MOMENT INEQUALITIES FOR TRIGONOMETRIC POLYNOMIALS WITH SPECTRUM IN CURVED HYPERSURFACES

J. BOURGAIN

(0). Summary

In this note we develop further the technique from [B-G], based on the multi-linear restriction theory from [B-C-T], to establish some new inequalities on the distribution of trigonometric polynomials on the *n*-dimensional torus \mathbb{T}^n , $n \geq 2$, of the form

$$f(x) = \sum_{z \in \mathcal{E}} a_z e^{2\pi i x. z} \tag{0.1}$$

where \mathcal{E} stands for the set of \mathbb{Z}^n -points on some dilate D.S of a fixed compact, smooth hypersurface S in \mathbb{R}^n with positive definite second fundamental form. More precisely, we prove that for $p \leq \frac{2n}{n-1}$ and any fixed $\varepsilon > 0$, the bound

$$\|f\|_{L^p(\mathbb{T}^n)} \le C_{\varepsilon} D^{\varepsilon} \|f\|_{L^2(\mathbb{T}^n)} \tag{0.2}$$

holds.

In particular, if Δ stands for the Laplacian on \mathbb{T}^n and

$$-\Delta f = Ef \tag{0.3}$$

we have that for $p \leq \frac{2n}{n-1}$, $n \geq 2$

$$\|f\|_{L^p(\mathbb{T}^n)} \ll_{\varepsilon} E^{\varepsilon} \|f\|_{L^2(\mathbb{T}^n)}.$$

$$(0.4)$$

Recall that if n = 2, one has the inequality, for f satisfying (0.3),

$$\|f\|_{L^4(\mathbb{T}^2)} \le C \|f\|_{L^2(\mathbb{T}^2)} \tag{0.5}$$

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$

due to Zygmund and Cook. For n = 3, arithmetical considerations permit to obtain a bound

$$\|f\|_{L^4(\mathbb{T}^3)} \ll_{\varepsilon} E^{\varepsilon} \|f\|_{L^2(\mathbb{T}^3)} \tag{0.6}$$

For $n \ge 4$, no estimate of the type (0.4) for some p > 2 seemed to be known. Recall also that it is *conjectured* that one has uniform bounds

$$||f||_{L^q(\mathbb{T}^n)} \le C_q ||f||_{L^2(\mathbb{T}^n)} \text{ if } q < \frac{2n}{n-2}$$
(0.7)

and

$$||f||_{L^q(\mathbb{T}^n)} \le C_q E^{\frac{1}{2}(\frac{n-2}{2}-\frac{n}{q})} ||f||_{L^2(\mathbb{T}^n)} \text{ if } q > \frac{2n}{n-2}$$
(0.8)

if f satisfies (0.3). The inequality (0.8) was proven in [B1] (using the Hardy-Littlewood circle method) under the assumption

$$q > \frac{2(n+1)}{n-3} \tag{0.9}$$

(up to an E^{ε} -factor).

Another application of (0.2) relates to the periodic Schrödinger group $e^{it\Delta}$. For $n \ge 1$, one has the Strichartz' type inequality

$$\|(e^{it\Delta}f)(x)\|_{L^q(\mathbb{T}^{n+1})} \ll R^{\varepsilon} \|f\|_{L^2(\mathbb{T}^n)}$$
(0.10)

for $q \leq \frac{2(n+1)}{n}$ and f satisfying supp $\hat{f} \subset \mathbb{Z}^n \cap B(0, R)$.

Combined with results from [B3], (0.10) implies that for $q > \frac{2(n+3)}{n}$

$$\|(e^{it\Delta}f)(x)\|_{L^q(\mathbb{T}^{n+1})} \le C_q R^{\frac{n}{2} - \frac{n+2}{q}} \|f\|_{L^2(\mathbb{T}^n)}$$
(0.11)

for f as above. Note that inequality (0.11) is optimal. This result is new (and of interest to the theory of the nonlinear Schrödinger equations with periodic boundary conditions) for $n \ge 4$. (See [B3] for more details).

More generally, fix a smooth function $\psi: U \to \mathbb{R}$ on a neighborhood U of $0 \in \mathbb{R}^n$ such that $D^2 \psi$ is positive definite. For $q \leq \frac{2(n+1)}{n}$ and $R \to \infty$,

$$\left[\int_{[0,1]^{n+1}} \left|\sum_{z\in\mathbb{Z}^n, |z|

$$(0.12)$$$$

Taking $\psi(x) = \alpha_1 x_1^2 + \cdots + \alpha_n x_n^2, \alpha_1, \ldots, \alpha_n > 0$, generalizes (0.10) to irrational tori (cf. [B]).

(1). Multilinear Estimates

Fix a smooth, compact hyper-surface S in \mathbb{R}^n with positive definite second fundamental form. For $x \in S$, denote $x' \in S^{(n-1)} = [|x| = 1]$ the normal vector at the point x and let $\sim: S^{(n-1)} \to S$ be the Gauss map. Thus $\tilde{x'} = x$ for $x \in S$. Let σ be the surface measure of S.

The estimates below depend on the multi-linear theory developed in [BCT] to bound oscillatory integral operators. We recall the following version for later use. Let

$$\phi(x,y) = x_1 y_1 + \dots + x_{n-1} y_{n-1} + x_n (\langle Ay, y \rangle + O(|y|^3))$$
(1.1)

where $x \in \mathbb{R}^n$, $y \in \mathbb{R}^{n-1}$ is restricted to a small neighborhood of 0 and A is symmetric and definite (in particular, A is non-degenerate).

Denote

$$Z(x,y) = \partial_{y_1}(\nabla_x \phi) \wedge \dots \wedge \partial_{y_{n-1}}(\nabla_x \phi).$$
(1.2)

Fix $2 \leq k \leq n$ and disjoint balls $U_1, \ldots, U_k \subset \mathbb{R}^{n-1}$ such that the transversality condition holds

$$|Z(x, y^{(1)}) \wedge \dots \wedge Z(x, y^{(k)})| > c \text{ for all } x \text{ and } y^{(i)} \in U_i.$$
(1.3)

Then

$$\left\| \left(\prod_{i=1}^{k} |Tf_{i}|\right)^{\frac{1}{k}} \right\|_{L^{q}(B_{R})} \ll R^{\varepsilon} \left(\prod_{i=1}^{k} \|f_{i}\|_{2}\right)^{\frac{1}{k}}$$
(1.4)

with $q = \frac{2k}{k-1}$, provided supp $f_i \subset U_i$.

(2). Preliminary Lemmas

We recall a few estimates from [B-G], §3.

Lemma 1.

Let $U_1, \ldots, U_n \subset S$ be small caps such that $|x'_1 \wedge \cdots \wedge x'_n| > c$ for $x_i \in U_i$.

Let M be large and $\mathcal{D}_i \subset U_i (1 \leq i \leq n)$ discrete sets of $\frac{1}{M}$ -separated points.

Let $B_M \subset \mathbb{R}^n$ be a ball of radius M. Then, for $q = \frac{2n}{n-1}$

$$\int_{B_M} \prod_{i=1}^n \left| \sum_{\xi \in \mathcal{D}_i} a(\xi) e^{ix \cdot \xi} \right|^{q/n} \ll M^{\varepsilon} \prod_{i=1}^n \left[\sum_{\xi \in \mathcal{D}_i} |a(\xi)|^2 \right]^{\frac{q}{2n}}$$
(2.1)

where $\int denotes$ the average.

Proof.

This is just a discretized version of (2.4) with k = n; our assumption ensures the required transversality condition (1.3)

We can assume B_M centered at 0. Introduce functions g_i on U_i defined by

$$\begin{cases} g_i(\zeta) = a(\xi) \text{ if } |\zeta - \xi| < \frac{c}{M}, \xi \in \mathcal{D}_i \\ g_i(\zeta) = 0 \text{ otherwise.} \end{cases}$$
(2.2)

(c > 0 a small constant). One may then replace $\sum_{\xi \in \mathcal{D}_i} a(\xi) e^{ix.\xi}$ by $c' M^{n-1} \int_S g_i(\zeta) e^{ix.\zeta} \sigma(d\zeta)$ if $x \in B_M$. Hence

$$\int_{B_M} \prod_{i=1}^n \left| \sum_{\zeta \in \mathcal{D}_i} a(\xi) e^{ix.\xi} \right|^{q/n} dx \lesssim
M^{(n-1)q} \int_{B_M} \prod_{i=1}^n \left| \int_S g_i(\zeta) e^{ix\zeta} \sigma(d\zeta) \right|^{q/n} dx \overset{(1.4)}{\ll}
M^{(n-1)q+\varepsilon} \prod_{i=1}^n \|g_i\|_{L^2(U_i)}^{q/n} \sim M^{\frac{n-1}{2}q+\varepsilon} \prod_{i=1}^n \left[\sum_{\xi \in \mathcal{D}_i} |a(\xi)|^2 \right]^{\frac{q}{2n}}.$$
(2.3)

Since \int_{B_M} refers to the average, (2.1) follows, since $q = \frac{2n}{n-1}$.

Lemma 2.

Let $S \subset \mathbb{R}^n$ be as above and $2 \leq m \leq n$. Let V be an m-dimensional subspace of \mathbb{R}^n , $P_1, \ldots, P_m \in S$ such that

$$P'_1, \dots, P'_m \in V \text{ and } |P_1 \wedge \dots \wedge P_m| > c$$
 (2.4)

and $U_1, \ldots, U_m \subset S$ sufficiently small neighborhoods of P_1, \ldots, P_m .

Let M be large and $\mathcal{D}_i \subset U_i$ $(1 \leq i \leq m)$ discrete sets of $\frac{1}{M}$ -separated points $\xi \in S$ such that dist $(\xi', V) < \frac{c}{M}$. Let $g_i \in L^{\infty}(U_i)(1 \leq i \leq m)$. Then 4 letting $q = \frac{2m}{m-1}$

$$\int_{B_{M}} \prod_{i=1}^{m} \left| \sum_{\xi \in \mathcal{D}_{i}} \left(\int_{|\zeta - \xi| < \frac{c}{M}} g_{i}(\zeta) e^{ix.\zeta} \sigma(d\zeta) \right) \right|^{q/m} dx \ll
M^{\varepsilon} \left\{ \int_{B_{M}} \prod_{i=1}^{m} \left[\sum_{\xi \in \mathcal{D}_{i}} \left| \int_{|\zeta - \xi| < \frac{c}{M}} g_{i}(\zeta) e^{ix.\zeta} \sigma(d\zeta) \right|^{2} \right]^{1/2m} \right\}^{q}.$$
(2.5)

Proof.

Performing a rotation, we may assume $V = [e_1, \ldots, e_m]$ and denote $\tilde{V} \subset S$ the image of $V \cap S^{(n-1)}$ under the Gauss map. Let again B_M be centered at 0. For each $\xi \in \bigcup_{i=1}^m \mathcal{D}_i$ there is by assumption some $\hat{\xi} \in \tilde{V}$. $|\xi - \hat{\xi}| < \frac{c}{M}$. Write

$$\int_{|\zeta-\xi|<\frac{c}{M}} g_i(\zeta) e^{ix.\zeta} \sigma(d\zeta) = e^{ix\hat{\xi}} \int_{|\zeta-\xi|<\frac{c}{M}} g_i(\zeta) e^{ix.(\zeta-\hat{\xi})} \sigma(d\zeta).$$
(2.6)

Since in the second factor of (2.6), $|\zeta - \hat{\xi}| = o(\frac{1}{M})$, we may view it as constant $a(\xi)$ on $B_M \subset \mathbb{R}^n$.

Thus we need to estimate

$$\int_{B_M} \Big\{ \prod_{i=1}^m \Big| \sum_{\xi \in \mathcal{D}_i} e^{ix.\hat{\xi}} a(\xi) \Big|^{q/m} \Big\} dx.$$
(2.7)

Writing $x = (u, v) \in B_M^{(m)} \times B_M^{(n-m)}$, (2.7) may be bounded by

$$\max_{v \in B_M^{(n-m)}} \int_{B_M^{(m)}} \left\{ \prod_{i=1}^m \right\} \left| \sum_{\xi \in \mathcal{D}_i} e^{iu \cdot \pi_m(\hat{\xi})} a_v(\xi) \right|^{q/m} \right\} du$$
(2.8)

with $a_v(\xi) = e^{iv \cdot \hat{\xi}} a(\xi)$.

Since S has positive definite second fundamental form, $\pi_m(\tilde{V}) \subset V = [e_1, \ldots, e_m]$ is a hypersurface in V with same property and the normal vector at $\pi_m(\hat{\xi}) = (\hat{\xi})' \in V$. Since (2.4), application of (2.1) with n replaced by m and \mathcal{D}_i by $\{\pi_m \hat{\xi}; \xi \in \mathcal{D}_i\}$ gives the estimate on (2.7)

$$\ll M^{\varepsilon} \prod_{i=1}^{m} \left[\sum_{\xi \in \mathcal{D}_i} |a(\xi)|^2 \right]^{q/2m}$$

and (2.5) follows.

Lemma 3. Let

$$p = \frac{2n}{n-1}.$$

Take $K_n \gg K_{n-1} \gg \cdots \gg K_1 \gg 1$. For $1 \le j \le n$, denote by $\{U_{\alpha}^{(j)}\}\ a$ partition of S in cells of size $\frac{1}{K_j}$. Then, for $R > K_n$ and $g \in L^2(S)$,

$$\left\| \int g(\xi) e^{ix.\xi} \sigma(d\xi) \right\|_{L^{p}(B_{R})} \ll_{\varepsilon} C(K_{n}) R^{\varepsilon} \left[\int_{S} |g(\xi)|^{2} \sigma(d\xi) \right]^{\frac{1}{2}} + \sum_{2 \leq j \leq n} C(K_{j-1}) K_{j}^{\varepsilon} \left\{ \sum_{\alpha} \left\| \int_{U_{\alpha}(j)} g(\xi) e^{ix.\xi} \sigma(d\xi) \right\|_{L^{p}(B_{R})}^{2} \right\}^{\frac{1}{2}} + \left\{ \sum_{\alpha} \left\| \int_{U_{\alpha}^{(1)}} g(\xi) e^{ix\xi} \sigma(d\xi) \right\|_{L^{p}(B_{R})}^{2} \right\}^{\frac{1}{2}}$$
(2.9)

where C(K) denotes some polynomial function of K.

Proof. We follow the analysis from $\S3$ in [B-G].

For $x \in B_R$, let $(2.10) = \int_S g(\xi) e^{ix.\xi} \sigma(d\xi)$

Start decomposing $S = \bigcup_{\alpha} U_{\alpha}(\frac{1}{K_n})$ in caps of size $\frac{1}{K_n}$ and write

$$(2.10) = \sum_{\alpha} \int_{U_{\alpha}(\frac{1}{K_n})} g(\xi) e^{ix.\xi} \sigma(d\xi) = \sum_{\alpha} c_{\alpha}(x).$$

Fixing x, there are 2 possibilities

(2.11) There are $\alpha_1, \alpha_2, \ldots, \alpha_n$ such that

$$|c_{\alpha_1}(x)|, \dots, |c_{\alpha_n}(x)| > K_n^{-(n-1)} \max_{\alpha} |c_{\alpha}(x)|$$
 (2.12)

and

$$|\xi_1 \wedge \dots \wedge \xi_n| \gtrsim K_n^{-n} \text{ for } \xi_i \in U_{\alpha_i}.$$
 (2.13)

(2.14) The negation of (2.11), which implies that there is an (n-1)-dim subspace V_{n-1} such that

$$|c_{\alpha}(x)| \le K_n^{-(n-1)} \max_{\alpha} |c_{\alpha}(x)| \quad \text{if } \operatorname{dist} \left(U_{\alpha}, \tilde{V}_{n-1}\right) \gtrsim \frac{1}{K_n}.$$

If (2.11), it follows from (2.12) that

$$\Big| \int_{S} g(\xi) e^{ix.\xi} \sigma(d\xi) \Big| \le K_n^{n-1} \max |c_{\alpha}(x)| \le K_n^{2n-2} \Big[\prod_{i=1}^n |c_{\alpha_i}(x)| \Big]^{\frac{1}{n}}$$

and the corresponding contribution to the $L_{B_R}^p$ -norm of (4.1) is bounded by

$$\int_{B_{R}}^{(2.11)} \left| \int_{S} g(\xi) e^{ix.\xi} \sigma(d\xi) \right|^{p} \\
\lesssim K_{n}^{2p(n-1)} \sum_{\substack{\alpha_{1}, \dots, \alpha_{n} \\ (2.13)}} \int_{B_{R}} \prod_{i=1}^{n} \left| \int_{U_{\alpha_{i}}(\frac{1}{K_{n}})} g(\xi) e^{ix.\xi} \sigma(d\xi) \right|^{\frac{p}{n}}.$$
(2.15)

In view of (2.13), the [BCT]-estimate (1.4) with k = n applies to each (2.15) term. Thus

$$\int_{B_R} \prod_{i=1}^{n} \left| \int_{U_{\alpha_i}(\frac{1}{K_n})} g(\xi) e^{ix.\xi} \sigma(d\xi) \right|^{\frac{2}{n-1}} dx \ll C(K_n) R^{\varepsilon} \left[\int_{S} |g(\xi)|^2 \sigma(d\xi) \right]^{\frac{n}{n-1}}.$$
(2.16)

Next consider the case (2.14). Thus

$$\begin{aligned} |(2.10)| &\leq \left| \int_{\text{dist}\,(\xi,\tilde{V}_{n-1}) \lesssim \frac{1}{K_n}} g(\xi) e^{ix.\xi} \sigma(d\xi) \right| + \max_{\alpha} \left| \int_{U_{\alpha}(\frac{1}{K_n})} g(\xi) e^{ix.\xi} \sigma(d\xi) \right| \\ &= (2.17) + (2.18) \end{aligned}$$

where V_{n-1} depends on x.

Note however that, from its definition, we may view $|c_{\alpha}(x)|$ as 'essentially' constant on balls of size K_n . Making this claim rigorous requires some extra work and one replaces $|c_{\alpha}(x)|$ by a majorant $|c_{\alpha}| * \eta_{K_n}$, $\eta_K(x) = \frac{1}{K^n} \eta\left(\frac{x}{K}\right)$ and η a suitable bump-function. We may then ensure that $|c_{\alpha}| * \eta_{K_n}$ is approximately constant at scale K_n . But we will not sidetrack the reader with these technicalities that may be found in [B-G], §2.

Thus, upon viewing the $|c_{\alpha}|$ approximatively constant at scale K_n , the bound (2.17) + (2.18) may clearly be considered valid on $B(\bar{x}, K_n)$ with the same linear space V_{n-1} .

Obviously

$$(2.18) \le \left(\sum_{\alpha} \left| \int_{U_{\alpha}(\frac{1}{k_{n}})} g(\xi) e^{ix.\xi} \sigma(d\xi) \right|^{p} \right)^{\frac{1}{p}}$$

and the corresponding $L^p_{B_R}$ -contribution is bounded by

$$\left\{\sum_{\alpha} \left\| \int_{U_{\alpha}\left(\frac{1}{K_{n}}\right)} g(\xi) e^{ix.\xi} \sigma(d\xi) \right\|_{L_{B_{R}}^{p}}^{2} \right\}^{1/2}.$$
(2.19)

Consider the term (2.17). Proceeding similarly, write for $x \in B(\bar{x}, K_n)$

$$\int_{\operatorname{dist}(\xi,V_{n-1})\lesssim\frac{1}{K_n}} g(\xi)e^{ix.\xi}\sigma(d\xi) = \sum_{\alpha} \int_{U_{\alpha}(\frac{1}{K_{n-1}})\cap[\operatorname{dist}(\xi,\tilde{V}_{n-1})\lesssim\frac{1}{K_n}]} g(\xi)e^{ix.\xi}\sigma(d\xi) = \sum_{\alpha} c_{\alpha}^{(n-1)}(x).$$

$$(2.20)$$

We distinguish the cases

(2.20) There are $\alpha_1, \ldots, \alpha_{n-1}$ such that

$$|c_{\alpha_1}^{(n-1)}(x)|, \dots, |c_{\alpha_{n-1}}^{(n-1)}(x)| > K_{n-1}^{-(n-2)} \max_{\alpha} |c_{\alpha}^{(n-1)}(x)|$$
(2.21)

and

$$|\xi_1' \wedge \ldots \wedge \xi_{n-1}'| \gtrsim K_{n-1}^{-(n-1)} \text{ for } \xi_i \in U_{\alpha_i} \left(\frac{1}{K_{n-1}}\right).$$
 (2.22)

(2.23) Negation of (2.20), implying that there is an (n-2)-dim subspace $V_{n-2} \subset V_{n-1}$ (depending on x) such that

$$|c_{\alpha}^{(n-1)}(x)| < K_{n-1}^{-(n-2)} \max_{\alpha} |c_{\alpha}^{(n-1)}(x)| \text{ for dist } (U_{\alpha}, \tilde{V}_{n-2}) \gtrsim \frac{1}{K_{n-1}}.$$

This space V_{n-2} can then again be taken the same on a K_{n-1} -neighborhood of x.

We analyze the contribution of (2.20). By (2.21)

$$|(2.19)| < K_{n-1}^{2n-4} \left[\prod_{i=1}^{n-1} |c_{\alpha_i}^{(n-1)}(x)| \right]^{\frac{1}{n-1}}$$
(2.24)

and hence

$$\int_{B(\bar{x},K_n)} \left| \int_{\text{dist}\,(\xi,\tilde{V}_{n-1})\lesssim \frac{1}{K_n}} g(\xi) e^{ix.\xi} \sigma(d\xi) \right|^p \le$$

x satisfies (2.20)

$$K_{n-1}^{p(2n-4)} \sum_{\substack{\alpha_1, \dots, \alpha_{n-1} \\ (2.22)}} \int_{B(\bar{x}, K_n)} \Big\{ \prod_{i=1}^{n-1} \Big| \int_{U_{\alpha_i}(\frac{1}{K_{n-1}}) \cap [\operatorname{dist}(\xi, \tilde{V}_{n-1}) \lesssim \frac{1}{K_n}]} g(\xi) e^{ix.\xi} \sigma(d\xi) \Big|^{p/n-1} \Big\}.$$
(2.25)

We use the bound (2.5) to estimate the individual integrals

$$(2.26) \int_{B(\bar{x},K_n)} \left\{ \prod_{i=1}^{n-1} \left| \int_{U_{\alpha_i}(\frac{1}{K_{n-1}}) \cap [\operatorname{dist}(\xi,\tilde{V}_{n-1}) \lesssim \frac{1}{K_n}]} g(\xi) e^{ix.\xi} \sigma(d\xi) \right| \right\}^{\frac{q}{n-1}} \text{ with } q = \frac{2(n-1)}{n-2}.$$

Thus $m = n - 1, V = V_{n-1}$ and P_i is the center of $U_{\alpha_i}(\frac{1}{K_{n-1}})$. Let $M = K_n$ and \mathcal{D}_i the centers of a cover of $U_{\alpha_i}(\frac{1}{K_{n-1}}) \cap [\text{dist}(\xi, \tilde{V}_{n-1}) \lesssim \frac{1}{K_N}]$ by caps $U_{\alpha}(\frac{1}{K_n})$.

By (2.5) we get an estimate

$$(2.26) \ll K_n^{\varepsilon} C(K_{n-1}) \left\{ \int_{B(\bar{x}, K_n)} \prod_{i=1}^{n-1} \left[\sum_{\alpha}^{(i)} \left| \int_{U_{\alpha}(\frac{1}{K_n})} g(\xi) e^{ix.\xi} \sigma(d\xi) \right|^2 \right]^{\frac{1}{2(n-1)}} \right\}^q$$
(2.27)

where in $\sum^{(i)}$ the sum is over those α such that $U_{\alpha}(\frac{1}{K_n}) \subset U_{\alpha_i}(\frac{1}{K_{n-1}})$ and $U_{\alpha}(\frac{1}{K_n}) \cap \tilde{V}_{n-1} \neq \phi$. Hence, we certainly have

$$(2.26) \ll K_n^{\varepsilon} C(K_{n-1}) \left\{ \int_{B(\bar{x}, K_n)} \left[\sum_{\alpha} \left| \int_{U_{\alpha}(\frac{1}{K_n})} g(\xi) e^{ix.\xi} \sigma(d\xi) \right|^2 \right]^{\frac{1}{2}} \right\}^q$$

and therefore, since p < q,

$$(2.25) \ll K_n^{\varepsilon} C(K_{n-1}) \bigg\{ \int_{B(\bar{x}, K_n)} \bigg[\sum_{\alpha} \bigg| \int_{U_{\alpha}(\frac{1}{K_n})} g(\xi) e^{ix.\xi} \sigma(d\xi) \bigg|^2 \bigg]^{p/2} \bigg\}.$$

$$(2.28)$$

Hence the collected contribution over B_R of (2.28) is bounded by

$$K_n^{\varepsilon}C(K_{n-1})\left\{\sum_{\alpha}\left\|\int_{U_{\alpha}(\frac{1}{K_n})}g(\xi)e^{ix.\xi}\sigma(d\xi)\right\|_{L^p(B_R)}^2\right\}^{1/2}.$$
(2.29)

Next, we analyze the contribution of (2.23) which is similar to that of (2.14) with n-1 replaced by n-2 and K_n by K_{n-1} . The local estimate (2.27) becomes

$$K_{n-1}^{\varepsilon}C(K_{n-2})\left\{\int_{B(\bar{x},K_{n-1})}\prod_{i=1}^{n-2}\left[\sum_{\alpha}^{(i)}\left|\int_{U_{\alpha}(\frac{1}{K_{n-1}})}g(\xi)e^{ix.\xi}\sigma(d\xi)\right|^{2}\right]^{\frac{1}{2(n-2)}}\right\}^{q}$$
(3.30)

with $q = \frac{2(n-2)}{n-3}$ and where in $\sum^{(i)}$ the sum is over those α such that

$$U_{\alpha}\left(\frac{1}{K_{n-1}}\right) \subset U_{\alpha_{i}}\left(\frac{1}{K_{n-2}}\right) \text{ and } U_{\alpha}\left(\frac{1}{K_{n-1}}\right) \cap \tilde{V}_{n-2} \neq \phi.$$
9

The collected contribution of (2.30) to the $L^p_{B_R}$ -norm of (2.10) is bounded by

$$K_{n-1}^{\varepsilon}C(K_{n-2})\Big\{\sum_{\alpha}\Big\|\int_{U_{\alpha}(\frac{1}{K_{n-1}})}g(\xi)e^{ix.\xi}\sigma(d\xi)\Big\|_{L_{(B_{R})}^{p}}^{2}\Big\}^{\frac{1}{2}}.$$
 (3.31)

The continuation of the process is now clear and leads to the bound (2.9). This proves Lemma 3.

Taking $K_j > K_{j-1}^{C/\varepsilon}$ in Lemma 3, we obtain

Lemma 4. Fix $\varepsilon > 0$. Let $K_1 \gg 1$ be large enough and assume $R > K_1^{C(\varepsilon)}$. Then, with $p = \frac{2n}{n-1}$

$$\left\| \int g(\xi) e^{ix.\xi} \sigma(d\xi) \right\|_{L^p_{B_R}} \le R^{\varepsilon} \left[\int_S |g(\xi)|^2 \sigma(d\xi) \right]^{\frac{1}{2}} + \max_{K_1 < K < K_1^{C(\varepsilon)}} \left\{ K^{\varepsilon} \sum_{\alpha} \left\| \int_{U_{\alpha}(\frac{1}{K})} g(\xi) e^{ix.\xi} \sigma(d\xi) \right\|_{L^p_{B_R}}^2 \right\}^{1/2}$$
(2.32)

with $\{U_{\alpha}(\frac{1}{K})\}\ a\ cover\ of\ S\ by\ \frac{1}{K}$ -size caps.

The first term on the right side of (2.32) may be eliminated.

Observe first that since |x| < R, the left side may be replaced by

$$\left\|\int G(\xi)e^{ix.\xi}\sigma(d\xi)\right\|_{L^p_{B_R}}\tag{2.33}$$

where G is a smoothing of g at scale $\frac{1}{R}$.

Applying (2.32) with g replaced by G, the first term on the right

$$\left[\int_{S} |G(\xi)|^{2} \sigma(d\xi)\right]^{\frac{1}{2}} \lesssim \left\{\sum_{\alpha} \left\|\int_{U_{\alpha}(\frac{e}{R})} g(\xi) e^{ix.\xi} \sigma(d\xi)\right\|_{L^{p}_{B_{R}}}^{2}\right\}^{\frac{1}{2}}$$
(2.34)

and the other terms may be majorized by

$$\left\|\int_{U_{\alpha}(\frac{1}{K})} G(\xi) e^{ix.\xi} \sigma(d\xi)\right\|_{L^{p}_{B_{R}}} \lesssim \left\|\int_{U_{\alpha}(\frac{1}{K})} g_{1}(\xi) e^{ix.\xi} \sigma(d\xi)\right\|_{L^{p}_{B_{R}}}$$
(2.35)

for some $g_1 = \eta g$ with η a smooth function.

Hence we obtain

Lemma 5. Fix $\varepsilon > 0$. Let $K_1 \gg 1$ be large enough and assume $R > K_1^{C(\varepsilon)}$. Then, with $p = \frac{2n}{n-1}$, we have

$$\left\| \int g(\xi) e^{ix.\xi} \sigma(d\xi) \right\|_{L^p_{B_R}} < R^{\varepsilon} \left\{ \sum_{\alpha} \left\| \int_{U_{\alpha}(\frac{c}{R})} g(\xi) e^{ix.\xi} \sigma(d\xi) \right\|_{L^p_{(R)}}^2 \right\}^{\frac{1}{2}} +$$

$$\max_{K_1 < K < K_1^{C(\varepsilon)}} \left\{ K^{\varepsilon} \sum_{\alpha} \left\| \int_{U_{\alpha}(\frac{1}{K})} g(\xi) e^{ix.\xi} \sigma(d\xi) \right\|_{L^p_{(R)}}^2 \right\}^{\frac{1}{2}}$$
(2.36)

where $L^p_{(R)} = L^p(\omega(\frac{x}{R})dx)$ with $0 < \omega < 1$ some rapidly decaying function on \mathbb{R}^n .

In order to iterate (2.36), we rely on rescaling.

Parametrize S (locally, after affine coordinate change) as

$$\begin{cases} \xi_i = y_i (1 \le i \le n - 1) \\ \xi_n = y_1^2 + \dots + y_{n-1}^2 + O(|y|^3) \end{cases}$$
(2.37)

with y taken in a small neighborhood of 0.

Let $U(\rho)$ be a ρ -cap on S and evaluate

$$\left\|\int_{U(\rho)} g(\xi) e^{ix.\xi} \sigma(d\xi)\right\|_{L^p(B_R)}.$$
(2.38)

Thus in view of (2.37), (2.38) amounts to

$$\left\| \int_{B(a,\rho)} g(y) e^{i\varphi(x,y)} dy \right\|_{L^p(B_R)}$$
(2.39)

with

$$\varphi(x,y) = x_1 y_1 + \dots + x_{n-1} y_{n-1} + x_n \left(|y|^2 + O(|y|^3) \right)$$
(2.40)

and $B(a, \rho) \subset \mathbb{R}^{n-1}$.

A shift $y \mapsto y-a$ and change of variables $x'_i = x_i + x_n(2a_i + \cdots)$ $(1 \le i < n)$ permits to set a = 0. By parabolic rescaling

$$y = \rho y' \text{ and } \rho x_i = x'_i (1 \le i < n), \rho^2 x_n = x'_n$$
 (2.41)
11

we obtain a new phase function $\psi(x', y')$ and (2.39) becomes

$$\rho^{n-1-\frac{n+1}{p}} \left\| \int_{B(0,1)} g(a+\rho y') e^{i\psi(x',y')} dy' \right\|_{L^{p}(\Omega)}$$
(2.42)

where $\Omega = [|x'_i| < \rho R (1 \le i < n), |x'_n| < \rho^2 R].$

Partition $\Omega = \bigcup \Omega_s$ in size- $\rho^2 R$ balls Ω_s and apply Lemma 5 on each Ω_s with R replaced by $\rho^2 R$. Assuming

$$R > \rho^{-2} K_1^{C(\varepsilon)} \tag{2.43}$$

(2.36) implies that

$$\begin{split} \left\| \int_{B(0,1)} g(a+\rho y') e^{i\psi(x',y')} dy' \right\|_{L^{p}(\Omega_{s})} < \\ (\rho^{2}R)^{\varepsilon} \Big\{ \sum_{\alpha} \left\| \int_{U_{\alpha}(\frac{c}{\rho^{2}R})} g(a+\rho y') e^{i\psi(x',y')} dy' \right\|_{L^{p}(\omega(\frac{x'-b_{s}}{\rho^{2}R})dx')}^{2} \Big\}^{\frac{1}{2}} + \\ \max_{K_{1} < K < K_{1}^{C(\varepsilon)}} K^{\varepsilon} \Big\{ \sum_{\alpha} \left\| \int_{U_{\alpha}(\frac{1}{K})} g(a+\rho y') e^{i\psi(x',y')} dy' \right\|_{L^{p}(\omega(\frac{x'-b_{s}}{\rho^{2}R})dx')}^{2} \Big\}^{\frac{1}{2}}$$
(2.44)

with b_s the center of Ω_s .

Note that certainly

$$\sum_{s} \omega\left(\frac{x'-b_s}{\rho^2 R}\right) < \omega_1\left(\frac{x}{R}\right).$$

Summing $(2.44)^p$ over s and reversing the coordinate changes clearly implies that

$$(2.39), (2.42) <$$

$$(\rho^{2}R)^{\varepsilon} \left\{ \sum_{\alpha} \left\| \int_{U_{\alpha}(\frac{c}{\rho R})} g(y) e^{i\varphi(x,y)} dy \right\|_{L^{p}_{(R)}}^{2} \right\}^{\frac{1}{2}} +$$

$$\max_{K_{1} < K < K_{1}^{C(\varepsilon)}} \left\{ K^{\varepsilon} \sum_{\alpha} \left\| \int_{U_{\alpha}(\frac{\rho}{K})} g(y) e^{i\varphi(x,y)} dy \right\|_{L^{p}_{(R)}}^{2} \right\}^{\frac{1}{2}} \qquad (2.45)$$

under the assumption (2.43).

Taking
$$R = \rho^{-2} K_2$$
 with $K_2 > K_1^{C(\varepsilon)}$ in (2.45), we obtain 12

Lemma 6. Let $K_2 > K_1^{C(\varepsilon)}$. Then

$$\left\| \int_{U(\rho)} g(\xi) e^{ix.\xi} \sigma(d\xi) \right\|_{L^{p}(B_{K_{2}\rho^{-2}})} \\ \ll_{\varepsilon} \max_{K_{1} < K < K_{2}} \left\{ K^{\varepsilon} \sum_{\alpha} \left\| \int_{U_{\alpha}(\frac{c\rho}{K})} g(\xi) e^{ix.\xi} \sigma(d\xi) \right\|_{(K_{2}\rho^{-2})}^{2} \right\}^{\frac{1}{2}}.$$

$$(2.46)$$

If $R > K_2 \rho^{-2}$, we can partition B_R in cubes of size $K_2 \rho^{-2}$ and apply (2.46) on each of them, with $g(\xi)$ replaced by $g(\xi) e^{ia.\xi}$ for some $a \in B_R$. Hence

Lemma 6'. Let $R > K_2 \rho^{-2}, K_2 = K_1^{C(\varepsilon)}$. Then

$$\left\|\int_{U(\rho)} g(\xi)e^{ix.\xi}\sigma(d\xi)\right\|_{L^{p}(B_{R})}$$

$$\ll_{\varepsilon} \max_{K_{1}< K< K_{2}} \left\{K^{\varepsilon}\sum_{\alpha}\left\|\int_{U_{\alpha}(\frac{c\rho}{K})} g(\xi)e^{ix.\xi)}\sigma(d\xi)\right\|_{L^{p}_{(R)}}^{2}\right\}^{\frac{1}{2}}.$$
(2.47)

It is now straightforward to iterate Lemma 6^\prime and derive the following statement

Proposition 1. Let $0 < \delta \ll 1$ and $R > C(\varepsilon)\delta^{-2}$. Then, with $p = \frac{2n}{n-1}$ $\left\| \int g(\xi)e^{ix.\xi}\sigma(d\xi) \right\|_{L^p_{(R)}} \ll_{\varepsilon} \delta^{-\varepsilon} \left\{ \sum_{\alpha} \left\| \int_{U_{\alpha}(\delta)} g(\xi)e^{ix.\xi}\sigma(d\xi) \right\|_{L^p_{(R)}}^2 \right\}^{\frac{1}{2}}.$ (2.48)

(3). L^p -bounds for certain exponential polynomials and applications

We fix a smooth compact hyper-surface S in \mathbb{R}^n with positive definite second fundamental form. We consider exponential polynomials with frequencies on some dilate D.S of S.

Proposition 2. Let $0 < \rho < D$ and let \mathcal{E} be a discrete set of points on the dilate D.S that are mutually at least ρ separated. Then, for $p = \frac{2n}{n-1}$ and any (fixed) $\varepsilon > 0$

$$\left[\int_{B_R} \left|\sum_{z\in\mathcal{E}} a_z e^{ix.z}\right|^p dx\right]^{\frac{1}{p}} \ll_{\varepsilon} \left(\frac{D}{\rho}\right)^{\varepsilon} \left(\sum_{z\in\mathcal{E}} |a_z|^2\right)^{\frac{1}{2}}$$
(3.1)
13

provided

$$R > C(\varepsilon) D\rho^{-2}. \tag{3.2}$$

Proof.

By rescaling, we may clearly assume D = 1.

Let $0 < \tau < \rho/10$ and let g be the function on S defined by

$$g(\xi) = \frac{a_z}{\sigma(U(z,\tau))} \text{ if } \xi \in U(z,\tau)$$

= 0 otherwise (3.3)

Here $U(z,\tau) \subset S$ denotes a τ -neighborhood of z on S. Thus

$$\int g(\xi)e^{ix.\xi}\sigma(d\xi) = \sum_{z\in\mathcal{E}} a_z \int_{U(z,\tau)} e^{ix.\xi}\sigma(d\xi).$$
(3.4)

Applying (2.48) with $\delta = \rho$, it follows from (3.3), (3.4) that

$$\left\{ \int_{B_R} \left| \sum_{z \in \mathcal{E}} a_z \int_{U(z,\tau)} e^{ix.\xi} \sigma(d\xi) \right|^p dx \right\}^{\frac{1}{p}} \ll_{\varepsilon} \rho^{-\varepsilon} \left(\sum_z |a_z|^2 \right)^{1/2} \tag{3.5}$$

letting $\tau \to 0$, (3.1) clearly follows.

Next, observe that if \mathcal{E} is contained in a lattice, then $\sum_{z \in \mathcal{E}} a_z e^{ix \cdot \xi}$ is a periodic function. Hence Proposition 2 implies

Proposition 3. Let S be as above and $\mathcal{E} = \mathbb{Z}^n \cap DS, \ D \to \infty$.

Then, with
$$p = \frac{2n}{n-1}$$

$$\left[\int_{\mathbb{T}^n} \left|\sum_{z\in\mathcal{E}} a_z e^{2\pi i x \cdot z}\right|^p dx\right]^{\frac{1}{p}} \ll_{\varepsilon} D^{\varepsilon} \left(\sum |a_z|^2\right)^{1/2}$$
(3.6)

where \mathbb{T}^n stands for the n-dimensional torus.

Corollary 4. Let $\varphi = \varphi_E$, $-\Delta \varphi_E = E \varphi_E$ be an eigenfunction of \mathbb{T}^n , $n \geq 2$. Then for $p = \frac{2n}{n-1}$ and any $\varepsilon > 0$, we have

$$\|\varphi\|_{L^p(\mathbb{T}^n)} \le C(\varepsilon) E^{\varepsilon} \|\varphi\|_{L^2(\mathbb{T}^n)}.$$
(3.7)
14

Remark. Corollary 4 should be compared with the result from [B1]. It is conjectured that for eigenfunctions of \mathbb{T}^n , $n \geq 2$, there is a uniform bound

$$\|\varphi\|_p \le C(p) \|\varphi\|_2 \text{ for } p < \frac{2n}{n-2}.$$
(3.8)

If n = 2, (3.8) is known to hold for $p \le 4$ (due to Zygmund-Cook) but for no exponent p > 4.

If n = 3, (3.7) is valid for $p \leq 4$. This is a consequence of the following observation. One clearly has the estimate

$$\|\varphi\|_4 \le K^{1/4} \|\varphi\|_2$$

denoting

$$K = \max_{\xi \in \mathbb{Z}^3} \left(\#\{(\xi_1, \xi_2) \in \mathbb{Z}^3 \times \mathbb{Z}^3; |\xi_1|^2 = E = |\xi_2|^2 \text{ and } \xi_1 + \xi_2 = \xi\} \right).$$

Projecting on one of the coordinate planes reduces the issue to bounding the number $|\mathcal{E} \cap \mathbb{Z}^2|$ with $\mathcal{E} \subset \mathbb{R}^2$ some ellipse of size at most $E^{1/2}$. It is well known that

$$|\mathcal{E} \cap \mathbb{Z}^2| \ll E^{\varepsilon} \tag{3.9}$$

(cf. [B-R]) and hence $K \ll E^{\varepsilon}$.

For $n \ge 4$, no estimates of the type (3.7) for some p > 2, seemed to be previously known. Recall that for $n \ge 4$ and R a large positive integer

$$|RS^{(n-1)} \cap \mathbb{Z}^n| \sim R^{n-2}.$$
(3.10)

Thus Corollary 4 provides for any $p = \frac{2n}{n-1}$ an *explicit* construction of an 'almost' Λ_p -set which is not a Λ_q -set for $q \ge \frac{2n}{n-2}$. No explicit constructions of proper Λ_p -sets for 2 seem to be known and their existence results from probabilistic arguments (see [B2], [B4]).

In view of (3.10), Corollary 4 also provides explicit almost Euclidean subspaces of dimension $\sim N^{\frac{4}{p}-1}$ in ℓ_N^p , for p of the form $\frac{2n}{n-1}$, $n \ge 4$ (while their maximal dimension is $\sim N^{\frac{2}{p}}$ for 2). To be compared with the $result from [G-L-R] on explicit almost Euclidean subspaces of <math>\ell_n^1$.

Returning to Proposition 3, we have more generally

Proposition 3'. Let S be as in Proposition 3 and $T \in GL_n(\mathbb{R})$, ||T|| > 1, an arbitrary invertible linear transformation. Let $\mathcal{E} = \mathbb{Z}^n \cap T(S)$. Then, letting $p = \frac{2n}{n-1}$, we have the inequality

$$\left[\int_{\mathbb{T}^n} \left|\sum_{z\in\mathcal{E}} a_z e^{2\pi i x.z}\right|^p dx\right]^{\frac{1}{p}} \ll \|T\|^{\varepsilon} \left(\sum_{x\in\mathcal{E}} |a_z|^2\right)^{\frac{1}{2}}.$$
(3.11)
15

Proof. Consider the set

$$\mathcal{E}' = \{T^{-1}z; z \in \mathcal{E}\} \subset S$$

which elements are at least $\frac{1}{\|T\|}$ -separated. Applying Proposition 2 with D = 1 and $\rho = \frac{1}{\|T\|}$, we obtain

$$\lim_{R \to \infty} \left| \int_{B_R} \left| \sum_{z \in \mathcal{E}} a_z e^{2\pi i x' \cdot T^{-1} z} \right|^p dx' \right|^{\frac{1}{p}} \ll \|T\|^{\varepsilon} \left(\sum_{z \in \mathcal{E}} |a_z|^2 \right)^{\frac{1}{2}}.$$
 (3.12)

By change of variables $x = (T^{-1})^* x'$, it follows that

$$\lim_{R \to \infty} \left[\int_{(T^{-1})^*(B_R)} \left| \sum_{z \in \mathcal{E}} a_z e^{2\pi i x \cdot z} \right|^p dx \right]^{\frac{1}{p}} \ll \|T\|^{\varepsilon} \left(\sum_{z \in \mathcal{E}} |a_z|^2 \right)^{\frac{1}{2}}$$
(3.13)

which, by periodicity, is equivalent to (3.11).

Take $S = \{(y, |y|^2); y \in \mathbb{R}^n, |y| < 1\}$ the truncated paraboloid in \mathbb{R}^{n+1} and let $T(x,t) = (Rx, R^2t), R > 1$. From Proposition 3', we immediately derive the following Strichatz' type inequality for the periodic Schrödinger group $e^{it\Delta}$.

Corollary 5. Denote Δ the Laplacian on \mathbb{T}^n . Then, for $p = \frac{2(n+1)}{n}$, we have the inequality

$$\|e^{it\Delta}f\|_{L^p(\mathbb{T}^n\times\mathbb{T})} \ll R^{\varepsilon}\|f\|_{L^2(\mathbb{T})}$$
(3.14)

assuming $supp \hat{f} \subset B(0, R)$.

This bound should be compared with the following result established in [B3].

Proposition 6. Let $f \in L^2(\mathbb{T}^n)$, $||f||_2 = 1$ and such that $supp \hat{f} \subset B(0, R)$. Then, for $\lambda > R^{\frac{n}{4}}$ and $q > \frac{2(n+2)}{n}$, the following inequality holds

$$\max\left[(x,t) \in \mathbb{T}^{n+1}; |e^{it\Delta}f|(x) > \lambda\right] < C_q R^{\frac{n}{2}q - (n+2)} \lambda^{-q}.$$
(3.15)

Combining Corollary 5, Proposition 6, we obtain the following improvement over Proposition 3.110 in [B3]. **Corollary 7.** Let $n \ge 4$ (for n < 4, better result may be obtained by arithmetical means, cf. [B3]).

Let f be as in Proposition 6. Then, for $q > \frac{2(n+3)}{n}$

$$\|e^{it\Delta}f\|_{L^q(\mathbb{T}^{n+1})} < C_q R^{\frac{n}{2} - \frac{n+2}{q}}$$
(3.16)

holds.

Note that (3.16) is optimal.

Proof.

Denote $q_0 = \frac{2(n+1)}{n}$ and q_1 some exponent $> \frac{2(n+2)}{n}$. Let $F(x,t) = (e^{it\Delta}f)(x)$ and estimate for $q > q_1$

$$\begin{split} \int_{\mathbb{T}^{n+1}} |F|^q &\leq \int_{|F|>R^{\frac{n}{4}}} |F|^q + R^{\frac{n}{4}(q-q_0)} \int |F|^{q_0} \\ &< C_{q_1} R^{\frac{n}{2}q_1 - (n+2)} \int_{R^{\frac{n}{4}}}^{R^{\frac{n}{2}}} \lambda^{q-1-q_1} d\lambda + C_{\varepsilon} R^{\frac{n}{4}(q-q_0) + \varepsilon} \\ &C_{q_1} \frac{1}{q-q_1} R^{\frac{n}{2}q - (n+2)} + C_{\varepsilon} R^{\frac{n}{4}(q-q_0) + \varepsilon} < C_q R^{\frac{n}{2}q - (n+2)} \end{split}$$

for q as above.

Corollary 5 admits a generalization that we discuss next. Assume ψ : $\cup \to \mathbb{R}, U \subset \mathbb{R}^n$ a neighborhood of 0, is a smooth function such that $D^2 \psi$ is positive (or negative) definite. Then one has

Proposition 8. Let $p = \frac{2(n+1)}{n}$ and $N \to \infty$. Then for all $\varepsilon > 0$,

$$\left[\int_{[0,1]^{n+1}\left|\sum_{z\in\mathbb{Z}^{n},\frac{z}{N}\in U}a_{z}e^{2\pi i}(x.z+N^{2}t\psi(\frac{z}{N}))\right|^{p}dxdt\right]^{\frac{1}{p}}\ll$$

$$N^{\varepsilon}\left(\sum|a_{z}|^{2}\right)^{1/2}.$$
(3.17)

Note that a coordinate change $x \mapsto x + Nt\nabla\psi(0)$ permits to assume $\psi(0) = \nabla\psi(0) = 0$. Let $S = [(x, \psi(x), x \in U]$ and

$$\mathcal{E} = \left\{ \left(\frac{z}{N}, \psi\left(\frac{z}{N}\right)\right); z \in \mathbb{Z}^n, \frac{z}{N} \in U \right\} \subset S.$$
17

Application of Proposition 2 with $\rho \sim \frac{1}{N}$ implies that

$$\left[\int_{[0,1]^{n+1}} \left|\sum_{z\in\mathbb{Z}^n,\frac{z}{N}\in U} a_z e^{2\pi i (Nz.x+N^2\psi(\frac{z}{N})t)}\right|^p dxdt\right]^{\frac{1}{p}} \ll$$

$$N^{\varepsilon} \left(\sum |a_z|^2\right)^{1/2}$$
(3.18)

and (3.17) follows by exploiting periodicity in x. This proves Proposition 8.

Finally, observe that by taking $\psi(x) = \alpha_1 x_1^2 + \cdots + \alpha_n x_n^2$ with $\alpha_1, \ldots, \alpha_n > 0$, Corollary 5 generalizes to a Strichartz inequality for irrational tori, as considered in [B]. Applications to nonlinear Schrödinger type equations will not be discussed in this paper.

References

- [B]. J. Bourgain, On Strichartz inequalities and NLS on irrational tori, Mathematical Aspects of Nonlinear Dispersive Equations, Annals of Math. 63 163 (2007), 1–20.
- [B1]. J. Bourgain, Eigenfunction bounds for the Laplacian on the n-torus, IMRN, 1993, no 3, 61–66.
- [B2]. J. Bourgain, Bounded orthogonal systems and the $\Lambda(p)$ -set problem, Acta Math. 162 (1989), no 3, 227–245.
- [B3]. J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, I, Schrödinger equations, GAFA 3 (1993), no 2, 107–156.
- [B4]. J. Bourgain, Λ_p -sets in analysis: results, problems and related aspects, Handbook of the geometry of Banach Spaces, Vol I, 195–232.
- [B-C-T]. J. Bennett, A. Carbery, T. Tao, On the multilinear restriction and Kakeya conjectures, Acta Math. 196 (2006), 202, 261–302.
 - [B-G]. J. Bourgain, L. Guth, Bounds on oscillatory integral operators obtained from multi-linear estimates, preprint (to appear in GAFA).
- [B-R-S]. J. Bourgain, Z.Rudnick, Restriction of toral eigenfunctions to hyper surfaces and nodal sets, (preprint).
- [G-L-R]. V. Guruswami, J. Lee, A. Razborov, Almost Euclidean subspaces of l₁^N via expander codes, Proc ACM-SIAM Symp. on Discrete Algorithms, 353–362, ACM (2008).

INSTITUTE FOR ADVANCED STUDY, PRINCETON, NJ 08540