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MOMENT INEQUALITIES FOR

TRIGONOMETRIC POLYNOMIALS WITH

SPECTRUM IN CURVED HYPERSURFACES

J. Bourgain

(0). Summary

In this note we develop further the technique from [B-G], based on the
multi-linear restriction theory from [B-C-T], to establish some new inequal-
ities on the distribution of trigonometric polynomials on the n-dimensional
torus Tn, n ≥ 2, of the form

f(x) =
∑

z∈E

aze
2πix.z (0.1)

where E stands for the set of Zn-points on some dilate D.S of a fixed compact,
smooth hypersurface S in R

n with positive definite second fundamental form.
More precisely, we prove that for p ≤ 2n

n−1
and any fixed ε > 0, the bound

‖f‖Lp(Tn) ≤ CεD
ε‖f‖L2(Tn) (0.2)

holds.

In particular, if ∆ stands for the Laplacian on T
n and

−∆f = Ef (0.3)

we have that for p ≤ 2n
n−1 , n ≥ 2

‖f‖Lp(Tn) ≪ε E
ε‖f‖L2(Tn). (0.4)

Recall that if n = 2, one has the inequality, for f satisfying (0.3),

‖f‖L4(T2) ≤ C‖f‖L2(T2) (0.5)
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due to Zygmund and Cook. For n = 3, arithmetical considerations permit
to obtain a bound

‖f‖L4(T3) ≪ε E
ε‖f‖L2(T3) (0.6)

For n ≥ 4, no estimate of the type (0.4) for some p > 2 seemed to be known.
Recall also that it is conjectured that one has uniform bounds

‖f‖Lq(Tn) ≤ Cq‖f‖L2(Tn) if q <
2n

n− 2
(0.7)

and

‖f‖Lq(Tn) ≤ CqE
1
2 (

n−2
2 −n

q
)‖f‖L2(Tn) if q >

2n

n− 2
(0.8)

if f satisfies (0.3). The inequality (0.8) was proven in [B1] (using the Hardy-
Littlewood circle method) under the assumption

q >
2(n+ 1)

n− 3
(0.9)

(up to an Eε-factor).

Another application of (0.2) relates to the periodic Schrödinger group eit∆.
For n ≥ 1, one has the Strichartz’ type inequality

‖(eit∆f)(x)‖Lq(Tn+1) ≪ Rε‖f‖L2(Tn) (0.10)

for q ≤ 2(n+1)
n and f satisfying supp f̂ ⊂ Z

n ∩B(0, R).

Combined with results from [B3], (0.10) implies that for q > 2(n+3)
n

‖(eit∆f)(x)‖Lq(Tn+1) ≤ CqR
n
2 −n+2

q ‖f‖L2(Tn) (0.11)

for f as above. Note that inequality (0.11) is optimal. This result is new
(and of interest to the theory of the nonlinear Schrödinger equations with
periodic boundary conditions) for n ≥ 4. (See [B3] for more details).

More generally, fix a smooth function ψ : U → R on a neighborhood U of

0 ∈ R
n such that D2ψ is positive definite. For q ≤ 2(n+1)

n
and R→ ∞,

[

∫

[0,1]n+1

∣

∣

∣

∑

z∈Zn,|z|<R

aze
2πi(x.z+R2tψ( z

R
))
∣

∣

∣

q

dxdt
]1/q

≪ Rε
(

∑

|az|
2
)

1
2

. (0.12)
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Taking ψ(x) = α1x
2
1 + · · · + αnx

2
n, α1, . . . , αn > 0, generalizes (0.10) to

irrational tori (cf. [B]).

(1). Multilinear Estimates

Fix a smooth, compact hyper-surface S in R
n with positive definite second

fundamental form. For x ∈ S, denote x′ ∈ S(n−1) = [|x| = 1] the normal

vector at the point x and let ∼: S(n−1) → S be the Gauss map. Thus x̃′ = x
for x ∈ S. Let σ be the surface measure of S.

The estimates below depend on the multi-linear theory developed in [BCT]
to bound oscillatory integral operators. We recall the following version for
later use. Let

φ(x, y) = x1y1 + · · ·+ xn−1yn−1 + xn
(

〈Ay, y〉+O(|y|3)
)

(1.1)

where x ∈ R
n, y ∈ R

n−1 is restricted to a small neighborhood of 0 and A is
symmetric and definite (in particular, A is non-degenerate).

Denote

Z(x, y) = ∂y1(∇xφ) ∧ · · · ∧ ∂yn−1
(∇xφ). (1.2)

Fix 2 ≤ k ≤ n and disjoint balls U1, . . . , Uk ⊂ R
n−1 such that the transver-

sality condition holds

|Z(x, y(1)) ∧ · · · ∧ Z(x, y(k))| > c for all x and y(i) ∈ Ui. (1.3)

Then
∥

∥

∥

(

k
∏

i=1

|Tfi|)
1
k

∥

∥

∥

Lq(BR)
≪ Rε

(

k
∏

i=1

‖fi‖2

)
1
k

(1.4)

with q = 2k
k−1 , provided supp fi ⊂ Ui.

(2). Preliminary Lemmas

We recall a few estimates from [B-G], §3.

Lemma 1.

Let U1, . . . , Un ⊂ S be small caps such that |x′1∧ · · · ∧x′n| > c for xi ∈ Ui.

Let M be large and Di ⊂ Ui(1 ≤ i ≤ n) discrete sets of 1
M
-separated

points.
3



Let BM ⊂ R
n be a ball of radius M . Then, for q = 2n

n−1

6

∫

BM

n
∏

i=1

∣

∣

∣

∑

ξ∈Di

a(ξ)eix.ξ
∣

∣

∣

q/n

≪M ε
n
∏

i=1

[

∑

ξ∈Di

|a(ξ)|2
]

q
2n

(2.1)

where 6

∫

denotes the average.

Proof.

This is just a discretized version of (2.4) with k = n; our assumption
ensures the required transversality condition (1.3)

We can assume BM centered at 0. Introduce functions gi on Ui defined
by

{

gi(ζ) = a(ξ) if |ζ − ξ| <
c

M
, ξ ∈ Di

gi(ζ) = 0 otherwise.
(2.2)

(c > 0 a small constant). One may then replace
∑

ξ∈Di
a(ξ)eix.ξ by

c′Mn−1
∫

S
gi(ζ)e

ix.ζσ(dζ) if x ∈ BM . Hence

∫

BM

n
∏

i=1

∣

∣

∣

∣

∣

∑

ζ∈Di

a(ξ)eix.ξ

∣

∣

∣

∣

∣

q/n

dx .

M (n−1)q

∫

BM

n
∏

i=1

∣

∣

∣

∫

S

gi(ζ)e
ixζσ(dζ)

∣

∣

∣

q/n

dx
(1.4)
≪

M (n−1)q+ε
n
∏

i=1

‖gi‖
q/n
L2(Ui)

∼M
n−1
2 q+ε

n
∏

i=1

[

∑

ξ∈Di

|a(ξ)|2

]

q
2n

.
(2.3)

Since 6

∫

BM
refers to the average, (2.1) follows, since q = 2n

n−1 .

Lemma 2.

Let S ⊂ R
n be as above and 2 ≤ m ≤ n. Let V be an m-dimensional

subspace of Rn, P1, . . . , Pm ∈ S such that

P ′
1, . . . , P

′
m ∈ V and |P1 ∧ · · · ∧ Pm| > c (2.4)

and U1, . . . , Um ⊂ S sufficiently small neighborhoods of P1, . . . , Pm.

Let M be large and Di ⊂ Ui (1 ≤ i ≤ m) discrete sets of 1
M
-separated

points ξ ∈ S such that dist (ξ′, V ) < c
M . Let gi ∈ L∞(Ui)(1 ≤ i ≤ m). Then
4



letting q = 2m
m−1

6

∫

BM

m
∏

i=1

∣

∣

∣

∣

∣

∑

ξ∈Di

(

∫

|ζ−ξ|< c
M

gi(ζ)e
ix.ζσ(dζ)

)

∣

∣

∣

∣

∣

q/m

dx≪

M ε
{

6

∫

BM

m
∏

i=1

[

∑

ξ∈Di

∣

∣

∣

∫

|ζ−ξ|< c
M

gi(ζ)e
ix.ζσ(dζ)

∣

∣

∣

2
]1/2m}q

.

(2.5)

Proof.

Performing a rotation, we may assume V = [e1, . . . , em] and denote Ṽ ⊂ S
the image of V ∩ S(n−1) under the Gauss map. Let again BM be centered

at 0. For each ξ ∈
⋃m
i=1 Di there is by assumption some ξ̂ ∈ Ṽ . |ξ − ξ̂| < c

M .
Write

∫

|ζ−ξ|< c
M

gi(ζ)e
ix.ζσ(dζ) = eixξ̂

∫

|ζ−ξ|< c
M

gi(ζ)e
ix.(ζ−ξ̂)σ(dζ). (2.6)

Since in the second factor of (2.6), |ζ− ξ̂| = o( 1
M ), we may view it as constant

a(ξ) on BM ⊂ R
n.

Thus we need to estimate

6

∫

BM

{

m
∏

i=1

∣

∣

∣

∑

ξ∈Di

eix.ξ̂a(ξ)
∣

∣

∣

q/m}

dx. (2.7)

Writing x = (u, v) ∈ B
(m)
M ×B

(n−m)
M , (2.7) may be bounded by

max
v∈B

(n−m)
M

6

∫

B
(m)
M

{

m
∏

i=1

}
∣

∣

∣

∑

ξ∈Di

eiu.πm(ξ̂)av(ξ)
∣

∣

q/m
}

du (2.8)

with av(ξ) = eiv.ξ̂a(ξ).

Since S has positive definite second fundamental form, πm(Ṽ ) ⊂ V =
[e1, . . . , em] is a hypersurface in V with same property and the normal vector

at πm(ξ̂) = (ξ̂)′ ∈ V . Since (2.4), application of (2.1) with n replaced by m

and Di by {πmξ̂; ξ ∈ Di} gives the estimate on (2.7)

≪M ε
m
∏

i=1

[

∑

ξ∈Di

|a(ξ)|2
]q/2m

and (2.5) follows .
5



Lemma 3. Let

p =
2n

n− 1
.

Take Kn ≫ Kn−1 ≫ · · · ≫ K1 ≫ 1. For 1 ≤ j ≤ n, denote by {U
(j)
α } a

partition of S in cells of size 1
Kj

. Then, for R > Kn and g ∈ L2(S),

∥

∥

∥

∫

g(ξ)eix.ξσ(dξ)
∥

∥

∥

Lp(BR)
≪ε

C(Kn)R
ε
[

∫

S

|g(ξ)|2σ(dξ)
]

1
2

+
∑

2≤j≤n

C(Kj−1)K
ε
j

{

∑

α

∥

∥

∥

∫

Uα(j)

g(ξ)eix.ξσ(dξ)
∥

∥

∥

2

Lp(BR)

}
1
2

+
{

∑

α

∥

∥

∥

∫

U
(1)
α

g(ξ)eixξσ(dξ)
∥

∥

∥

2

Lp(BR)

}
1
2

(2.9)

where C(K) denotes some polynomial function of K.

Proof. We follow the analysis from §3 in [B-G].

For x ∈ BR, let

(2.10) =

∫

S

g(ξ)eix.ξσ(dξ)

Start decomposing S =
⋃

α Uα(
1
Kn

) in caps of size 1
Kn

and write

(2.10) =
∑

α

∫

Uα( 1
Kn

)

g(ξ)eix.ξσ(dξ) =
∑

α

cα(x).

Fixing x, there are 2 possibilities

(2.11) There are α1, α2, . . . , αn such that

|cα1
(x)|, . . . , |cαn

(x)| > K−(n−1)
n max

α
|cα(x)| (2.12)

and

|ξ1 ∧ · · · ∧ ξn| & K−n
n for ξi ∈ Uαi

. (2.13)

(2.14) The negation of (2.11), which implies that there is an (n − 1)-dim
subspace Vn−1 such that

|cα(x)| ≤ K−(n−1)
n max

α
|cα(x)| if dist (Uα, Ṽn−1) &

1

Kn
.

6



If (2.11), it follows from (2.12) that

∣

∣

∣

∫

S

g(ξ)eix.ξσ(dξ)
∣

∣

∣
≤ Kn−1

n max |cα(x)| ≤ K2n−2
n

[

n
∏

i=1

|cαi
(x)|

]
1
n

and the corresponding contribution to the LpBR
-norm of (4.1) is bounded by

∫ (2.11)

BR

∣

∣

∣

∫

S

g(ξ)eix.ξσ(dξ)
∣

∣

∣

p

. K2p(n−1)
n

∑

α1,... ,αn

(2.13)

∫

BR

n
∏

i=1

∣

∣

∣

∫

U
αi(

1
Kn

)

g(ξ)eix.ξσ(dξ)
∣

∣

∣

p
n

.
(2.15)

In view of (2.13), the [BCT]-estimate (1.4) with k = n applies to each (2.15)
term. Thus

∫

BR

n
∏

i=1

∣

∣

∣

∫

U
αi(

1
Kn

)

g(ξ)eix.ξσ(dξ)
∣

∣

∣

2
n−1

dx≪ C(Kn)R
ε
[

∫

S

|g(ξ)|2σ(dξ)
]

n
n−1

.

(2.16)
Next consider the case (2.14).Thus

|(2.10)| ≤
∣

∣

∣

∫

dist (ξ,Ṽn−1).
1

Kn

g(ξ)eix.ξσ(dξ)
∣

∣

∣
+max

α

∣

∣

∣

∫

Uα( 1
Kn

)

g(ξ)eix.ξσ(dξ)
∣

∣

∣

= (2.17) + (2.18)

where Vn−1 depends on x.

Note however that, from its definition, we may view |cα(x)| as ‘essentially’
constant on balls of size Kn. Making this claim rigorous requires some extra

work and one replaces |cα(x)| by a majorant |cα| ∗ ηKn
, ηK(x) = 1

Kn η
(

x
K

)

and η a suitable bump-function. We may then ensure that |cα| ∗ ηKn
is

approximately constant at scale Kn. But we will not sidetrack the reader
with these technicalities that may be found in [B-G], §2.

Thus, upon viewing the |cα| approximatively constant at scale Kn, the
bound (2.17) + (2.18) may clearly be considered valid on B(x̄, Kn) with the
same linear space Vn−1.

Obviously

(2.18) ≤
(

∑

α

∣

∣

∣

∫

Uα( 1
kn

)

g(ξ)eix.ξσ(dξ)|p
)

1
p

7



and the corresponding LpBR
-contribution is bounded by

{

∑

α

∥

∥

∥

∫

Uα( 1
Kn

)

g(ξ)eix.ξσ(dξ)
∥

∥

∥

2

Lp
BR

}1/2

. (2.19)

Consider the term (2.17). Proceeding similarly, write for x ∈ B(x̄, Kn)
∫

dist (ξ,Vn−1).
1

Kn

g(ξ)eix.ξσ(dξ) =

∑

α

∫

Uα( 1
Kn−1

)∩[dist (ξ,Ṽn−1).
1

Kn
]

g(ξ)eix.ξσ(dξ) =
∑

α

c(n−1)
α (x).

(2.20)

We distinguish the cases

(2.20) There are α1, . . . , αn−1 such that

|c(n−1)
α1

(x)|, . . . , |c(n−1)
αn−1

(x)| > K
−(n−2)
n−1 max

α
|c(n−1)
α (x)| (2.21)

and

|ξ′1 ∧ . . . ∧ ξ
′
n−1| & K

−(n−1)
n−1 for ξi ∈ Uαi

( 1

Kn−1

)

. (2.22)

(2.23) Negation of (2.20), implying that there is an (n− 2)-dim subspace
Vn−2 ⊂ Vn−1 (depending on x) such that

|c(n−1)
α (x)| < K

−(n−2)
n−1 max

α
|c(n−1)
α (x)| for dist (Uα, Ṽn−2) &

1

Kn−1
.

This space Vn−2 can then again be taken the same on a Kn−1-neighborhood
of x.

We analyze the contribution of (2.20). By (2.21)

|(2.19)| < K2n−4
n−1

[

n−1
∏

i=1

|c(n−1)
αi

(x)|
]

1
n−1

(2.24)

and hence

6

∫

B(x̄,Kn)
x satisfies (2.20)

∣

∣

∣

∫

dist (ξ,Ṽn−1).
1

Kn

g(ξ)eix.ξσ(dξ)
∣

∣

∣

p

≤

K
p(2n−4)
n−1

∑

α1,... ,αn−1

(2.22)

6

∫

B(x̄,Kn)

{

n−1
∏

i=1

∣

∣

∣

∫

Uαi
( 1
Kn−1

)∩[dist (ξ,Ṽn−1). 1
Kn

]

g(ξ)eix.ξσ(dξ)
∣

∣

∣

p/n−1}

.

(2.25)
8



We use the bound (2.5) to estimate the individual integrals

(2.26) 6

∫

B(x̄,Kn)

{

n−1
∏

i=1

∣

∣

∣

∫

Uαi
( 1
Kn−1

)∩[dist (ξ,Ṽn−1).
1

Kn
]

g(ξ)eix.ξσ(dξ)
∣

∣

∣

}

q
n−1

with q =
2(n− 1)

n− 2
.

Thus m = n− 1, V = Vn−1 and Pi is the center of Uαi
( 1
Kn−1

). Let M = Kn

and Di the centers of a cover of Uαi
( 1
Kn−1)

∩ [dist (ξ, Ṽn−1) .
1
KN

] by caps

Uα(
1
Kn

).

By (2.5) we get an estimate

(2.26) ≪ Kε
nC(Kn−1)

{

6

∫

B(x̄,Kn)

n−1
∏

i=1

[

(i)
∑

α

∣

∣

∣

∫

Uα( 1
Kn

)

g(ξ)eix.ξσ(dξ)
∣

∣

∣

2] 1
2(n−1)

}q

(2.27)

where in
∑(i)

the sum is over those α such that Uα(
1
Kn

) ⊂ Uαi
( 1
Kn−1

) and

Uα(
1
Kn

) ∩ Ṽn−1 6= φ. Hence, we certainly have

(2.26) ≪ Kε
n C(Kn−1)

{

6

∫

B(x̄,Kn)

[

∑

α

∣

∣

∣

∫

Uα( 1
Kn

)

g(ξ)eix.ξσ(dξ)
∣

∣

∣

2
]

1
2
}q

and therefore, since p < q,

(2.25) ≪ Kε
nC(Kn−1)

{

6

∫

B(x̄,Kn)

[

∑

α

∣

∣

∣

∫

Uα( 1
Kn

)

g(ξ)eix.ξσ(dξ)
∣

∣

∣

2]p/2}

.

(2.28)
Hence the collected contribution over BR of (2.28) is bounded by

Kε
nC(Kn−1)

{

∑

α

∥

∥

∥

∫

Uα( 1
Kn

)

g(ξ)eix.ξσ(dξ)
∥

∥

∥

2

Lp(BR)

}1/2

. (2.29)

Next, we analyze the contribution of (2.23) which is similar to that of
(2.14) with n − 1 replaced by n − 2 and Kn by Kn−1. The local estimate
(2.27) becomes

Kε
n−1C(Kn−2)

{

6

∫

B(x̄,Kn−1)

n−2
∏

i=1

[

(i)
∑

α

∣

∣

∫

Uα( 1
Kn−1

)

g(ξ)eix.ξσ(dξ)
∣

∣

∣

2] 1
2(n−2)

}q

(3.30)

with q = 2(n−2)
n−3 and where in

∑(i)
the sum is over those α such that

Uα

( 1

Kn−1

)

⊂ Uαi

( 1

Kn−2

)

and Uα

( 1

Kn−1

)

∩ Ṽn−2 6= φ.

9



The collected contribution of (2.30) to the LpBR
-norm of (2.10) is bounded

by

Kε
n−1C(Kn−2)

{

∑

α

∥

∥

∥

∫

Uα( 1
Kn−1

)

g(ξ)eix.ξσ(dξ)
∥

∥

∥

2

Lp

(BR)

}
1
2

. (3.31)

The continuation of the process is now clear and leads to the bound (2.9).
This proves Lemma 3.

Taking Kj > K
C/ε
j−1 in Lemma 3, we obtain

Lemma 4. Fix ε > 0. Let K1 ≫ 1 be large enough and assume R > K
C(ε)
1 .

Then, with p = 2n
n−1

∥

∥

∥

∫

g(ξ)eix.ξσ(dξ)
∥

∥

∥

Lp
BR

≤ Rε
[

∫

S

|g(ξ)|2σ(dξ)
]

1
2

+ max
K1<K<K

C(ε)
1

{

Kε
∑

α

∥

∥

∥

∫

Uα( 1
K

)

g(ξ)eix.ξσ(dξ)
∥

∥

∥

2

Lp

BR

}1/2

(2.32)

with {Uα(
1
K
)} a cover of S by 1

K
-size caps.

The first term on the right side of (2.32) may be eliminated.

Observe first that since |x| < R, the left side may be replaced by

∥

∥

∥

∫

G(ξ)eix.ξσ(dξ)
∥

∥

∥

Lp

BR

(2.33)

where G is a smoothing of g at scale 1
R .

Applying (2.32) with g replaced by G, the first term on the right

[

∫

S

|G(ξ)|2σ(dξ)
]

1
2

.
{

∑

α

∥

∥

∥

∫

Uα( c
R
)

g(ξ)eix.ξσ(dξ)
∥

∥

∥

2

Lp
BR

}
1
2

(2.34)

and the other terms may be majorized by

∥

∥

∥

∫

Uα( 1
K

)

G(ξ)eix.ξσ(dξ)
∥

∥

∥

Lp
BR

.
∥

∥

∥

∫

Uα( 1
K

)

g1(ξ)e
ix.ξσ(dξ)

∥

∥

∥

Lp
BR

(2.35)

for some g1 = ηg with η a smooth function.

Hence we obtain
10



Lemma 5. Fix ε > 0. Let K1 ≫ 1 be large enough and assume R > K
C(ε)
1 .

Then, with p = 2n
n−1 , we have

∥

∥

∥

∫

g(ξ)eix.ξσ(dξ)
∥

∥

∥

Lp
BR

< Rε
{

∑

α

∥

∥

∥

∫

Uα( c
R
)

g(ξ)eix.ξσ(dξ)
∥

∥

∥

2

Lp

(R)

}
1
2

+
(2.36)

max
K1<K<K

C(ε)
1

{

Kε
∑

α

∥

∥

∥

∫

Uα( 1
K

)

g(ξ)eix.ξσ(dξ)
∥

∥

∥

2

Lp

(R)

}
1
2

where Lp(R) = Lp
(

ω( x
R
)dx

)

with 0 < ω < 1 some rapidly decaying function

on R
n.

In order to iterate (2.36), we rely on rescaling.

Parametrize S (locally, after affine coordinate change) as

{

ξi = yi(1 ≤ i ≤ n− 1)

ξn = y21 + · · ·+ y2n−1 +O(|y|3)
(2.37)

with y taken in a small neighborhood of 0.

Let U(ρ) be a ρ-cap on S and evaluate

∥

∥

∥

∫

U(ρ)

g(ξ)eix.ξσ(dξ)
∥

∥

∥

Lp(BR)
. (2.38)

Thus in view of (2.37), (2.38) amounts to

∥

∥

∥

∫

B(a,ρ)

g(y)eiϕ(x,y)dy
∥

∥

∥

Lp(BR)
(2.39)

with

ϕ(x, y) = x1y1 + · · ·+ xn−1yn−1 + xn
(

|y|2 +O(|y|3)
)

(2.40)

and B(a, ρ) ⊂ R
n−1.

A shift y 7→ y−a and change of variables x′i = xi+xn(2ai+· · · ) (1 ≤ i < n)
permits to set a = 0. By parabolic rescaling

y = ρy′ and ρxi = x′i(1 ≤ i < n), ρ2xn = x′n (2.41)
11



we obtain a new phase function ψ(x′, y′) and (2.39) becomes

ρn−1−n+1
p

∥

∥

∥

∫

B(0,1)

g(a+ ρy′)eiψ(x
′,y′)dy′

∥

∥

∥

Lp(Ω)
(2.42)

where Ω = [|x′i| < ρR(1 ≤ i < n), |x′n| < ρ2R].

Partition Ω =
⋃

Ωs in size-ρ2R balls Ωs and apply Lemma 5 on each Ωs
with R replaced by ρ2R. Assuming

R > ρ−2K
C(ε)
1 (2.43)

(2.36) implies that

∥

∥

∥

∫

B(0,1)

g(a+ ρy′)eiψ(x
′,y′)dy′

∥

∥

∥

Lp(Ωs)
<

(ρ2R)ε
{

∑

α

∥

∥

∥

∫

Uα( c

ρ2R
)

g(a+ ρy′)eiψ(x
′,y′)dy′

∥

∥

∥

2

Lp(ω( x′−bs
ρ2R

)dx′)

}
1
2

+

max
K1<K<K

C(ε)
1

Kε
{

∑

α

∥

∥

∥

∫

Uα( 1
K

)

g(a+ ρy′)eiψ(x
′,y′)dy′

∥

∥

∥

2

Lp(ω( x′−bs
ρ2R

)dx′)

}
1
2

(2.44)

with bs the center of Ωs.

Note that certainly

∑

s

ω
(x′ − bs

ρ2R

)

< ω1

( x

R

)

.

Summing (2.44)p over s and reversing the coordinate changes clearly implies
that

(2.39), (2.42) <

(ρ2R)ε
{

∑

α

∥

∥

∥

∫

Uα( c
ρR

)

g(y)eiϕ(x,y)dy
∥

∥

∥

2

Lp

(R)

}
1
2

+

max
K1<K<K

C(ε)
1

{

Kε
∑

α

∥

∥

∥

∫

Uα( ρ
K

)

g(y)eiϕ(x,y)dy
∥

∥

∥

2

Lp

(R)

}
1
2

(2.45)

under the assumption (2.43).

Taking R = ρ−2K2 with K2 > K
C(ε)
1 in (2.45), we obtain
12



Lemma 6. Let K2 > K
C(ε)
1 . Then

∥

∥

∥

∫

U(ρ)

g(ξ)eix.ξσ(dξ)
∥

∥

∥

Lp(B
K2ρ−2)

≪ε max
K1<K<K2

{

Kε
∑

α

∥

∥

∥

∫

Uα( cρ
K

)

g(ξ)eix.ξσ(dξ)
∥

∥

∥

2

(K2ρ−2)

}
1
2

.
(2.46)

If R > K2ρ
−2, we can partition BR in cubes of size K2ρ

−2 and apply
(2.46) on each of them, with g(ξ) replaced by g(ξ) eia.ξ for some a ∈ BR.
Hence

Lemma 6′. Let R > K2ρ
−2, K2 = K

C(ε)
1 . Then

∥

∥

∥

∫

U(ρ)

g(ξ)eix.ξσ(dξ)
∥

∥

∥

Lp(BR)

≪ε max
K1<K<K2

{

Kε
∑

α

∥

∥

∥

∫

Uα( cρ
K

)

g(ξ)eix.ξ)σ(dξ)
∥

∥

∥

2

Lp

(R)

}
1
2

.
(2.47)

It is now straightforward to iterate Lemma 6′ and derive the following
statement

Proposition 1. Let 0 < δ ≪ 1 and R > C(ε)δ−2. Then, with p = 2n
n−1

∥

∥

∥

∫

g(ξ)eix.ξσ(dξ)
∥

∥

∥

Lp

(R)

≪ε δ
−ε

{

∑

α

∥

∥

∥

∫

Uα(δ)

g(ξ)eix.ξσ(dξ)
∥

∥

∥

2

Lp

(R)

}
1
2

.

(2.48)

(3). Lp-bounds for certain exponential polynomials and applications

We fix a smooth compact hyper-surface S in R
n with positive definite

second fundamental form. We consider exponential polynomials with fre-
quencies on some dilate D.S of S.

Proposition 2. Let 0 < ρ < D and let E be a discrete set of points on the
dilate D.S that are mutually at least ρ separated. Then, for p = 2n

n−1 and

any (fixed) ε > 0

[

6

∫

BR

∣

∣

∣

∑

z∈E

aze
ix.z)

∣

∣

∣

p

dx
]

1
p

≪ε

(D

ρ

)ε(∑

z∈E

|az|
2
)

1
2

(3.1)

13



provided
R > C(ε)Dρ−2. (3.2)

Proof.

By rescaling, we may clearly assume D = 1.

Let 0 < τ < ρ/10 and let g be the function on S defined by

g(ξ) =
az

σ(U(z, τ))
if ξ ∈ U(z, τ)

= 0 otherwise
(3.3)

Here U(z, τ) ⊂ S denotes a τ -neighborhood of z on S. Thus

∫

g(ξ)eix.ξσ(dξ) =
∑

z∈E

az 6

∫

U(z,τ)

eix.ξσ(dξ). (3.4)

Applying (2.48) with δ = ρ, it follows from (3.3), (3.4) that

{

6

∫

BR

∣

∣

∣

∑

z∈E

az 6

∫

U(z,τ)

eix.ξσ(dξ)
∣

∣

∣

p

dx
}

1
p

≪ε ρ
−ε

(

∑

z

|az|
2
)1/2

(3.5)

letting τ → 0, (3.1) clearly follows.

Next, observe that if E is contained in a lattice, then
∑

z∈E aze
ix.ξ is a

periodic function. Hence Proposition 2 implies

Proposition 3. Let S be as above and E = Z
n ∩DS, D → ∞.

Then, with p = 2n
n−1

[

∫

Tn

∣

∣

∣

∑

z∈E

aze
2πix.z

∣

∣

∣

p

dx
]

1
p

≪ε D
ε
(

∑

|az|
2
)1/2

(3.6)

where T
n stands for the n-dimensional torus.

Corollary 4. Let ϕ = ϕE ,−∆ϕE = EϕE be an eigenfunction of Tn, n ≥ 2.
Then for p = 2n

n−1
and any ε > 0, we have

‖ϕ‖Lp(Tn) ≤ C(ε)Eε‖ϕ‖L2(Tn). (3.7)
14



Remark. Corollary 4 should be compared with the result from [B1]. It is
conjectured that for eigenfunctions of Tn, n ≥ 2, there is a uniform bound

‖ϕ‖p ≤ C(p)‖ϕ‖2 for p <
2n

n− 2
. (3.8)

If n = 2, (3.8) is known to hold for p ≤ 4 (due to Zygmund-Cook) but for
no exponent p > 4.

If n = 3, (3.7) is valid for p ≤ 4. This is a consequence of the following
observation. One clearly has the estimate

‖ϕ‖4 ≤ K1/4‖ϕ‖2

denoting

K = max
ξ∈ Z3

(

#{(ξ1, ξ2) ∈ Z
3 × Z

3; |ξ1|
2 = E = |ξ2|

2 and ξ1 + ξ2 = ξ}
)

.

Projecting on one of the coordinate planes reduces the issue to bounding the
number |E ∩ Z

2| with E ⊂ R
2 some ellipse of size at most E1/2. It is well

known that
|E ∩ Z

2| ≪ Eε (3.9)

(cf. [B-R]) and hence K ≪ Eε.

For n ≥ 4, no estimates of the type (3.7) for some p > 2, seemed to be
previously known. Recall that for n ≥ 4 and R a large positive integer

|RS(n−1) ∩ Z
n| ∼ Rn−2. (3.10)

Thus Corollary 4 provides for any p = 2n
n−1 an explicit construction of an

‘almost’ Λp-set which is not a Λq-set for q ≥
2n
n−2

. No explicit constructions
of proper Λp-sets for 2 < p < 4 seem to be known and their existence results
from probabilistic arguments (see [B2], [B4]).

In view of (3.10), Corollary 4 also provides explicit almost Euclidean sub-

spaces of dimension ∼ N
4
p
−1 in ℓpN , for p of the form 2n

n−1
, n ≥ 4 (while their

maximal dimension is ∼ N
2
p for 2 < p < ∞). To be compared with the

result from [G-L-R] on explicit almost Euclidean subspaces of ℓ1n.

Returning to Proposition 3, we have more generally

Proposition 3′. Let S be as in Proposition 3 and T ∈ GLn(R), ‖T‖ > 1, an
arbitrary invertible linear transformation. Let E = Z

n ∩ T (S). Then, letting
p = 2n

n−1
, we have the inequality

[

∫

Tn

∣

∣

∣

∑

z∈E

aze
2πix.z

∣

∣

∣

p

dx
]

1
p

≪ ‖T‖ε
(

∑

x∈E

|az|
2
)

1
2

. (3.11)
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Proof. Consider the set

E ′ = {T−1z; z ∈ E} ⊂ S

which elements are at least 1
‖T‖

-separated. Applying Proposition 2 with

D = 1 and ρ = 1
‖T‖

, we obtain

lim
R→∞

∣

∣

∣
6

∫

BR

∣

∣

∣

∑

z∈E

aze
2πix′.T−1z

∣

∣

∣

p

dx′
]

1
p

≪ ‖T‖ε
(

∑

z∈E

|az|
2
)

1
2

. (3.12)

By change of variables x = (T−1)∗x′, it follows that

lim
R→∞

[

6

∫

(T−1)∗(BR)

∣

∣

∣

∑

z∈E

aze
2πix.z

∣

∣

∣

p

dx
]

1
p

≪ ‖T‖ε
(

∑

z∈E

|az|
2
)

1
2

(3.13)

which, by periodicity, is equivalent to (3.11).

Take S = {(y, |y|2); y ∈ R
n, |y| < 1} the truncated paraboloid in R

n+1

and let T (x, t) = (Rx,R2t), R > 1. From Proposition 3′, we immediately
derive the following Strichatz’ type inequality for the periodic Schrödinger
group eit∆.

Corollary 5. Denote ∆ the Laplacian on T
n. Then, for p = 2(n+1)

n , we
have the inequality

‖eit∆f‖Lp(Tn×T) ≪ Rε‖f‖L2(T) (3.14)

assuming supp f̂ ⊂ B(0, R).

This bound should be compared with the following result established in
[B3].

Proposition 6. Let f ∈ L2(Tn), ‖f‖2 = 1 and such that supp f̂ ⊂ B(0, R).

Then, for λ > R
n
4 and q > 2(n+2)

n , the following inequality holds

mes [(x, t) ∈ T
n+1; |eit∆f |(x) > λ] < CqR

n
2 q−(n+2)λ−q . (3.15)

Combining Corollary 5, Proposition 6, we obtain the following improve-
ment over Proposition 3.110 in [B3].
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Corollary 7. Let n ≥ 4 (for n < 4, better result may be obtained by arith-
metical means, cf. [B3]).

Let f be as in Proposition 6. Then, for q > 2(n+3)
n

‖eit∆f‖Lq(Tn+1) < CqR
n
2 −n+2

q (3.16)

holds.

Note that (3.16) is optimal.

Proof.

Denote q0 = 2(n+1)
n and q1 some exponent > 2(n+2)

n . Let F (x, t) =

(eit∆f)(x) and estimate for q > q1

∫

Tn+1

|F |q ≤

∫

|F |>R
n
4

|F |q +R
n
4 (q−q0)

∫

|F |q0

< Cq1R
n
2 q1−(n+2)

∫ R
n
2

R
n
4

λq−1−q1dλ+ CεR
n
4 (q−q0)+ε

Cq1
1

q − q1
R

n
2 q−(n+2) + CεR

n
4 (q−q0)+ε < CqR

n
2 q−(n+2)

for q as above.

Corollary 5 admits a generalization that we discuss next. Assume ψ :
∪ → R, U ⊂ R

n a neighborhood of 0, is a smooth function such that D2ψ is
positive (or negative) definite. Then one has

Proposition 8. Let p = 2(n+1)
n and N → ∞. Then for all ε > 0,

[

∫

[0,1]n+1

∣

∣

∣

∑
z∈Zn, z

N
∈U aze

2πi(x.z+N2tψ( z
N

))

∣

∣

∣

p

dxdt
]

1
p

≪

Nε
(

∑

|az|
2
)1/2

.

(3.17)

Note that a coordinate change x 7→ x + Nt∇ψ(0) permits to assume
ψ(0) = ∇ψ(0) = 0. Let S = [(x, ψ(x), x ∈ U ] and

E =
{( z

N
, ψ

( z

N

))

; z ∈ Z
n,

z

N
∈ U

}

⊂ S.
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Application of Proposition 2 with ρ ∼ 1
N implies that

[

∫

[0,1]n+1

∣

∣

∣

∑

z∈Zn, z
N

∈U

aze
2πi(Nz.x+N2ψ( z

N
)t)
∣

∣

∣

p

dxdt
]

1
p

≪

Nε
(

∑

|az|
2
)1/2

(3.18)

and (3.17) follows by exploiting periodicity in x. This proves Proposition 8.

Finally, observe that by taking ψ(x) = α1x
2
1+· · ·+αnx

2
n with α1, . . . , αn > 0,

Corollary 5 generalizes to a Strichartz inequality for irrational tori, as con-
sidered in [B]. Applications to nonlinear Schrödinger type equations will not
be discussed in this paper.
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