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MOMENT INEQUALITIES FOR
TRIGONOMETRIC POLYNOMIALS WITH
SPECTRUM IN CURVED HYPERSURFACES

J. BOURGAIN

(0). Summary

In this note we develop further the technique from [B-G|, based on the
multi-linear restriction theory from [B-C-T], to establish some new inequal-
ities on the distribution of trigonometric polynomials on the n-dimensional
torus T", n > 2, of the form

fl@) =Y a.e™= (0.1)

ze€
where £ stands for the set of Z™-points on some dilate D.S of a fixed compact,

smooth hypersurface S in R™ with positive definite second fundamental form.
More precisely, we prove that for p < % and any fixed € > 0, the bound

1l e ey < CeD|[f |l 2(rny (0.2)

holds.

In particular, if A stands for the Laplacian on T™ and
—Af=FEf (0.3)
we have that for p < %, n>2
I fllzrerny <e B\ fllL2(Tn)- (0.4)

Recall that if n = 2, one has the inequality, for f satisfying (0.3),

[fllzacr2y < Cllfllezer) (0.5)
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due to Zygmund and Cook. For n = 3, arithmetical considerations permit
to obtain a bound

[fllzacrsy <e EX|[fllL2crs) (0.6)

For n > 4, no estimate of the type (0.4) for some p > 2 seemed to be known.
Recall also that it is conjectured that one has uniform bounds

2n

[Fllzacrny < Coll fllz2ceny if g < (0.7)

n— 2

and
2n

lim—2 n .
£l acrny < CeEZCZ =D fllp2(eny if g > (0.8)

/”L —_—
if f satisfies (0.3). The inequality (0.8) was proven in [B1] (using the Hardy-

Littlewood circle method) under the assumption

- 2(n+1)

o (0.9)

(up to an E°-factor).

Another application of (0.2) relates to the periodic Schrodinger group e™2.
For n > 1, one has the Strichartz’ type inequality

12 ) (@) | Lacrnsny < BE||fllL2com) (0.10)

for g < w and f satisfying suppf CZ"N B(0,R).
Combined with results from [B3], (0.10) implies that for ¢ > W

n n4

(2 ) @)l ooy < CoRES2 ) fpacney (0.11)

for f as above. Note that inequality (0.11) is optimal. This result is new
(and of interest to the theory of the nonlinear Schrédinger equations with
periodic boundary conditions) for n > 4. (See [B3] for more details).

More generally, fix a smooth function v : U — R on a neighborhood U of
0 € R” such that D?% is positive definite. For ¢ < @ and R — oo,

[ ]y weresrn)] )
[0,1]m+ ZE€EZ™,|z|<R

< Rg(z \az|2>%. (0.12)



Taking (z) = 123 + -+ + @22, 0q,... ,a, > 0, generalizes (0.10) to
irrational tori (cf. [B]).

(1). Multilinear Estimates

Fix a smooth, compact hyper-surface S in R with positive definite second
fundamental form. For z € S, denote 2’ € S~V = [|z| = 1] the normal
vector at the point = and let ~: S~ — S be the Gauss map. Thus 2/ =
for x € S. Let o be the surface measure of S.

The estimates below depend on the multi-linear theory developed in [BCT]
to bound oscillatory integral operators. We recall the following version for
later use. Let

P(x,y) = 2151+ + Too1Yn—1 + 2n ((Ay, y) + O(ly[*)) (1.1)

where z € R", y € R" ! is restricted to a small neighborhood of 0 and A is
symmetric and definite (in particular, A is non-degenerate).

Denote

Z(x,y) = 0y, (Va@) A+ Ny, (Va). (1.2)

Fix 2 < k < n and disjoint balls Uy, ..., U, C R* ! such that the transver-
sality condition holds

\Z(z,y YA A Z(z,y"®)| > ¢ for all z and y € U;. (1.3)

Then

Bl

k
poim € Rf(g 1£ill2) (1.4)

))(1i[|Tfi|>%

with ¢ = =5, provided supp f; C U;.

(2). Preliminary Lemmas

We recall a few estimates from [B-GJ, §3.

Lemma 1.
Let Uy,...,U, C S be small caps such that |z} N--- ANzl | > ¢ for x; € U;.

Let M be large and D; C U;(1 < i < n) discrete sets of %-sepamted
points.
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Let By C R™ be a ball of radius M. Then, for q = %

/B a(¢)e=t|’ <<M€H[Z\a ]_ (2.1)

legeD i=1 ¢€D;

where { denotes the average.

Proof.

This is just a discretized version of (2.4) with k& = n; our assumption
ensures the required transversality condition (1.3)

We can assume B); centered at 0. Introduce functions g; on U; defined
by
i(C) = if < —,£€D;
9i(¢) = al§) i [C — €] < 77.€ 22)
gi(¢) = 0 otherwise.
(c >0 a smalllconstant). One may then replace ZEGDi a(&)e™¢ by
Mt fs gi(Q)e!™Sa(dC¢) if x € Byy. Hence

q/n
dr <

[ | 3 e
By =1 CeD»

e [ ] /gz ot
Barj—1

n 7n
M (n—Da+e H ||gl||%/21zU = 2dgte H [ Z |a ] )

i=1 ¢€D;

q/n  (1.4)
dr <

Since f By refers to the average, (2.1) follows, since ¢ = %

Lemma 2.
Let S € R"™ be as above and 2 < m < n. Let V be an m-dimensional
subspace of R™, Py,..., P, € S such that
Pl,...,P. eV and|P N---ANP,|>c (2.4)

and Uy, ..., U, C S sufficiently small neighborhoods of Py, ..., Pp,.

Let M be large and D; C U; (1 < i < m) discrete sets of %-sepamted
points § € S such that dist (¢, V) < 7. Let g; € L>(U;)(1 < i < m). Then
4



letting q = %

/BMi 1] e¢eD; /C €I<M mc (dC))
el f | S, woeoucl /}

q/m
dr <

(2.5)

Proof.

Performing a rotation, we may assume V = [e1, . .. , e,,] and denote V C S
the image of V' N S~ 1) under the Gauss map. Let again By be centered
at 0. For each £ € |J;~, D; there is by assumption some EeV. |e—§ < 17
Write

/ G(Q)eSo(de) = 6 / (O™ COa(de).  (2.6)
[C—=€1< 57

IC—¢1<+7

Since in the second factor of (2.6), [¢ —£| = o(47), we may view it as constant
a(§) on By C R™.

Thus we need to estimate

[ AT % etae

i=1 €€D;

q/m}d (2.7)

Writing = = (u,v) € B](\:[n) X B](\Z_m), (2.7) may be bounded by

max /( ){ }‘ Z el ”m(g)a )‘q/m}du (2.8)
B

veB{F ™™ i=1"  ¢eD;

with a,(€) = e?-a(g).

Since S has positive definite second fundamental form, m,,,(V) C V =
[e1, ..., em] is a hypersurface in V with same property and the normal vector
at m,(€) = (€)' € V. Since (2.4), application of (2.1) with n replaced by m
and D; by {m&; € € D;} gives the estimate on (2.7)

<M [ 3 lateP] "

=1 éEDi

and (2.5) follows .



Lemma 3. Let

Take Ky > Kno1 > -~ > K > 1. For 1 < j < n, denote by {U'} a
partition of S in cells of size K% Then, for R > K,, and g € L*(S),

H/ ) ot

/Ig )Po( df +ZC JlKEZH/

2<j<n (J)

X [ a0 otas)

where C(K) denotes some polynomial function of K.

<e

LP(BR)

e totaa)], )

1

LP(BR)} (2.9)

Proof. We follow the analysis from §3 in [B-GJ.

For x € Bp, let

(2.10) = [S 9(€)e o (de)

Start decomposing S =, Ua (KL) in caps of size Kin and write

0 =3 [ 6@ o) = T cul

Fixing z, there are 2 possibilities

(2.11) There are oy, s, ... ,a, such that

lca, (@)], -, |ca, (@) > K7 Y max |cq (2)] (2.12)

and
|§1/\/\§n|ZK;n for &EUai. (2.13)

(2.14) The negation of (2.11), which implies that there is an (n — 1)-dim
subspace V,,_1 such that

1

o ()] < K7 ™™D max |cq(2)] if dist (Ug, Voo1) = =
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If (2.11), it follows from (2.12) that

‘/ mﬁ df)} < K” 1maX|ca( )| SKZ”_Z[IEA“C%(Q:)@%

=1

and the corresponding contribution to the L% -norm of (4.1) is bounded by
R

[ o

< K2p(n 1) Z /
B

Q1,...,0n R =1
(2.13)

p

i€y "
) / e (2.15)

'L(K"

In view of (2.13), the [BCT]-estimate (1.4) with k = n applies to each (2.15)
term. Thus

/BR”/ % &)e ™o (de)|"

Next consider the case (2.14).Thus

T e < C(K /|g &)Polds)]

(2.16)

«

o[ e@e )]+ ma| [ e otas)
= (2.17) + (2.18)

where V,,_1 depends on z.

Note however that, from its definition, we may view |c, ()| as ‘essentially’
constant on balls of size K,,. Making this claim rigorous requires some extra
work and one replaces |c,(z)| by a majorant |c| * Nk, , NK(x) = %n(%)

and 7 a suitable bump-function. We may then ensure that |c.| * 1k, is
approximately constant at scale K,. But we will not sidetrack the reader
with these technicalities that may be found in [B-G], §2.

Thus, upon viewing the |c,| approximatively constant at scale K,, the
bound (2.17) + (2.18) may clearly be considered valid on B(Z, K,,) with the
same linear space V,,_1.

Obviously

<=

e <(X][ | s@eour)



and the corresponding L%R—contribution is bounded by

{2 / " s otag)],

Consider the term (2.17). Proceeding similarly, write for = € B(z, K,,)

/ g(&)e ™o (d) =
dist (é,Vn_l)SKLn

}1/2. (2.19)

(2.20)
~ g(é- ix. 5 C(n 1)
Za: /Ua(xnl_l )N[dist (€,Va—1)S =] Z
We distinguish the cases
(2.20) There are aq, ... ,a,—1 such that

D @) eV @) > KT max el ()] (2:21)

and )
€A AE 2 KD for € € U, (K ) (2.22)

n—1

(2.23) Negation of (2.20), implying that there is an (n — 2)-dim subspace
Vo C V,—1 (depending on z) such that

n— 1 / 1
eV @) < K, 7 max e (@) for dist (Un, Vo) 2

n—1

This space V,,_o can then again be taken the same on a K,,_1-neighborhood
of x.

We analyze the contribution of (2.20). By (2.21)

1

(2.19)] < K27 4[1‘[ eln=1)( }_ (2.24)

and hence

[ [ soeo| <

B(z,Ky) dist (6,Vn_1)< KL
x satisfies (2.20)

Ky /B {ﬁ | /U g(€)e™ o (de)

(Z,Kn) ~ =1 a )ﬂ[dISt (&Vn- 1)<Kn]

p/n—l}.

Lyeee 7,

(2.22)
(2.25)



We use the bound (2.5) to estimate the individual integrals

, it 2(n—1
(2.26) / ‘/ g(@ewﬁa(dg)‘} T with g = 21
B(z,Kn ) Ua, ()N [dlist (€,V—1) < n—2
Thus m =n—1,V =V,,_1 and P; is the center of U, ( ) Let M = K,,
and D; the centers of a cover of Uaz(— [dist (&, f/ ) S KN] by caps
Ual(%5)-

By (2.5) we get an estimate

(2.26) < K=C(Ko_y) /B(“{)ﬁ Z‘/ o wéa(dﬁ)rr(n—l_l)}q

(2.27)
}(1") C Uaz‘(—K,},1> and

where in Z(i) the sum is over those a such that U, (
Ua(K%L) N V,_1 # ¢. Hence, we certainly have

(2.26) < K¢ C(Kn_l){ /B(M ) [Z)/U (L)g(f)eim.gg(dg)r] }q

and therefore, since p < q,

Nl

(2.25) < KZC(Kn_l){/(mK | [Z ‘/U (L)g(@eim.gg(d@mp/z}

B T,
(2.28)
Hence the collected contribution over Br of (2.28) is bounded by
Kiew S| [ seersoag|] Y @)
. n— e o . .
! p Ua(2) g L?(Br)

Next, we analyze the contribution of (2.23) which is similar to that of
(2.14) with n — 1 replaced by n — 2 and K, by K,_1. The local estimate
(2.27) becomes

n2 (1)

n 1C(Kp— 2){/}3(9”{” g Z‘/U m’gU(df)mm}q

(3.30)
with ¢ = 2(:7__32) and where in Z(l) the sum is over those a such that

Ua(Ki_l) C U, (i) and Ua<Kj_1
9
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The collected contribution of (2.30) to the L -norm of (2.10) is bounded
by

N|=

ek (2] [ s,

The continuation of the process is now clear and leads to the bound (2.9).
This proves Lemma 3.

} . (3.31)

(B)

Taking K; > KJC_/ f in Lemma 3, we obtain

Lemma 4. Fixe > 0. Let K1 > 1 be large enough and assume R > KC(E)

Then, with p = nQT"
<R[ [ lo(©Patas)

1
Js

+  max KEZH/U (L)g(f)eimﬁ (df)‘

1/2
o)

K <K<K| (2.32)
with {Ua (%)} a cover of S by +-size caps.
The first term on the right side of (2.32) may be eliminated.
Observe first that since || < R, the left side may be replaced by
¢ o (dg) 2.33
|feesaeol,, -

where G is a smoothing of g at scale %.

Applying (2.32) with g replaced by G, the first term on the right

/|G £) 20 ( dg ZH/U( N m-ﬁa(dg)‘i%R}% (2.34)

and the other terms may be majorized by

I, ce=cow], 5|  a@ow],

for some g1 = ng with 1 a smooth function.

(2.35)

Hence we obtain
10



Lemma 5. Fize > 0. Let K1 > 1 be large enough and assume R > K

Then, with p = 2—”, we have

| [o©e=<a

ZH/U(C) e olde)|

Ki<K<Kj (1)

(R)

ma. Ka H 11’.5
Rt

Cle)

( .36)

s

(R)

where L(R) = LP(w(%)dz) with 0 < w < 1 some rapidly decaying function

on R™.

In order to iterate (2.36), we rely on rescaling.

Parametrize S (locally, after affine coordinate change) as
{ &=yi(l<i<n-—1)
&n=yi+  +yn1 +O(yP)

with y taken in a small neighborhood of 0.

Let U(p) be a p-cap on S and evaluate

H/U(p) )it dS))

Thus in view of (2.37), (2.38) amounts to

H / g(y)ei“p(””’y)dy‘
B(a,p)

L?(Bgr)

L?(BRr)
with
(,y) =191+ + Tne1Yn—1 + 20 (Jy]* + O(|y*))

and B(a,p) C R*71,

A shift y — y—a and change of variables =, = x;+x, (2a;+- - -

permits to set a = 0. By parabolic rescaling

y=py and pz; = 2i(1 < i <n),pPr, =,
11

(2.37)

(2.38)

(2.39)

(2.40)

) (1<i<n)

(2.41)



we obtain a new phase function ¢ (z’,y") and (2.39) becomes

_]_ntt
n—1 >

p (2.42)

/ gla+ py)e @V dy
B(0.1)

Lr(Q)

where Q = [|2}]| < pR(1 < i < n),|z!| < p?R].

Partition Q = |JQ, in size-p?R balls 2, and apply Lemma 5 on each Q,
with R replaced by p?R. Assuming

R>p2KC® (2.43)

(2.36) implies that

H / gla+ py eV dy
B(0,1)

Lr(Qs)

2 1
2 p\e n i (' y') 3,7 2
R { E H/ gla+py)e dy , }

(p ) - UQ(HLR) ( p ) LP(w(—Ip;I:S )dx')

max KE{ Z H /U " g(a+ Py/>6w(m/’y,)dy’
o alK

o
Ki<K<KS® LP (w(E7ps )da’)

, (2.44)

with b, the center of €.

Note that certainly

Sl ar) <)

Summing (2.44)P over s and reversing the coordinate changes clearly implies
that

(2.39), (2.42) <

| > 41
(P*R)* H / g(y)e“”(x’y)dy‘ +
{ ; Ua(5%) Li’m}

max {KE H/ g(y)ew(m’y)dy’
Ce Za: Ua(£)

K1 <K<K}

QLP }% (2.45)

(R)

under the assumption (2.43).

Taking R = p~2K, with Ky > K in (2.45), we obtain
12



C(e)

Lemma 6. Let Ky > K| "’. Then
H /U(p) oo dé)‘ Lr(Breyp-2)
1
O Lo R P VI
If R > Kyp~2, we can partition Bg in cubes of size Kop~2 and apply

(2.46) on each of them, with g(¢) replaced by g(&) e for some a € Bp.
Hence

Lemma 6'. Let R > Kop 2, Ky = KIC(E). Then

H/U(p) Je' o (dg)

: {3
< mx AKX

L?(Br)

2 3
.:p) §)e' Vo (d) “LfR)} ’ (2.47)

It is now straightforward to iterate Lemma 6’ and derive the following
statement

Proposition 1. Let 0 < J < 1 and R > C(g)6~2. Then, with p = nQT”

| fooecotae],, <o {S] [ oo, }

(2.48)

(3). LP-bounds for certain exponential polynomials and applications

We fix a smooth compact hyper-surface S in R™ with positive definite
second fundamental form. We consider exponential polynomials with fre-
quencies on some dilate D.S of S.

Proposition 2. Let 0 < p < D and let £ be a discrete set of poz’nts on the
dilate D.S that are mutually at least p separated. Then, for p = T” and
any (fized) € >0

5,12

§ azeu‘.z)

W] < (B)(Zer) e
z€E

13



provided
R> C(e)Dp™2. (3.2)

Proof.
By rescaling, we may clearly assume D = 1.

Let 0 < 7 < p/10 and let g be the function on S defined by

98) = Sy TE V=T (3.3)

= (0 otherwise

Here U(z,7) C S denotes a 7-neighborhood of z on S. Thus

/(6 "o (dE) = Za/ el (dE). (3.4)

z€E U(z,7)

Applying (2.48) with § = p, it follows from (3.3), (3.4) that

{ /BR z;az /U - e“”'fo%dé)\ dw}; <e p“’f(; |az|2) (3.5)

z€
letting 7 — 0, (3.1) clearly follows.

Next, observe that if £ is contained in a lattice, then Y o a.e™* is a
periodic function. Hence Proposition 2 implies

Proposition 3. Let S be as above and £ =7Z" " DS, D — oo.
Then, with p = nQT”

L.

§ a2627r11’.z
z€&€
where T™ stands for the n-dimensional torus.

pdx]% <. DE(Z‘%P)UQ (3.6)

Corollary 4. Let p = g, —App = Epg be an eigenfunction of T™, n > 2.
Then for p = T” and any € > 0, we have

ol zerny < Ce)EX|l@ll L2 (Tn)- (3.7)
14



Remark. Corollary 4 should be compared with the result from [B1]. It is
conjectured that for eigenfunctions of T",n > 2, there is a uniform bound

2n

lilly < )l for p< —=. (33)

If n =2, (3.8) is known to hold for p < 4 (due to Zygmund-Cook) but for
no exponent p > 4.

If n = 3, (3.7) is valid for p < 4. This is a consequence of the following
observation. One clearly has the estimate

lella < K4 lgll2

denoting

K = max (#{(€1,&) € Z° x 2516 = B = |Gl and & + & = €}).
Projecting on one of the coordinate planes reduces the issue to bounding the
number | N Z?| with & C R? some ellipse of size at most EY/2. Tt is well
known that

ENZ% <« E° (3.9)

(cf. [B-R]) and hence K < E°.

For n > 4, no estimates of the type (3.7) for some p > 2, seemed to be
previously known. Recall that for n > 4 and R a large positive integer

|RS"V N7z ~ R"2 (3.10)
Thus Corollary 4 provides for any p = % an explicit construction of an

‘almost’ Aj-set which is not a Ag-set for g > % No explicit constructions
of proper Ap-sets for 2 < p < 4 seem to be known and their existence results
from probabilistic arguments (see [B2], [B4]).

In view of (3.10), Corollary 4 also provides explicit almost Euclidean sub-
spaces of dimension ~ N »Lin 0%, for p of the form %, n > 4 (while their
maximal dimension is ~ N# for 2 < p < o). To be compared with the

result from [G-L-R] on explicit almost Euclidean subspaces of £1.

Returning to Proposition 3, we have more generally

Proposition 3'. Let S be as in Proposition 3 and T € GL,(R), ||T| > 1, an

arbitrary invertible linear transformation. Let € = Z" NT(S). Then, letting

p= %, we have the inequality

| / S e da]” < T (X foul?). (3.11)
z€E

zel

15



Proof. Consider the set
E={T"122¢€€&cS

which elements are at least HTII -separated. Applying Proposition 2 with

D=1andp= H—i}“H’ we obtain

=

2miz’ T 'z
z

lim }/ E a,e
R—
> Br ' ,ce

By change of variables z = (T~1)*2/, it follows that

lim [/ ‘ ae 27rmz
R—o0 1) (BR) Z

z€E&

1<z (Ther)’. G

z€E

"w]” < ITE(Tlel) (13)
z€E

which, by periodicity, is equivalent to (3.11).

Take S = {(y,|y|?);y € R",|y| < 1} the truncated paraboloid in R™*!
and let T(x,t) = (Rwz, R*), R > 1. From Proposition 3’, we immediately
derive the following Strichatz’ type inequality for the periodic Schrédinger
group e®.

Corollary 5. Denote A the Laplacian on T™. Then, for p = %, we
have the inequality

1€ Fll Lo(rn xm) < BE| fll L2m (3.14)
assuming supp f C B(0,R).

This bound should be compared with the following result established in
[B3].

Proposition 6. Let f € L2(T"), ||f|l2 = 1 and such that supp f € B(0, R).
Then, for X > R% and q > @, the following inequality holds

mes [(z,t) € T |2 f|(x) > \] < C,RFI-(M+2) )4, (3.15)
Combining Corollary 5, Proposition 6, we obtain the following improve-

ment over Proposition 3.110 in [B3].
16



Corollary 7. Let n > 4 (for n < 4, better result may be obtained by arith-
metical means, cf. [B3]).

2(n+3)

Let f be as in Proposition 6. Then, for q >

n+2

€72 fll Laqrns1y < CqR? ™" (3.16)

holds.

Note that (3.16) is optimal.

Proof.

Denote gy = @ and ¢; some exponent > w Let F(x,t) =

(e®*A f)(x) and estimate for ¢ > ¢

/ |F|? S/ |F|q+R%(q—qo)/|F|qo
Tn+1 |F|>R%
2

R/IL
< quR%qr(nJr?) / N —I=ag) 4 O Ri(a—90)te
R%
qu LR%Q—(TH-?) + CER%(q—qo)Jrs < C«qR%q—(nJrz)
q—q1

for q as above.

Corollary 5 admits a generalization that we discuss next. Assume ) :
U — R,U C R" a neighborhood of 0, is a smooth function such that D2 is
positive (or negative) definite. Then one has

@ and N — oo. Then for all € > 0,

=

Proposition 8. Let p =
p
awdt]” <

[/[o,lwl Yoemn g ev a:€7 (@2 NY(F)) (3.17)

Ns(Z ‘az|2)1/2.

Note that a coordinate change x +— x + NtV (0) permits to assume
P(0) = Vip(0) = 0. Let S = [(z,¢(x),z € U] and

= {(Go)eemfevhes



D=

Application of Proposition 2 with p ~ % implies that
a,e2miNza+ N (F)t) ‘pdasdt] <

[/[0’”"“ €L, €U (3.18)

Na(z |&z|2>1/2

and (3.17) follows by exploiting periodicity in x. This proves Proposition 8.

Finally, observe that by taking ¢(x) = a1 23+ - -+, 22 withaq, ..., a, > 0,
Corollary 5 generalizes to a Strichartz inequality for irrational tori, as con-
sidered in [B]. Applications to nonlinear Schrédinger type equations will not
be discussed in this paper.
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