g(\xi) e^{i x \cdot \xi} \sigma(d \xi)\right|^{2}\right]^{p / 2}\right\} . \tag{2.28}
\end{equation*}
$$

Hence the collected contribution over B_{R} of (2.28) is bounded by

$$
\begin{equation*}
K_{n}^{\varepsilon} C\left(K_{n-1}\right)\left\{\sum_{\alpha}\left\|\int_{U_{\alpha}\left(\frac{1}{K_{n}}\right)} g(\xi) e^{i x \cdot \xi} \sigma(d \xi)\right\|_{L^{p}\left(B_{R}\right)}^{2}\right\}^{1 / 2} \tag{2.29}
\end{equation*}
$$

Next, we analyze the contribution of (2.23) which is similar to that of (2.14) with $n-1$ replaced by $n-2$ and K_{n} by K_{n-1}. The local estimate (2.27) becomes

$$
\begin{equation*}
K_{n-1}^{\varepsilon} C\left(K_{n-2}\right)\left\{\int_{B\left(\bar{x}, K_{n-1}\right)} \prod_{i=1}^{n-2}\left[\sum_{\alpha}^{(i)}\left|\int_{U_{\alpha}\left(\frac{1}{K_{n-1}}\right)} g(\xi) e^{i x \cdot \xi} \sigma(d \xi)\right|^{2}\right]^{\frac{1}{2(n-2)}}\right\}^{q} \tag{3.30}
\end{equation*}
$$

with $q=\frac{2(n-2)}{n-3}$ and where in $\sum^{(i)}$ the sum is over those α such that

$$
U_{\alpha}\left(\frac{1}{K_{n-1}}\right) \subset U_{\alpha_{i}}\left(\frac{1}{K_{n-2}}\right) \text { and } U_{\alpha}\left(\frac{1}{K_{n-1}}\right) \cap \tilde{V}_{n-2} \neq \phi
$$

The collected contribution of (2.30) to the $L_{B_{R}}^{p}$-norm of (2.10) is bounded by

$$
\begin{equation*}
K_{n-1}^{\varepsilon} C\left(K_{n-2}\right)\left\{\sum_{\alpha}\left\|\int_{U_{\alpha}\left(\frac{1}{K_{n-1}}\right)} g(\xi) e^{i x . \xi} \sigma(d \xi)\right\|_{L_{\left(B_{R}\right)}^{p}}^{2}\right\}^{\frac{1}{2}} \tag{3.31}
\end{equation*}
$$

The continuation of the process is now clear and leads to the bound (2.9). This proves Lemma 3.

Taking $K_{j}>K_{j-1}^{C / \varepsilon}$ in Lemma 3, we obtain
Lemma 4. Fix $\varepsilon>0$. Let $K_{1} \gg 1$ be large enough and assume $R>K_{1}^{C(\varepsilon)}$. Then, with $p=\frac{2 n}{n-1}$

$$
\begin{align*}
\| \int g(\xi) e^{i x \cdot \xi} \sigma(d \xi) & \|_{L_{B_{R}}^{p}} \leq R^{\varepsilon}\left[\int_{S}|g(\xi)|^{2} \sigma(d \xi)\right]^{\frac{1}{2}} \\
& +\max _{K_{1}<K<K_{1}^{C(\varepsilon)}}\left\{K^{\varepsilon} \sum_{\alpha}\left\|\int_{U_{\alpha}\left(\frac{1}{K}\right)} g(\xi) e^{i x \cdot \xi} \sigma(d \xi)\right\|_{L_{B_{R}}^{p}}^{2}\right\}^{1 / 2} \tag{2.32}
\end{align*}
$$

with $\left\{U_{\alpha}\left(\frac{1}{K}\right)\right\}$ a cover of S by $\frac{1}{K}$-size caps.
The first term on the right side of (2.32) may be eliminated.
Observe first that since $|x|<R$, the left side may be replaced by

$$
\begin{equation*}
\left\|\int G(\xi) e^{i x \cdot \xi} \sigma(d \xi)\right\|_{L_{B_{R}}^{p}} \tag{2.33}
\end{equation*}
$$

where G is a smoothing of g at scale $\frac{1}{R}$.
Applying (2.32) with g replaced by G, the first term on the right

$$
\begin{equation*}
\left[\int_{S}|G(\xi)|^{2} \sigma(d \xi)\right]^{\frac{1}{2}} \lesssim\left\{\sum_{\alpha}\left\|\int_{U_{\alpha}\left(\frac{c}{R}\right)} g(\xi) e^{i x \cdot \xi} \sigma(d \xi)\right\|_{L_{B_{R}}^{p}}^{2}\right\}^{\frac{1}{2}} \tag{2.34}
\end{equation*}
$$

and the other terms may be majorized by

$$
\begin{equation*}
\left\|\int_{U_{\alpha}\left(\frac{1}{K}\right)} G(\xi) e^{i x \cdot \xi} \sigma(d \xi)\right\|_{L_{B_{R}}^{p}} \lesssim\left\|\int_{U_{\alpha}\left(\frac{1}{K}\right)} g_{1}(\xi) e^{i x . \xi} \sigma(d \xi)\right\|_{L_{B_{R}}^{p}} \tag{2.35}
\end{equation*}
$$

for some $g_{1}=\eta g$ with η a smooth function.
Hence we obtain

Lemma 5. Fix $\varepsilon>0$. Let $K_{1} \gg 1$ be large enough and assume $R>K_{1}^{C(\varepsilon)}$. Then, with $p=\frac{2 n}{n-1}$, we have

$$
\begin{align*}
\left\|\int g(\xi) e^{i x \cdot \xi} \sigma(d \xi)\right\|_{L_{B_{R}}^{p}} & <R^{\varepsilon}\left\{\sum_{\alpha}\left\|\int_{U_{\alpha}\left(\frac{c}{R}\right)} g(\xi) e^{i x \cdot \xi} \sigma(d \xi)\right\|_{L_{(R)}^{p}}^{2}\right\}^{\frac{1}{2}}+ \tag{2.36}\\
& \max _{(2.36)}\left\{K^{\varepsilon} \sum_{\alpha}\left\|\int_{U_{\alpha}\left(\frac{1}{K}\right)} g(\xi) e^{i x \cdot \xi} \sigma(d \xi)\right\|_{L_{(R)}^{p}}^{2}\right\}^{\frac{1}{2}}
\end{align*}
$$

where $L_{(R)}^{p}=L^{p}\left(\omega\left(\frac{x}{R}\right) d x\right)$ with $0<\omega<1$ some rapidly decaying function on \mathbb{R}^{n}.

In order to iterate (2.36), we rely on rescaling.
Parametrize S (locally, after affine coordinate change) as

$$
\left\{\begin{align*}
\xi_{i} & =y_{i}(1 \leq i \leq n-1) \tag{2.37}\\
\xi_{n} & =y_{1}^{2}+\cdots+y_{n-1}^{2}+O\left(|y|^{3}\right)
\end{align*}\right.
$$

with y taken in a small neighborhood of 0 .
Let $U(\rho)$ be a ρ-cap on S and evaluate

$$
\begin{equation*}
\left\|\int_{U(\rho)} g(\xi) e^{i x \cdot \xi} \sigma(d \xi)\right\|_{L^{p}\left(B_{R}\right)} \tag{2.38}
\end{equation*}
$$

Thus in view of (2.37), (2.38) amounts to

$$
\begin{equation*}
\left\|\int_{B(a, \rho)} g(y) e^{i \varphi(x, y)} d y\right\|_{L^{p}\left(B_{R}\right)} \tag{2.39}
\end{equation*}
$$

with

$$
\begin{equation*}
\varphi(x, y)=x_{1} y_{1}+\cdots+x_{n-1} y_{n-1}+x_{n}\left(|y|^{2}+O\left(|y|^{3}\right)\right) \tag{2.40}
\end{equation*}
$$

and $B(a, \rho) \subset \mathbb{R}^{n-1}$.
A shift $y \mapsto y-a$ and change of variables $x_{i}^{\prime}=x_{i}+x_{n}\left(2 a_{i}+\cdots\right)(1 \leq i<n)$ permits to set $a=0$. By parabolic rescaling

$$
\begin{equation*}
y=\rho y^{\prime} \text { and } \rho x_{i}=x_{i}^{\prime}(1 \leq i<n), \rho^{2} x_{n}=x_{n}^{\prime} \tag{2.41}
\end{equation*}
$$

we obtain a new phase function $\psi\left(x^{\prime}, y^{\prime}\right)$ and (2.39) becomes

$$
\begin{equation*}
\rho^{n-1-\frac{n+1}{p}}\left\|\int_{B(0,1)} g\left(a+\rho y^{\prime}\right) e^{i \psi\left(x^{\prime}, y^{\prime}\right)} d y^{\prime}\right\|_{L^{p}(\Omega)} \tag{2.42}
\end{equation*}
$$

where $\Omega=\left[\left|x_{i}^{\prime}\right|<\rho R(1 \leq i<n),\left|x_{n}^{\prime}\right|<\rho^{2} R\right]$.
Partition $\Omega=\bigcup \Omega_{s}$ in size- $\rho^{2} R$ balls Ω_{s} and apply Lemma 5 on each Ω_{s} with R replaced by $\rho^{2} R$. Assuming

$$
\begin{equation*}
R>\rho^{-2} K_{1}^{C(\varepsilon)} \tag{2.43}
\end{equation*}
$$

(2.36) implies that

$$
\begin{align*}
& \left\|\int_{B(0,1)} g\left(a+\rho y^{\prime}\right) e^{i \psi\left(x^{\prime}, y^{\prime}\right)} d y^{\prime}\right\|_{L^{p}\left(\Omega_{s}\right)}< \\
& \left(\rho^{2} R\right)^{\varepsilon}\left\{\sum_{\alpha}\left\|\int_{U_{\alpha}\left(\frac{c}{\rho^{2} R}\right)} g\left(a+\rho y^{\prime}\right) e^{i \psi\left(x^{\prime}, y^{\prime}\right)} d y^{\prime}\right\|_{L^{p}\left(\omega\left(\frac{x^{\prime}-b_{s}}{\rho^{2} R}\right) d x^{\prime}\right)}^{2}\right\}^{\frac{1}{2}}+ \\
& \max _{K_{1}<K<K_{1}^{C(\varepsilon)}} K^{\varepsilon}\left\{\sum_{\alpha}\left\|\int_{U_{\alpha}\left(\frac{1}{K}\right)} g\left(a+\rho y^{\prime}\right) e^{i \psi\left(x^{\prime}, y^{\prime}\right)} d y^{\prime}\right\|_{L^{p}\left(\omega\left(\frac{x^{\prime}-b_{s}}{\rho^{2} R}\right) d x^{\prime}\right)}^{2}\right\}^{\frac{1}{2}} \tag{2.44}
\end{align*}
$$

with b_{s} the center of Ω_{s}.
Note that certainly

$$
\sum_{s} \omega\left(\frac{x^{\prime}-b_{s}}{\rho^{2} R}\right)<\omega_{1}\left(\frac{x}{R}\right)
$$

Summing (2.44) over s and reversing the coordinate changes clearly implies that

$$
\begin{align*}
& (2.39),(2.42)< \\
& \left(\rho^{2} R\right)^{\varepsilon}\left\{\sum_{\alpha}\left\|\int_{U_{\alpha}\left(\frac{c}{\rho R}\right)} g(y) e^{i \varphi(x, y)} d y\right\|_{L_{(R)}^{p}}^{2}\right\}^{\frac{1}{2}}+ \\
& \quad \max _{K_{1}<K<K_{1}^{C(\varepsilon)}}\left\{K^{\varepsilon} \sum_{\alpha}\left\|\int_{U_{\alpha}\left(\frac{\rho}{K}\right)} g(y) e^{i \varphi(x, y)} d y\right\|_{L_{(R)}^{p}}^{2}\right\}^{\frac{1}{2}} \tag{2.45}
\end{align*}
$$

under the assumption (2.43).
Taking $R=\rho^{-2} K_{2}$ with $K_{2}>K_{1}^{C(\varepsilon)}$ in (2.45), we obtain

Lemma 6. Let $K_{2}>K_{1}^{C(\varepsilon)}$. Then

$$
\begin{align*}
& \left\|\int_{U(\rho)} g(\xi) e^{i x \cdot \xi} \sigma(d \xi)\right\|_{L^{p}\left(B_{\left.K_{2} \rho^{-2}\right)}\right.} \\
& \quad<_{\varepsilon} \max _{K_{1}<K<K_{2}}\left\{K^{\varepsilon} \sum_{\alpha}\left\|\int_{U_{\alpha}\left(\frac{c \rho}{K}\right)} g(\xi) e^{i x \cdot \xi} \sigma(d \xi)\right\|_{\left(K_{2} \rho^{-2}\right)}^{2}\right\}^{\frac{1}{2}} \tag{2.46}
\end{align*}
$$

If $R>K_{2} \rho^{-2}$, we can partition B_{R} in cubes of size $K_{2} \rho^{-2}$ and apply (2.46) on each of them, with $g(\xi)$ replaced by $g(\xi) e^{i a . \xi}$ for some $a \in B_{R}$. Hence

Lemma 6'. Let $R>K_{2} \rho^{-2}, K_{2}=K_{1}^{C(\varepsilon)}$. Then

$$
\begin{align*}
& \left\|\int_{U(\rho)} g(\xi) e^{i x \cdot \xi} \sigma(d \xi)\right\|_{L^{p}\left(B_{R}\right)} \\
& \quad<_{\varepsilon} \max _{K_{1}<K<K_{2}}\left\{K^{\varepsilon} \sum_{\alpha}\left\|\int_{U_{\alpha}\left(\frac{c \rho}{K}\right)} g(\xi) e^{i x \cdot \xi)} \sigma(d \xi)\right\|_{L_{(R)}^{p}}^{2}\right\}^{\frac{1}{2}} . \tag{2.47}
\end{align*}
$$

It is now straightforward to iterate Lemma 6^{\prime} and derive the following statement

Proposition 1. Let $0<\delta \ll 1$ and $R>C(\varepsilon) \delta^{-2}$. Then, with $p=\frac{2 n}{n-1}$

$$
\begin{equation*}
\left\|\int g(\xi) e^{i x \cdot \xi} \sigma(d \xi)\right\|_{L_{(R)}^{p}} \ll \varepsilon \delta^{-\varepsilon}\left\{\sum_{\alpha}\left\|\int_{U_{\alpha}(\delta)} g(\xi) e^{i x \cdot \xi} \sigma(d \xi)\right\|_{L_{(R)}^{p}}^{2}\right\}^{\frac{1}{2}} \tag{2.48}
\end{equation*}
$$

(3). L^{p}-bounds for certain exponential polynomials and applications

We fix a smooth compact hyper-surface S in \mathbb{R}^{n} with positive definite second fundamental form. We consider exponential polynomials with frequencies on some dilate $D . S$ of S.

Proposition 2. Let $0<\rho<D$ and let \mathcal{E} be a discrete set of points on the dilate D.S that are mutually at least ρ separated. Then, for $p=\frac{2 n}{n-1}$ and any (fixed) $\varepsilon>0$

$$
\begin{equation*}
\left[\int_{B_{R}}\left|\sum_{z \in \mathcal{E}} a_{z} e^{i x . z)}\right|^{p} d x\right]^{\frac{1}{p}}<_{\varepsilon}\left(\frac{D}{\rho}\right)^{\varepsilon}\left(\sum_{z \in \mathcal{E}}\left|a_{z}\right|^{2}\right)^{\frac{1}{2}} \tag{3.1}
\end{equation*}
$$

provided

$$
\begin{equation*}
R>C(\varepsilon) D \rho^{-2} \tag{3.2}
\end{equation*}
$$

Proof.

By rescaling, we may clearly assume $D=1$.
Let $0<\tau<\rho / 10$ and let g be the function on S defined by

$$
\begin{align*}
g(\xi) & =\frac{a_{z}}{\sigma(U(z, \tau))} \text { if } \xi \in U(z, \tau) \tag{3.3}\\
& =0 \text { otherwise }
\end{align*}
$$

Here $U(z, \tau) \subset S$ denotes a τ-neighborhood of z on S. Thus

$$
\begin{equation*}
\int g(\xi) e^{i x \cdot \xi} \sigma(d \xi)=\sum_{z \in \mathcal{E}} a_{z} \int_{U(z, \tau)} e^{i x . \xi} \sigma(d \xi) \tag{3.4}
\end{equation*}
$$

Applying (2.48) with $\delta=\rho$, it follows from (3.3), (3.4) that

$$
\begin{equation*}
\left\{\int_{B_{R}}\left|\sum_{z \in \mathcal{E}} a_{z} \int_{U(z, \tau)} e^{i x . \xi} \sigma(d \xi)\right|^{p} d x\right\}^{\frac{1}{p}}<_{\varepsilon} \rho^{-\varepsilon}\left(\sum_{z}\left|a_{z}\right|^{2}\right)^{1 / 2} \tag{3.5}
\end{equation*}
$$

letting $\tau \rightarrow 0$, (3.1) clearly follows.

Next, observe that if \mathcal{E} is contained in a lattice, then $\sum_{z \in \mathcal{E}} a_{z} e^{i x . \xi}$ is a periodic function. Hence Proposition 2 implies

Proposition 3. Let S be as above and $\mathcal{E}=\mathbb{Z}^{n} \cap D S, D \rightarrow \infty$.
Then, with $p=\frac{2 n}{n-1}$

$$
\begin{equation*}
\left[\int_{\mathbb{T}^{n}}\left|\sum_{z \in \mathcal{E}} a_{z} e^{2 \pi i x . z}\right|^{p} d x\right]^{\frac{1}{p}}<_{\varepsilon} D^{\varepsilon}\left(\sum\left|a_{z}\right|^{2}\right)^{1 / 2} \tag{3.6}
\end{equation*}
$$

where \mathbb{T}^{n} stands for the n-dimensional torus.
Corollary 4. Let $\varphi=\varphi_{E},-\Delta \varphi_{E}=E \varphi_{E}$ be an eigenfunction of $\mathbb{T}^{n}, n \geq 2$. Then for $p=\frac{2 n}{n-1}$ and any $\varepsilon>0$, we have

$$
\begin{equation*}
\|\varphi\|_{L^{p}\left(\mathbb{T}^{n}\right)} \leq C(\varepsilon) E^{\varepsilon}\|\varphi\|_{L^{2}\left(\mathbb{T}^{n}\right)} \tag{3.7}
\end{equation*}
$$

Remark. Corollary 4 should be compared with the result from [B1]. It is conjectured that for eigenfunctions of $\mathbb{T}^{n}, n \geq 2$, there is a uniform bound

$$
\begin{equation*}
\|\varphi\|_{p} \leq C(p)\|\varphi\|_{2} \text { for } p<\frac{2 n}{n-2} \tag{3.8}
\end{equation*}
$$

If $n=2,(3.8)$ is known to hold for $p \leq 4$ (due to Zygmund-Cook) but for no exponent $p>4$.

If $n=3,(3.7)$ is valid for $p \leq 4$. This is a consequence of the following observation. One clearly has the estimate

$$
\|\varphi\|_{4} \leq K^{1 / 4}\|\varphi\|_{2}
$$

denoting

$$
K=\max _{\xi \in Z^{3}}\left(\#\left\{\left(\xi_{1}, \xi_{2}\right) \in \mathbb{Z}^{3} \times \mathbb{Z}^{3} ;\left|\xi_{1}\right|^{2}=E=\left|\xi_{2}\right|^{2} \text { and } \xi_{1}+\xi_{2}=\xi\right\}\right)
$$

Projecting on one of the coordinate planes reduces the issue to bounding the number $\left|\mathcal{E} \cap \mathbb{Z}^{2}\right|$ with $\mathcal{E} \subset \mathbb{R}^{2}$ some ellipse of size at most $E^{1 / 2}$. It is well known that

$$
\begin{equation*}
\left|\mathcal{E} \cap \mathbb{Z}^{2}\right| \ll E^{\varepsilon} \tag{3.9}
\end{equation*}
$$

(cf. [B-R]) and hence $K \ll E^{\varepsilon}$.
For $n \geq 4$, no estimates of the type (3.7) for some $p>2$, seemed to be previously known. Recall that for $n \geq 4$ and R a large positive integer

$$
\begin{equation*}
\left|R S^{(n-1)} \cap \mathbb{Z}^{n}\right| \sim R^{n-2} \tag{3.10}
\end{equation*}
$$

Thus Corollary 4 provides for any $p=\frac{2 n}{n-1}$ an explicit construction of an 'almost' Λ_{p}-set which is not a Λ_{q}-set for $q \geq \frac{2 n}{n-2}$. No explicit constructions of proper Λ_{p}-sets for $2<p<4$ seem to be known and their existence results from probabilistic arguments (see [B2], [B4]).

In view of (3.10), Corollary 4 also provides explicit almost Euclidean subspaces of dimension $\sim N^{\frac{4}{p}-1}$ in ℓ_{N}^{p}, for p of the form $\frac{2 n}{n-1}, n \geq 4$ (while their maximal dimension is $\sim N^{\frac{2}{p}}$ for $2<p<\infty$). To be compared with the result from [G-L-R] on explicit almost Euclidean subspaces of ℓ_{n}^{1}.

Returning to Proposition 3, we have more generally
Proposition 3'. Let S be as in Proposition 3 and $T \in G L_{n}(\mathbb{R}),\|T\|>1$, an arbitrary invertible linear transformation. Let $\mathcal{E}=\mathbb{Z}^{n} \cap T(S)$. Then, letting $p=\frac{2 n}{n-1}$, we have the inequality

$$
\begin{equation*}
\left[\int_{\mathbb{T}^{n}}\left|\sum_{z \in \mathcal{E}} a_{z} e^{2 \pi i x . z}\right|^{p} d x\right]^{\frac{1}{p}} \ll\|T\|^{\varepsilon}\left(\sum_{x \in \mathcal{E}}\left|a_{z}\right|^{2}\right)^{\frac{1}{2}} \tag{3.11}
\end{equation*}
$$

Proof. Consider the set

$$
\mathcal{E}^{\prime}=\left\{T^{-1} z ; z \in \mathcal{E}\right\} \subset S
$$

which elements are at least $\frac{1}{\|T\|}$-separated. Applying Proposition 2 with $D=1$ and $\rho=\frac{1}{\|T\|}$, we obtain

$$
\begin{equation*}
\left.\left.\lim _{R \rightarrow \infty}\left|\int_{B_{R}}\right| \sum_{z \in \mathcal{E}} a_{z} e^{2 \pi i x^{\prime} \cdot T^{-1} z}\right|^{p} d x^{\prime}\right]^{\frac{1}{p}} \ll\|T\|^{\varepsilon}\left(\sum_{z \in \mathcal{E}}\left|a_{z}\right|^{2}\right)^{\frac{1}{2}} \tag{3.12}
\end{equation*}
$$

By change of variables $x=\left(T^{-1}\right)^{*} x^{\prime}$, it follows that

$$
\begin{equation*}
\lim _{R \rightarrow \infty}\left[\int_{\left(T^{-1}\right)^{*}\left(B_{R}\right)}\left|\sum_{z \in \mathcal{E}} a_{z} e^{2 \pi i x . z}\right|^{p} d x\right]^{\frac{1}{p}} \ll\|T\|^{\varepsilon}\left(\sum_{z \in \mathcal{E}}\left|a_{z}\right|^{2}\right)^{\frac{1}{2}} \tag{3.13}
\end{equation*}
$$

which, by periodicity, is equivalent to (3.11).
Take $S=\left\{\left(y,|y|^{2}\right) ; y \in \mathbb{R}^{n},|y|<1\right\}$ the truncated paraboloid in \mathbb{R}^{n+1} and let $T(x, t)=\left(R x, R^{2} t\right), R>1$. From Proposition 3^{\prime}, we immediately derive the following Strichatz' type inequality for the periodic Schrödinger group $e^{i t \Delta}$.

Corollary 5. Denote Δ the Laplacian on \mathbb{T}^{n}. Then, for $p=\frac{2(n+1)}{n}$, we have the inequality

$$
\begin{equation*}
\left\|e^{i t \Delta} f\right\|_{L^{p}\left(\mathbb{T}^{n} \times \mathbb{T}\right)} \ll R^{\varepsilon}\|f\|_{L^{2}(\mathbb{T})} \tag{3.14}
\end{equation*}
$$

assuming supp $\hat{f} \subset B(0, R)$.
This bound should be compared with the following result established in [B3].

Proposition 6. Let $f \in L^{2}\left(\mathbb{T}^{n}\right),\|f\|_{2}=1$ and such that supp $\hat{f} \subset B(0, R)$. Then, for $\lambda>R^{\frac{n}{4}}$ and $q>\frac{2(n+2)}{n}$, the following inequality holds

$$
\begin{equation*}
\operatorname{mes}\left[(x, t) \in \mathbb{T}^{n+1} ;\left|e^{i t \Delta} f\right|(x)>\lambda\right]<C_{q} R^{\frac{n}{2} q-(n+2)} \lambda^{-q} \tag{3.15}
\end{equation*}
$$

Combining Corollary 5, Proposition 6, we obtain the following improvement over Proposition 3.110 in [B3].

Corollary 7. Let $n \geq 4$ (for $n<4$, better result may be obtained by arithmetical means, cf. [B3]).

Let f be as in Proposition 6. Then, for $q>\frac{2(n+3)}{n}$

$$
\begin{equation*}
\left\|e^{i t \Delta} f\right\|_{L^{q}\left(\mathbb{T}^{n+1}\right)}<C_{q} R^{\frac{n}{2}-\frac{n+2}{q}} \tag{3.16}
\end{equation*}
$$

holds.

Note that (3.16) is optimal.

Proof.

Denote $q_{0}=\frac{2(n+1)}{n}$ and q_{1} some exponent $>\frac{2(n+2)}{n}$. Let $F(x, t)=$ $\left(e^{i t \Delta} f\right)(x)$ and estimate for $q>q_{1}$

$$
\begin{aligned}
\int_{\mathbb{T}^{n+1}}|F|^{q} & \leq \int_{|F|>R^{\frac{n}{4}}}|F|^{q}+R^{\frac{n}{4}\left(q-q_{0}\right)} \int|F|^{q_{0}} \\
& <C_{q_{1}} R^{\frac{n}{2} q_{1}-(n+2)} \int_{R^{\frac{n}{4}}}^{R^{\frac{n}{2}}} \lambda^{q-1-q_{1}} d \lambda+C_{\varepsilon} R^{\frac{n}{4}\left(q-q_{0}\right)+\varepsilon} \\
& C_{q_{1}} \frac{1}{q-q_{1}} R^{\frac{n}{2} q-(n+2)}+C_{\varepsilon} R^{\frac{n}{4}\left(q-q_{0}\right)+\varepsilon}<C_{q} R^{\frac{n}{2} q-(n+2)}
\end{aligned}
$$

for q as above.
Corollary 5 admits a generalization that we discuss next. Assume ψ : $\cup \rightarrow \mathbb{R}, U \subset \mathbb{R}^{n}$ a neighborhood of 0 , is a smooth function such that $D^{2} \psi$ is positive (or negative) definite. Then one has

Proposition 8. Let $p=\frac{2(n+1)}{n}$ and $N \rightarrow \infty$. Then for all $\varepsilon>0$,

$$
\begin{align*}
& {\left[\int_{[0,1]^{n+1}} \left\lvert\, \sum_{z \in \mathbb{Z}^{n}, \frac{z}{N} \in U} a_{z} e^{2 \pi i}\left(x \cdot z+N^{2} t \psi\left(\frac{z}{N}\right)\right)\right.\right.} \tag{3.17}\\
& \left.\left.\right|^{p} d x d t\right]^{\frac{1}{p}} \ll \\
& N^{\varepsilon}\left(\sum\left|a_{z}\right|^{2}\right)^{1 / 2} .
\end{align*}
$$

Note that a coordinate change $x \mapsto x+N t \nabla \psi(0)$ permits to assume $\psi(0)=\nabla \psi(0)=0$. Let $S=[(x, \psi(x), x \in U]$ and

$$
\mathcal{E}=\left\{\left(\frac{z}{N}, \psi\left(\frac{z}{N}\right)\right) ; z \in \mathbb{Z}^{n}, \frac{z}{N} \in U\right\} \subset S .
$$

Application of Proposition 2 with $\rho \sim \frac{1}{N}$ implies that

$$
\begin{align*}
& {\left[\int_{[0,1]^{n+1}}\left|\sum_{z \in \mathbb{Z}^{n}, \frac{z}{N} \in U} a_{z} e^{2 \pi i\left(N z \cdot x+N^{2} \psi\left(\frac{z}{N}\right) t\right)}\right|^{p} d x d t\right]^{\frac{1}{p}} \ll} \tag{3.18}\\
& N^{\varepsilon}\left(\sum\left|a_{z}\right|^{2}\right)^{1 / 2}
\end{align*}
$$

and (3.17) follows by exploiting periodicity in x. This proves Proposition 8.
Finally, observe that by taking $\psi(x)=\alpha_{1} x_{1}^{2}+\cdots+\alpha_{n} x_{n}^{2}$ with $\alpha_{1}, \ldots, \alpha_{n}>0$, Corollary 5 generalizes to a Strichartz inequality for irrational tori, as considered in [B]. Applications to nonlinear Schrödinger type equations will not be discussed in this paper.

References

[B]. J. Bourgain, On Strichartz inequalities and NLS on irrational tori, Mathematical Aspects of Nonlinear Dispersive Equations, Annals of Math. 63163 (2007), 1-20.
[B1]. J. Bourgain, Eigenfunction bounds for the Laplacian on the n-torus, IMRN, 1993, no 3, 61-66.
[B2]. J. Bourgain, Bounded orthogonal systems and the $\Lambda(p)$-set problem, Acta Math. 162 (1989), no 3, 227-245.
[B3]. J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I, Schrödinger equations, GAFA 3 (1993), no 2, 107-156.
[B4]. J. Bourgain, Λ_{p}-sets in analysis: results, problems and related aspects, Handbook of the geometry of Banach Spaces, Vol I, 195-232.
[B-C-T]. J. Bennett, A. Carbery, T. Tao, On the multilinear restriction and Kakeya conjectures, Acta Math. 196 (2006), 202, 261-302.
[B-G]. J. Bourgain, L. Guth, Bounds on oscillatory integral operators obtained from multi-linear estimates, preprint (to appear in GAFA).
[B-R-S]. J. Bourgain, Z.Rudnick, Restriction of toral eigenfunctions to hyper surfaces and nodal sets, (preprint).
[G-L-R]. V. Guruswami, J. Lee, A. Razborov, Almost Euclidean subspaces of ℓ_{1}^{N} via expander codes, Proc ACM-SIAM Symp. on Discrete Algorithms, 353-362, ACM (2008).

Institute for Advanced Study, Princeton, NJ 08540

