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KOSZUL SPACES

ALEXANDER BERGLUND

Abstract. We prove that a nilpotent space is both formal and coformal if and
only if it is rationally homotopy equivalent to the derived spatial realization
of a graded commutative Koszul algebra. We call such spaces Koszul spaces

and we show that the rational homotopy groups and the rational homology
of iterated loop spaces of Koszul spaces can be computed by applying certain
Koszul duality constructions to the cohomology algebra.

1. Introduction

The purpose of this paper is to develop some ideas from Koszul duality theory
within the framework of rational homotopy theory. The technology of Koszul du-
ality for algebras over Koszul operads does not seem to have been exploited to its
full potential in algebraic topology yet — at least not explicitly — and this paper
is meant to take steps in this direction.

Our main result is that a space is simultaneously formal and coformal if and only
if it is a Koszul space, by which we mean that it is rationally homotopy equivalent
to the derived spatial realization of a graded commutative Koszul algebra. Recall
that a space is called formal if its rational homotopy type is a formal consequence of
its rational cohomology algebra [28, §12]. This means that it is in principle possible
to extract any rational homotopy invariant, such as the rational homotopy groups,
from the cohomology algebra. However, doing this in practice entails the non-trivial
algebraic problem of constructing a minimal model for the cohomology. Similar re-
marks apply to coformal spaces, which are spaces whose rational homotopy type
is a formal consequence of the rational homotopy Lie algebra. A consequence of
our main result is that for spaces that are both formal and coformal, the rational
homotopy groups, with Whitehead products, and the rational homology of any iter-
ated loop space, with Pontryagin products and Browder brackets, can be extracted
directly from the cohomology by applying certain Koszul duality constructions. A
key technical result is Theorem 18 which should be of independent interest; it has
as a striking consequence an intrinsic characterization of Koszul algebras (over a
Koszul operad) in terms of formality of the bar construction. The validity of such
a characterization seems to have been generally accepted as true by experts, but
we have been unable to find an account of this in the literature.

The point of view presented in this paper will serve as a background for the
theory of Koszul models that is the subject of a sequel paper, and of which the
theory developed in this paper is a facet.

Before we can give the precise statements of our main results, Theorems 2, 3
and 4, we need to recall some facts from rational homotopy theory and Koszul
duality theory. Recall [5, 8, 25, 28] that the rational homotopy type of a connected
nilpotent space X of finite Q-type is modeled algebraically by a commutative dif-
ferential graded algebra A∗

PL(X) with cohomology H∗(X ;Q), or alternatively by a
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2 ALEXANDER BERGLUND

differential graded Lie algebra λ(X) with homology the rational homotopy groups
π∗(ΩX)⊗Q with Samelson products (the degree 0 part has to be given an appro-
priate interpretation if π1(X) is non-abelian, see Theorem 22).

• X is called formal if A∗
PL(X) is quasi-isomorphic to H∗(X ;Q) as a com-

mutative differential graded algebra.
• X is called coformal if λ(X) is quasi-isomorphic to π∗(ΩX) ⊗ Q as a dif-
ferential graded Lie algebra.

We refer to [21] for a further discussion about formality and coformality. The con-
travariant functor A∗

PL from spaces to commutative differential graded algebras
induces an equivalence between the homotopy categories of connected nilpotent ra-
tional spaces of finite Q-type and minimal algebras of finite type. The inverse is
given by the spatial realization functor 〈−〉, see [5, 8, 28]. By the derived spatial

realization of a commutative differential graded algebra we mean the spatial real-
ization of its minimal model. Finally, recall that a graded commutative algebra A
is called a Koszul algebra if it is generated by elements xi modulo certain quadratic
relations ∑

i,j

cijxixj = 0

such that TorAi,j(Q,Q) = 0 for i 6= j [24]. Here, the extra grading on Tor comes
from the weight grading on A determined by assigning weight 1 to the generators
xi. There is also a notion of a Koszul Lie algebra, see Section 2.

Definition 1. A Koszul space is a space which is rationally homotopy equivalent
to the derived spatial realization of a graded commutative Koszul algebra.

It is not difficult to see that a Koszul space is both formal and coformal. Our
first main result implies that the converse is true.

Theorem 2. Let X be a connected nilpotent space of finite Q-type. The following

are equivalent:

(1) X is both formal and coformal.

(2) X is formal and the cohomology H∗(X ;Q) is a Koszul algebra.

(3) X is coformal and the rational homotopy π∗(ΩX) ⊗ Q is a Koszul Lie

algebra.

(4) X is a Koszul space.

The proof is given at the end of Section 3 and depends on results from Sec-
tions 2 and 3. Examples of Koszul spaces include configuration spaces of points in
Rn, highly connected manifolds, suspensions, loop spaces, wedges and products of
Koszul spaces. These examples are described in more detail in the last section of
the paper, Section 5.

If A is a graded commutative Koszul algebra its Koszul dual Lie algebra A!Lie is
the free graded Lie algebra on generators αi, of homological degree |αi| = |xi| − 1,
modulo the orthogonal relations. This means that a relation

∑

i,j

λij [αi, αj ] = 0

holds if and only if ∑

i,j

(−1)|xi||αj |cijλij = 0

whenever the coefficients cij represent a relation among the generators xi for A.

Theorem 3. If X is a Koszul space, then homotopy and cohomology are Koszul

dual in the sense that there is an isomorphism of graded Lie algebras

π∗(ΩX)⊗Q = H∗(X ;Q)!Lie.
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Theorem 3 is proved along with Theorem 2 at the end of Section 3. Koszul duality
between commutative algebras and Lie algebras is an instance of Koszul duality for
algebras over Koszul operads; the commutative operad Com is a Koszul operad
and its Koszul dual operad is the Lie operad Lie = Com! [12]. If A is a Koszul
algebra over a Koszul operad A then it has a Koszul dual A! which is an algebra
over the Koszul dual operad A !. Any Koszul A -algebra A admits a quadratic
presentation and the Koszul dual A! can be computed by taking an orthogonal
quadratic presentation, see Theorem 20. Another important Koszul operad is the
homology of the little n-cubes operad Gn = H∗(En) [4, 6, 16]. The operad Gn is
Koszul self-dual up to a suspension, G!

n = Σn−1Gn [11], so a Koszul Gn-algebra
A has a Koszul dual Gn-algebra A

!Gn . The little n-cubes operad acts on n-fold
loop spaces ΩnX and so Gn acts on the homology H∗(Ω

nX ;Q). Furthermore, any
commutative algebra, such as H∗(X ;Q), can be viewed as a Gn-algebra in a natural
way. In Section 4 we prove the following result.

Theorem 4. If X is an n-connected Koszul space, then loop space homology and

cohomology are Koszul dual in the sense that there is an isomorphism of Gn-algebras

H∗(Ω
nX ;Q) = H∗(X ;Q)!Gn .

Before getting into the proofs of Theorems 2, 3 and 4, we list some simple but
interesting consequences of these results. First off, Theorem 2 settles in the positive
a question of Papadima and Suciu [22, Question 8.2].

Corollary 5. Let A be an arrangement of hyperplanes in Cℓ and let X = M(A )
denote its complement. Let A k+1 denote the corresponding redundant subspace

arrangement in C(k+1)ℓ and let Y = M(A k+1). Then Y is coformal if and only if

H∗(X ;Q) is a Koszul algebra.

Proof. Both X and Y are formal, see [22, §1.5], so if Y is also coformal then it
follows from Theorem 2 that H∗(Y ;Q) is a Koszul algebra. From the rescaling
formula

H∗(Y ;Q) = H∗(X ;Q)[k],

see [22, §1.3], it easily follows that H∗(X ;Q) is Koszul as well. �

In 1965, Serre [27, IV-52] asked whether the Poincaré series
∑

i≥0

dimQ Hi(ΩX ;Q)zi

of a simply connected finite CW-complex X is always a rational function. This
question remained open until a counterexample was constructed by Anick in 1982
[1, 2]. It is interesting to note that such counterexamples cannot be Koszul spaces.

Corollary 6. If X is a simply connected Koszul space with finitely generated ra-

tional cohomology algebra then H∗(ΩX ;Q) has rational Poincaré series.

Proof. For a bigraded algebra A let

A(t, z) =
∑

i,j

dimQAi(j)z
itj

where t keeps track of the weight grading and z keeps track of the homological
grading. The bigraded Poincaré series of a Koszul algebra A and its Koszul dual
associative algebra A! are rationally related by the following formula:

A!(t, z) = A(−tz−1, z)−1.

In particular, A!(1, z) is rational if A(t, z) is rational. It is well known that any
finitely generated graded commutative algebra has rational Poincaré series, so the
claim follows from Theorem 4 with n = 1; H∗(ΩX ;Q) = H∗(X ;Q)!. �
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Corollary 7. If X is a Koszul space with finitely generated cohomology algebra,

then the rational homotopy Lie algebra π∗(ΩX)⊗Q is finitely generated.

Proof. The Koszul dual Lie algebra of a finitely generated commutative Koszul
algebra is finitely generated, so the claim follows from Theorem 3. �

Our results also shed new light on existing results. The following corollary
recovers a well known result due to F.Cohen [6], but our short proof using Koszul
duality is new. We like to think of Theorem 4 as a generalization of this result.

Corollary 8. For any space Y there is an isomorphism of Gn-algebras

H∗(Ω
nΣnY ;Q) ∼= Gn[H̃∗(Y ;Q)]

where the right hand side denotes the free Gn-algebra on the reduced homology of

Y .

Proof. The n-fold suspension ΣnY of any space Y is an n-connected Koszul space

whose cohomology H∗(ΣnY ;Q) is a trivial algebra ‘generated’ by H̃∗(ΣnY ;Q) ∼=
s−nH̃∗(Y ;Q). The Koszul dual Gn-algebra of a trivial Gn-algebra generated by a
graded vector space V is the free Gn-algebra Gn[(s

nV )∨]. �

In view of Cohen’s calculation of H∗(Ω
nΣnY ;Fp) [6], it would be interesting to

see to what extent Theorem 4 extends to finite coefficients where one would also
need to take into consideration Araki-Kudo-Dyer-Lashof and Steenrod operations.

Relations between the Koszul property, formality and coformality have been
studied in [22] and [23], but with a more restrictive definition of Koszul algebras;
their definition require Koszul algebras to be generated in cohomological degree 1.
In [22, Example 4.10] the authors give an example of a space which is formal and
coformal, but where the authors say the cohomology algebra is not Koszul, namely
S1 ∨ S2. The cohomology algebra is not Koszul according to the more restrictive
definition, simply because it is not generated in cohomological degree 1, but it is
Koszul according to our definition. Theorem 2 and Theorem 3 together imply the
main result of [23] in the nilpotent case.

Corollary 9. Let X be a formal nilpotent space. Then X is a rational K(π, 1)-
space if and only if H∗(X ;Q) is Koszul and generated in cohomological degree 1.

Proof. If X is formal and H∗(X ;Q) is Koszul, then X is a Koszul space and so by
Theorem 3 we have that π∗(ΩX) ⊗ Q ∼= H∗(X ;Q)!Lie . If H∗(X ;Q) is generated
in cohomological degree 1 then H∗(X ;Q)!Lie is generated in homological degree 0,
which forces it to be concentrated in degree 0. Hence πn(X)⊗Q = 0 for n > 1.

Conversely, for any differential graded Lie algebra L concentrated in non-negative
homological degrees, there is a morphism L→ H0(L) which is a quasi-isomorphism
if and only if Hn(L) = 0 for n > 0. In particular, L is coformal if it has homology
concentrated in degree 0. It follows that every rational K(π, 1)-space is coformal.
Thus, if X is simultaneously formal and a rational K(π, 1), it is both formal and
coformal and hence the cohomology is Koszul by Theorem 2. �

At the expense of getting less transparent statements, it should be possible to
extend our main results to the not necessarily nilpotent case so as to include [23,
Theorem 5.1] as a corollary. The main difficulty is the lack of a Lie model λ(X)
for non-nilpotent spaces X . Also, one would have to invent an appropriate notion
of coformality — this notion does not seem to have been considered yet for non-
nilpotent spaces.

Acknowledgments. The author is grateful to Alexandru Suciu for directing his
attention to the paper [23]. We also thank Bruno Vallette and Joan Millès for
discussions about Koszul duality for algebras over operads.



KOSZUL SPACES 5

2. Koszul duality for algebras over operads

Koszul algebras were introduced by Priddy [24]. Koszul duality for operads was
developed by Ginzburg-Kapranov [12], Getzler-Jones [11]. A modern comprehen-
sive introduction to Koszul duality theory for operads can be found in the recent
book [14] by Loday and Vallette. See also Fresse [10]. Koszul duality for algebras
over Koszul operads was introduced in [12] and has recently been developed further
by Millès [17]. In what follows, we will review the parts of the theory needed for
proving the main results of this section — Theorem 17, Theorem 18 and Corollary
19 — and we will freely use terminology from [14] without further reference.

2.1. Twisting morphisms, bar and cobar constructions. Let C be a coaug-
mented cooperad and A an augmented operad in chain complexes and let τ : C →
A be a twisting morphism. Let C be a C -coalgebra and let A be an A -algebra. A
twisting morphism relative to τ is a map κ : C → A of degree 0 such that

∂(κ) + τ ∗ κ = 0

where τ ∗ κ is the composite map

C
∆ // C [C]

τ [κ]
// A [A]

µ
// A.

Let Twτ (C;A) denote the set of twisting morphisms relative to τ . It is a bifunctor
C
op
coalg×Aalg → Set. For a fixed A -algebra A, the functor Twτ (−;A) is represented

by the bar construction BτA and for a fixed C -coalgebra C, the functor Twτ (C;−)
is represented by the cobar construction ΩτC; there are natural bijections

(1)
HomA (ΩτC,A) ∼= Twτ (C;A) ∼= HomC (C,BτA)

ψκ κ φκ

In particular, the bar and cobar constructions form an adjoint pair of functors

Ccoalg

Ωτ //
Aalg

Bτ

oo .

The bar construction is defined as the C -coalgebra BτA = (C [A], d + b) where
d is the internal differential of the chain complex C [A] and b is the unique C -
coderivation making the diagram

C [A]
b //

τ [A]

��

C [A]

ǫ[A]

��
A [A]

µ
// A

commute. The fact that (d+b)2 = 0 is a consequence of the Maurer-Cartan equation
for τ .

The cobar construction is defined as the A -algebra ΩτC = (A [C], d+ δ), where
d is the internal differential of A [C] and δ is the unique A -derivation making the
diagram

C

η[C]

��

∆ // C [C]

τ [C]

��
A [C]

δ // A [C]

commute. The fact that (d + δ)2 = 0 is a consequence of the Maurer-Cartan
equation for τ .

The bijection (1) can be made explicit as follows. The unit and counit maps
η[C] : C → A [C] and ǫ[A] : C [A]→ A define twisting morphisms ι : C → ΩτC and
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π : BτA → A called the universal twisting morphisms. Given a morphism of C -
coalgebras φ : C → BτA we get a twisting morphism κ = π∗(φ) : C → A. Similarly,
given a morphism of A -algebras ψ : ΩτC → A, we get a twisting morphism κ =
ι∗(φ) : C → A.

(2) BτA

π

!!D
DD

DD
DD

D

C
κ //

φκ

==zzzzzzzz

ι
!!D

DD
DD

DD
D A

ΩτC

ψκ

==zzzzzzzz

Conversely, given a twisting morphism κ : C → A, there is an associated morphism
of C -algebras φκ : C → BτA given by the composite map

C
∆ // C [C]

C [κ]
// C [A]

and there is an associated morphism of A -algebras ψκ : ΩτC → A given by the
composite map

A [C]
A [κ]

// A [A]
µ

// A.

The unit and counit of the adjunction give natural morphisms of A -algebras and
C -coalgebras

ΩτBτA→ A, C → BτΩτC.

The twisting morphism τ : C → A is a Koszul twisting morphism if these are
quasi-isomorphisms for all C and A.

Definition 10. A twisting morphism κ : C → A relative to τ is a Koszul twisting

morphism if the associated morphisms φκ : C → BτA and ψκ : ΩτC → A are quasi-
isomorphisms. We will denote the set of Koszul twisting morphisms relative to τ
from C to A by Kosτ (C;A).

In particular, τ : C → A is a Koszul twisting morphism if and only if the
universal twisting morphisms π : BτA → A and ι : C → ΩτC are Koszul for all
C and A.

Definition 11. • A morphism of A -algebras ψ : A → A′ is called a weak

equivalence if it is a quasi-isomorphism.
• A morphism of C -coalgebras φ : C → C′ is called a weak equivalence if
the associated morphism of A -algebras Ωτφ : ΩτC → ΩτC

′ is a quasi-
isomorphism.

Every weak equivalence of C -coalgebras is a quasi-isomorphism but not con-
versely. A counterexample is given by the map of associative dg-coalgebrasBk[x]→
Bk[x, x−1] induced by the algebra inclusion k[x] ⊆ k[x, x−1]. The bar construction
Bτ preserves but does not reflect quasi-isomorphisms. The cobar construction Ωτ
reflects but does not preserve quasi-isomorphisms. However, the definition of weak
equivalence is rigged so that the bar and cobar constructions both preserve and
reflect weak equivalences. There are model category structures on A -algebras and
C -coalgebras with these weak equivalences, see [29].

Definition 12. (1) We say that two A -algebrasA andA′ are weakly equivalent
and write A ∼ A′ if there is a zig-zag of weak equivalences of A -algebras

A A1
∼oo ∼ // A2 . . .∼oo ∼ // An A′∼oo



KOSZUL SPACES 7

We say that two C -coalgebras C and C′ are weakly equivalent and write
C ∼ C′ if they can be connected through a zig-zag of weak equivalences of
C -coalgebras.

(2) An A -algebra A is called formal if it is weakly equivalent to its homology,
A ∼ H∗(A). A C -coalgebra C is called formal if it is weakly equivalent to
its homology C ∼ H∗(C).

Proposition 13. Let κ : C → A be a twisting morphism relative to a Koszul twist-

ing morphism τ : C → A . The following are equivalent

(1) κ is a Koszul twisting morphism.

(2) ψκ : ΩτC → A is a weak equivalence.

(3) φκ : C → BτA is a weak equivalence.

Proof. Since τ is a Koszul twisting morphism, the natural morphism of A -algebras
ǫτ : ΩτBτA→ A is a quasi-isomorphism. The composite morphism

ΩτC
Ωτφκ // ΩτBτA

ǫτ // A

is equal to ψκ. Therefore, ψκ is a quasi-isomorphism if and only if Ωτφκ is. �

An ∞-morphism A  A′ between A -algebras is a morphism of C -coalgebras
BτA → BτA

′, and an ∞-morphism C  C′ between C -coalgebras is a morphism
of A -algebras ΩτC → ΩτC

′. According to [14, Theorem 11.4.14], if A is a Koszul
operad then A ∼ A′ if and only if there exists an ∞-quasi-isomorphism A  A′.
From the bijections (2) it is clear that Twτ (C,A) is functorial with respect to
∞-morphisms. Furthermore, Kosτ (C,A) is functorial with respect to ∞-quasi-
isomorphisms. Since any ∞-quasi-isomorphism admits an inverse [14, Theorem
10.4.7] we get in particular the following result.

Proposition 14. Let κ : C → A be a Koszul twisting morphism relative to a Koszul

twisting morphism τ : C → A where A is a Koszul operad. If C ∼ C′ and A ∼ A′

then there is a Koszul twisting morphism κ′ : C′ → A′.

2.2. Weight gradings and Koszul algebras over Koszul operads. A weight

grading on an A -algebra A is a decomposition

A = A(1)⊕A(2)⊕ . . .

which is compatible with the A -algebra structure in the sense that the structure
map µ : A [A]→ A is weight preserving. The bar construction BτA = (C [A], d+ b)
is then bigraded by weight ℓw and bar length ℓb. Since A is concentrated in positive
weight, the bar construction is concentrated in the region {ℓw ≥ ℓb}. Let Db =
{ℓw = ℓb} denote the diagonal. The coderivation b preserves weight and decreases
the bar length filtration. Let

A¡ := Db ∩ ker(b) ⊆ BτA.

A¡ is naturally a C -coalgebra and the inclusion map A¡ → BτA is a morphism of
C -coalgebras.

Definition 15. We say that the weight grading on A is a Koszul weight grading if
the inclusion

A¡ → BτA

is a quasi-isomorphism. A Koszul A -algebra is an A -algebra A that admits a
Koszul weight grading. If A is Koszul then we call A¡ the Koszul dual C -coalgebra.

Let C be a C -coalgebra. A weight grading on C is a decomposition

C = C(1)⊕ C(2)⊕ . . .
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which is compatible with the coalgebra structure in the sense that ∆: C → C [C]
preserves weight. The cobar construction ΩτC = (A [C], d+ δ) is then bigraded by
weight ℓw and cobar length ℓc. Since C is concentrated in positive weight, the cobar
construction is concentrated in the region {ℓw ≥ ℓc} and we let Dc = {ℓw = ℓc}
denote the diagonal. The derivation δ preserves weight and increases the cobar
length filtration. We define

C ¡ := Dc/Dc ∩ im(δ).

Then C ¡ is an A -algebra and the projection

f : ΩτC → C ¡

is a morphism of A -algebras.

Definition 16. We say that a weight grading on C is a Koszul weight grading if
the projection map f : ΩτC → C ¡ is a quasi-isomorphism. A Koszul C -coalgebra is
a C -coalgebra C that admits a Koszul weight grading. If C is Koszul then we call
C ¡ the Koszul dual A -algebra.

We will call a twisting morphism τ : C → A binary if it vanishes outside arity
2.

Theorem 17. Let κ : C → A be a Koszul twisting morphism relative to a binary

Koszul twisting morphism τ : C → A . If C and A have trivial differentials, then

there are Koszul weight gradings on C and A such that φκ : C → BτA maps C
isomorphically onto A¡ and ψκ : ΩτC → A factors through an isomorphism C ¡ → A.

Proof. Since A has trivial differential, the quasi-isomorphism ψκ : ΩτC → A is sur-
jective and induces an isomorphism H∗(ΩτC) ∼= A. Since C has trivial differential
and since τ is binary, the derivation δ on ΩτC increases cobar length by exactly 1.
Therefore we can introduce a weight grading on the homology H = H∗(ΩτC) by

H(p) =
ker(δ : A (p)⊗Σp

C⊗p → A (p+ 1)⊗Σp+1
C⊗p+1)

im(δ : A (p− 1)⊗Σp−1
C⊗p−1 → A (p)⊗Σp

C⊗p)

which we transport to a weight grading on A via the isomorphism H∗(ΩτC) ∼= A.
It follows that A(p) is the image of A (p)⊗Σp

C⊗p under ψκ.
Similarly, since C has trivial differential, the quasi-isomorphism φκ : C → BτA is

injective and induces an isomorphism C ∼= H∗(BτA). Since A has trivial differential
and since τ is binary, the coderivation b on the bar construction decreases bar length
by exactly 1 and as before we can introduce a weight grading on the homology
H∗(BτA) which we transport to C. It follows that the induced weight grading on
C is given by C(p) = φ−1

κ (C (p)⊗Σp
A⊗p).

We will now verify that the weight gradings thus constructed are Koszul by
proving that the image of φκ is equal to A¡ = Db∩ker(b) and that ψκ factors through
an isomorphism C ¡ = Dc/Dc ∩ im(δ) ∼= A. To this end, first note that κ : C → A
vanishes on elements of weight different from 1 and has image concentrated in
weight 1. This follows from the factorization of κ as in the diagram (2). Indeed,
the weight grading on C is inherited from the bar length grading on BτA and
π : BτA→ A vanishes outside bar length 1. Similarly, the image of ι : C → ΩτC is
contained in the cobar length 1 component, whose image under ψκ : ΩτC → A is
contained in A(1). Recall that φκ is the composite

C
∆ // C [C]

C [κ]
// C [A].

Since the image of κ is contained in weight 1, this shows that im(φκ) ⊆ Db. Since C
has trivial differential, im(φκ) ⊆ ker(b). Thus, im(φκ) ⊆ Db ∩ ker(b). That we have
equality follows because φκ is a quasi-isomorphism. Indeed, if x ∈ Db ∩ ker(b) then
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the homology class of x must be the image of the homology class of some c ∈ C,
that is to say φκ(c) − x ∈ im(b). But we also have that φκ(c) − x ∈ Db. Since
Db ∩ im(b) = 0 (which follows from the fact that ℓw ≥ ℓb) we get φκ(c) = x. Thus,
the quasi-isomorphism φκ : C → BτA maps isomorphically onto A¡, so indeed the
weight grading on A is Koszul.

Recall that ψκ is the composite

A [C]
A [κ]

// A [A]
µ

// A.

Since κ vanishes outside weight 1, this shows that ψκ vanishes outside the diagonal
Dc. Moreover, since A has trivial differential ψκ factors through C ¡ = Dc/Dc ∩
im(δ) → A. Since ψκ is surjective this map is necessarily surjective. That it is
injective follows because ψκ is a quasi-isomorphism. Indeed, if x ∈ Dc ∩ ker(ψκ)
then δ(x) = 0 since δ(Dc) = 0 as ℓw ≥ ℓc and δ preserves weight but increases
cobar length. Thus, the homology class of x gets mapped to zero under ψκ which
implies that x ∈ im(δ) as ψκ is a quasi-isomorphism. Thus, the quasi-isomorphism
ψκ : ΩτC → A factors through an isomorphism C ¡ ∼= A and therefore the weight
grading on C is Koszul. �

Theorem 18. Let κ : C → A be a Koszul twisting morphism relative to a binary

Koszul twisting morphism τ : C → A where A is a Koszul operad. The following

are equivalent:

(1) C and A are formal.

(2) A is formal and H∗(A) is a Koszul A -algebra.

(3) C is formal and H∗(C) is a Koszul C -coalgebra.

Proof. (1)⇒(2),(3): If C ∼ H∗(C) and A ∼ H∗(A) then there is a Koszul twisting
morphism κ′ : H∗(C)→ H∗(A) by Proposition 14. By Theorem 17 this implies that
H∗(C) and H∗(A) are Koszul and Koszul dual to each other.

(2)⇒(1): We need to prove that C is formal. Since A is formal we may assume
that A = H∗(A) by Proposition 14. Then we have a weak equivalence of C -
coalgebras C → BτA. Since A = H∗(A) is assumed to be Koszul there is a weak
equivalence H∗(BτA) → BτA. So we get a zig-zag of weak equivalences C →
BτA← H∗(BτA) showing that C is formal.

The proof of the implication (3)⇒(1) is similar. �

Corollary 19. Let A be a binary Koszul operad with Koszul dual cooperad C and

let τ : C → A be the associated Koszul twisting morphism.

(1) An A -algebra A with zero differential is Koszul if and only if the bar con-

struction BτA is formal as a C -coalgebra.

(2) A C -coalgebra C with zero differential is Koszul if and only if the cobar

construction ΩτC is formal as an A -algebra.

If A is a Koszul operad with Koszul dual cooperad C , then the Koszul dual

operad is defined by A ! = (ΣC )∨. If A is a Koszul A -algebra with Koszul dual
C -coalgebra C, then the Koszul dual A !-algebra is defined to be the weight graded
algebra A !-algebra A! with A!(p) = (sC(p))∨.

Theorem 20. Let A be a Koszul algebra over a binary Koszul operad A . Then A
is quadratic, that is, A has a presentation of the form

A = A [V ]/(R)

where R ⊆ A [V ](2) = A (2)⊗Σ2
V ⊗2. Furthermore, the Koszul dual A !-algebra A!

is also Koszul and has quadratic presentation

A! = A
![(sV )∨]/(R⊥),
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where R⊥ ⊆ A ![(sV )∨](2) is the annihilator of R ⊆ A [V ](2) with respect to the

induced pairing of degree 2

〈 , 〉 : A
![(sV )∨](2)⊗A [V ](2)→ Q.

Proof. Theorem 17 identifies A with C ¡ = Dc/Dc ∩ im(δ) where C = A¡. The
diagonal Dc ⊆ ΩτC may be identified with the free A -algebra A [V ] where V =
C(1) is the weight 1 component of C. We need to identify the generators of the A -
ideal Dc∩ im(δ) ⊆ Dc = A [V ]. By definition, the map δ is the unique A -derivation
that makes the diagram

C

η[C]

��

∆ // C [C]

τ [C]

��
A [C]

δ // A [C]

commute. This implies that the A -ideal Dc ∩ im(δ) is generated by the image of
the map

C
∆ // C [C]

τ [C]
// A [C]

intersected with the diagonal. But if A is binary, the twisting morphism τ vanishes
outside arity 2. Therefore, this image is contained in the subspace A (2)⊗Σ2

V ⊗2.
This proves the first part of the theorem. The fact that A! is Koszul follows because
its bar construction can be identified, up to a shift, with the weight graded dual of
the cobar construction on C.

To prove the statement about the orthogonal presentation for A!, first note that
κ : C → A restricts to an isomorphism of weight 1 components; κ(1) : C(1) ∼= A(1).
We identify these components and write V for both. By definition, the surjective
morphism of A -algebras ψκ : A [C]→ A is the composite

A [C]
A [κ]

// A [A]
µ

// A

It vanishes outside the diagonal Dc = A [V ] and we use µ to denote also the induced
surjective morphism of A -algebras A [V ]→ A. Similarly, by definition the injective
morphism of C -coalgebras φκ : C → C [A] is the composite

C
∆ // C [C]

C [κ]
// C [A]

It has image Db ∩ ker b and in particular it factors through an injective morphism
of C -coalgebras C → Db = C [V ] that we will also denote by ∆. By inspecting
the definitions of the bar and cobar differentials b and δ we have the following
commutative diagram with exact rows in weight 2:

(3) 0 // C(2)
∆(2)

// C (2)⊗Σ2
V ⊗2

∼= τ(2)⊗1⊗2

��

b(2)
// sA(2) // 0

0 // C(2)
δ(2)

// sA (2)⊗Σ2
V ⊗2

µ(2)
// sA(2) // 0

The injective morphism of weight graded C -coalgebras ∆: C → C [V ] dualizes
(weight-wise) to a surjective morphism of A !-algebras

(sC [V ])∨
(s∆)∨

// // (sC)∨

A ![(sV )∨] // // A!
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Since A! is Koszul the kernel of this morphism is generated in weight 2 as an A !-
ideal. In weight 2, diagram (3) shows that the kernel of (s∆(2))∨ may be identified
with R⊥, since the kernel of µ(2) is R by definition. �

Let us be more explicit about the relation between R and R⊥. Let W = (sV )∨.
The pairing 〈 , 〉 : W ⊗ V → Q of degree 1 extends to a pairing of degree 2

〈 , 〉 :
(
A

!(2)⊗Σ2
W⊗2

)
⊗
(
A (2)⊗Σ2

V ⊗2
)
→ Q

defined by

〈(f ;α, β), (µ;x, y)〉 = (−1)ǫ〈f, µ〉〈α, x〉〈β, y〉 + (−1)η〈fτ, µ〉〈β, x〉〈α, y〉

where the signs are given by

ǫ = |µ|(|α|+ |β|) + |β||x| + |α|+ |x|

η = |µ|(|α|+ |β|) + |α||β| + |α||x|+ |β|+ |x|

Every Koszul algebra over a binary Koszul operad is quadratic, but it is well
known that not every quadratic algebra is Koszul. However, given a quadratic A -
algebra A, the orthogonal presentation defines a quadratic A !-algebra A! and there
is an associated twisting morphism κ : A¡ = (sA!)∨ → A. There is a natural chain
complex associated to κ called the Koszul complex, which is acyclic if and only if
κ is a Koszul twisting morphism. This is a useful technique to prove that a given
quadratic algebra is Koszul. We refer to [17] for details.

3. Rational homotopy theory and Koszul duality

The rational homotopy type of a simply connected space X with finite Betti
numbers is modeled in Sullivan’s approach [28] by a commutative differential graded
algebra A∗

PL(X) with cohomology H∗(X ;Q) and in Quillen’s approach [25] by a
differential graded Lie algebra λ(X) with homology π∗(ΩX)⊗Q, see also [8].

There is a Koszul twisting morphism τ : Com∨ → ΣLie where Com∨ is the
cooperad whose coalgebras are non-counital cocommutative coalgebras and ΣLie
is the operad whose algebras are suspensions of Lie algebras. The associated bar
and cobar constructions are related to the classical Quillen functors [25, 19, 8]

DGC
C //

DGL
L

oo

as follows. For a dgc C and a dgl L

Ωτ (C) = sL (C), Bτ (sL) = Q⊕ C (L).

The Baues-Lemaire conjecture [3, Conjecture 3.5], proved by Majewski [15] (see
also [8, Theorem 26.5]), can be expressed in the language of Koszul duality theory
in the following way:

Quillen’s and Sullivan’s approaches to rational homotopy theory are

Koszul dual to one another under the Koszul duality between the

commutative and the Lie operad.

A more precise statement is the following.

Theorem 21. Let X be a simply connected space with finite Betti numbers and let

MX be its minimal model. There is a quasi-isomorphism of differential graded Lie

algebras

L (M∨
X)

∼
→ λ(X).
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Whereas Sullivan’s approach extends to nilpotent spaces, Quillen only defined
his Lie model λ(X) for simply connected spaces X . However, if X is nilpotent and
of finite Q-type, then its minimal model MX is of finite type and can therefore be
dualized to a differential graded coalgebra CX = M∨

X . The Lie algebra L (CX)
may serve as a replacement for the Quillen model, as justified by Theorem 21. This
approach was carried out in [19].

Theorem 22 (See [19, Proposition 8.2, 8.3]). Let X be a nilpotent space of finite

Q-type and let MX be its minimal model. Then there is an isomorphism of graded

Lie algebras

H≥1 L (M∨
X) ∼= π≥1(ΩX)⊗Q.

Furthermore, there is an isomorphism of Lie algebras

H0 L (M∨
X)
∼= l(π1(X)⊗Q),

where the right hand side is the Lie algebra of the Malcev completion of the funda-

mental group of X [25].

Remark 23. As stated, Theorem 22 says nothing about the interpretation of the
Lie bracket

H0(L (M∨
X))⊗Hn(L (M∨

X))→ Hn(L (M∨
X))

for n ≥ 1, but it is natural to expect that it corresponds to the action of π1(X) on
the higher homotopy groups.

Proof of Theorem 2 and Theorem 3. Theorem 3 and the equivalence of (1), (2) and
(3) follow directly by combining Theorem 18, Theorem 21 and Theorem 22. The
equivalence (2)⇔(4) follows from the Sullivan-de Rham Equivalence Theorem [5,
Theorem 9.4] and the Localization Theorem [5, Theorem 11.2]: If X is connected,
nilpotent and of finite Q-type, then the map X → 〈MX〉 is a rational homotopy
equivalence, whereMX is the minimal model for X . If X is formal and H∗(X ;Q) is
Koszul, then the minimal model for X is also a minimal model for the cohomology
and hence 〈MX〉 represents the derived spatial realization of the Koszul algebra
H∗(X ;Q). Conversely, if X is rationally homotopy equivalent to the derived spatial
realization of a Koszul algebra A, this means that X ∼Q 〈MA〉 where MA is the
minimal model for the Koszul algebra A. By [5, Theorem 9.4], this implies that

MA is also the minimal model for X , and since MA
∼
→ A this implies that X is

formal and that H∗(X ;Q) ∼= A. �

4. Koszul duality for Gerstenhaber n-algebras and rational

homology of n-fold loop spaces

A Gerstenhaber n-algebra is a graded vector space A together with two binary
operations

µ : Ap ⊗Aq → Ap+q, λ : Ap ⊗Aq → Ap+q+n−1,

such that for all x, y, z ∈ A, writing xy = µ(x⊗ y) and [x, y] = λ(x ⊗ y),

xy = (−1)|x||y|yx, (xy)z = x(yz),

[x, y] = −(−1)(|x|+n−1)(|y|+n−1)[y, x],

[x, [y, z]] = [[x, y], z] + (−1)(|x|+n−1)(|y|+n−1)[y, [x, z]],

[x, yz] = [x, y]z + (−1)(|x|+n−1)|y|y[x, z].

Theorem 24 (F.Cohen [6]). The homology of the little n-cubes operad En is iso-

morphic to the operad Gn of Gerstenhaber n-algebras. In particular, the homology

of any En-algebra has the structure of a Gn-algebra.



KOSZUL SPACES 13

The prototypical example of an En-algebra is the n-fold loop space ΩnX of a
based topological spaceX [4, 16]. The homology H∗(Ω

nX ;Q) is a Gn-algebra where
µ is the Pontryagin product and λ the Browder bracket. Any graded commutative
algebra A may be viewed as a Gn-algebra by setting λ = 0.

Theorem 25 (Getzler-Jones [11]). The operad Gn is Koszul and it is Koszul self-

dual up to a suspension; G!
n = Σn−1Gn.

If A is a Koszul Gn-algebra, then the Koszul dual A! as defined in Section 2 is
an algebra over G!

n = Σn−1Gn. In order to get an algebra over Gn again, we define
the Koszul dual Gn-algebra of A to be the desuspension A!Gn = s1−nA!.

Proposition 26. Let A be a commutative algebra viewed as a Gn-algebra with

trivial Lie bracket. Then A is Koszul as a commutative algebra if and only if it is

Koszul as a Gn-algebra. In this situation there is an isomorphism of Gn-algebras

A!Gn ∼= Λ(s1−nA!Lie).

Proof. This is a consequence of the decomposition of operads Gn = Com ◦Lien−1,
where Lien−1 = Σn−1Lie, see [14, 13.3.14]. Since the Lie algebra structure on A is
trivial, the Gn bar construction of A is isomorphic to

BGn
(A) ∼= Lie¡n−1[BCom(A)].

It follows that BGn
(A) is formal as a G¡

n-coalgebra if and only if BCom(A) is formal
as a Com¡-coalgebra. This proves the first part of the proposition. For the second
part, simply observe that Lie!n−1 = Σn−1Com. �

Proposition 27. For any n-connected space X there is an isomorphism of Gn-

algebras

H∗(Ω
nX ;Q) ∼= Λ(s−nπ∗(X)⊗Q)

where the Lie bracket on the right hand side is induced by Whitehead products on

the homotopy groups of X.

Proof. By the Milnor-Moore theorem [18, p.263], since ΩnX is connected the
Hurewicz homomorphism

h : π∗(Ω
nX)⊗Q→ H∗(Ω

nX ;Q)

induces an isomorphism of graded algebras between H∗(Ω
nX ;Q) and the universal

enveloping algebra of the graded Lie algebra π∗(Ω
nX) ⊗ Q with the Samelson

product. But for n ≥ 2, the Samelson product on π∗(Ω
nX) is trivial, so the

universal enveloping algebra is a free graded commutative algebra and we get that
the Hurewicz homomorphism induces an isomorphism of graded algebras

Λ(π∗(Ω
nX)⊗Q)

∼=
→ H∗(Ω

nX ;Q).

To finish the proof we note that under the identification π∗(Ω
nX) = s−nπ∗(X), the

Hurewicz homomorphism takes Whitehead products in π∗(X) to Browder brackets
in H∗(Ω

nX ;Q) [6, p.215, p.318]. �

Proof of Theorem 4. The proof consists in assembling three facts:

• For any Koszul space X there is an isomorphism of graded Lie algebras

s−1π∗(X)⊗Q ∼= H∗(X ;Q)!Lie

where the Lie bracket on the left hand side is induced by Whitehead prod-
ucts on π∗(X) (Theorem 3).
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• For any commutative Koszul algebra A viewed as a Gn-algebra with trivial
Lie bracket there is an isomorphism of Gn-algebras

A!Gn ∼= Λ(s1−nA!Lie)

(Proposition 26).
• For any n-connected space X there is an isomorphism of Gn-algebras

H∗(Ω
nX ;Q) ∼= Λ(s−nπ∗(X)⊗Q)

where the Lie bracket on the right hand side is induced by Whitehead
products on π∗(X) (Proposition 27).

�

5. Examples of Koszul spaces

Example 28. Spheres. The first example of a Koszul space is the sphere Sn, where
n ≥ 1. Spheres are formal, and the cohomology algebra H∗(Sn;Q) is generated by
a class x of cohomological degree n modulo the relation x2 = 0. The Koszul dual
Lie algebra is the free graded Lie algebra L(α) on a generator α of homological
degree n− 1.

π∗(ΩS
n)⊗Q ∼= L(α) =

{
〈α, [α, α]〉Q, n even
〈α〉Q, n odd

This gives yet another way of seeing Serre’s [26] classical result that πi(S
n)⊗Q = Q

for i = n, and i = 2n− 1 if n is even, and πi(S
n)⊗Q = 0 else.

Example 29. Suspensions. More generally, the suspension ΣX of any connected
space X is a Koszul space. A suspension is formal (indeed rationally homotopy
equivalent to a wedge of spheres, see [8, Theorem 24.5]) and the cohomology

H∗(ΣX ;Q) is the trivial algebra ⊥ (H̃∗(ΣX ;Q)) generated by the reduced coho-
mology. Here ⊥ (V ) = Λ(V )/(Λ2V ). The Koszul dual is a free graded Lie algebra
on the reduced homology of X

π∗(ΩΣX)⊗Q ∼= L(H̃∗(X ;Q)).

Example 30. Loop spaces. The loop space ΩX of any 1-connected space X is
a Koszul space with cohomology the free graded commutative algebra Λ(V ) on a
graded vector space V . The Koszul dual Lie algebra is the abelian Lie algebra

π∗(Ω
2X)⊗Q ∼= s−2V ∨.

Example 31. Products and wedges. If X and Y are Koszul spaces then so are
X×Y andX∨Y . Indeed, it is easy to check that products and wedges of (co)formal
spaces are (co)formal, see e.g., [21, Lemma 4.1]. On the level of cohomology, this is
reflected by the fact that tensor and fiber products of Koszul algebras are Koszul:

H∗(X × Y ;Q) ∼= H∗(X ;Q)⊗H∗(Y ;Q),

H∗(X ∨ Y ;Q) ∼= H∗(X ;Q)×Q H∗(Y ;Q).

Example 32. Configuration spaces. For any k and n the configuration space
F (Rn, k) of k points in Rn is a Koszul space. This follows because configuration
spaces are formal (see e.g. [13]) and their cohomology algebras are Koszul. The
rational cohomology algebra is generated by elements apq of cohomological degree
n− 1 for 1 ≤ p < q ≤ k subject to the ‘Arnold relations’

apqaqr + aqrarp + arpapq = 0, p, q, r distinct,

a2pq = 0, (n odd)

Here we use the convention apq = (−1)naqp for p > q. This algebra has a PBW-
basis [24] consisting of all monomials ai1j1 . . . airjr where i1 < . . . < ir and ip < jp
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for all p, and therefore it is Koszul. Hence, we have an isomorphism of graded Lie al-
gebras π∗(ΩF (R

n, k))⊗Q = H∗(F (Rn, k);Q)!Lie. When calculating the orthogonal
relations we recover [7, Theorem 2.3]: as a graded Lie algebra π∗(ΩF (R

n, k)) ⊗ Q

is generated by classes αpq of homological degree n − 2 for 1 ≤ p < q ≤ k subject
to the ‘infinitesimal braid relations’ or ‘Yang-Baxter Lie algebra relations’

[αpq, αrs] = 0, {p, q} ∩ {r, s} = ∅,

[αpq, αpr + αqr] = 0, p, q, r distinct.

Again, we use the convention that αqp = (−1)nαqp for p > q. These presentations
for the cohomology and homotopy Lie algebra of configuration spaces are well-
known, but we stress that it is possible to derive the presentation of π∗(ΩF (R

n, k))⊗
Q from the presentation of H∗(F (Rn, k);Q) using the fact that F (Rn, k) is a Koszul
space.

Example 33. Highly connected manifolds. Let M be a (d − 1)-connected closed
m-dimensional manifold with m ≤ 3d − 2, d ≥ 2 and where dimQ H∗(M ;Q) ≥
4. By [21, Proposition 4.4] any such manifold is formal and coformal, whence
a Koszul space by Theorem 2. By Poincaré duality and for degree reasons, the
rational cohomology of M admits a basis 1, x1, . . . , xn, ω where ω is a generator
of Hm(M ;Q) ∼= Q and where x1, . . . , xn are indecomposable with respect to the
cup product. Therefore, the cohomology algebra is completely determined by the
structure coefficients qij ∈ Q where

xixj = qijω.

By Theorem 3, we can compute the rational homotopy Lie algebra ofM by finding
the orthogonal relations. Clearly, a relation

∑

i,j

cijxixj = 0

holds if and only if
∑

i,j qijcij = 0. So we get that π∗(ΩM)⊗Q is a free graded Lie
algebra on classes α1, . . . , αn modulo a single quadratic Lie form

π∗(ΩM)⊗Q ∼= L(α1, . . . , αn)/(Q),

Q =
∑

i,j

(−1)|xi||αj|qij [αi, αj ].

This agrees with the presentation obtained in [20, Theorem 5] up to a sign.
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