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ON COLMEZ’S PRODUCT FORMULA FOR PERIODS OF

CM-ABELIAN VARIETIES

ANDREW OBUS

Abstract. Colmez conjectured a product formula for periods of abelian va-
rieties with complex multiplication by a field K, analogous to the standard
product formula in algebraic number theory. He proved this conjecture up to
a rational power of 2 for K/Q abelian. In this paper, we complete the proof
of Colmez for K/Q abelian by eliminating this power of 2. Our proof relies
on analyzing the Galois action on the De Rham cohomology of Fermat curves
in mixed characteristic (0, 2), which in turn relies on understanding the stable
reduction of Z/2n-covers of the projective line, branched at three points.

1. Introduction

The product formula in algebraic number theory states that, given an algebraic
number x 6= 0 in a number field K, the product of |x| as | · | ranges over all
inequivalent absolute values of K (appropriately normalized) is equal to 1. In
logarithmic form, the sum of log |x| as | · | ranges over all inequivalent absolute
values is 0. In [Col93], Colmez asked whether an analogous product formula might
hold for periods of algebraic varieties, and conjectured that it would hold for periods
of abelian varieties with complex multiplication (CM-abelian varieties). He proved
that, for abelian varieties with complex multiplication by abelian extensions of Q,
such a product formula holds (in logarithmic form) up to an (unknown) rational
multiple of log 2 ([Col93, Théorème 0.5 and discussion after Conjecture 0.4]). A
key step in this proof was provided by work of Coleman and McCallum ([CM88],
[Col90]) on understanding stable models of quotients of Fermat curves in mixed
characteristic (0, p), where p is an odd prime. These quotients are Z/pn-covers of
the projective line, branched at three points. The unknown rational multiple of
log 2 was necessary in [Col93] precisely because the stable models of Z/2n-covers of
the projective line, branched at three points, in mixed characteristic (0, 2), were not
well-understood at the time. This problem was solved by the author in [Obu09],
where a complete description of the stable models of such covers was given. In this
paper, we use the results of [Obu09] to complete the proof of Colmez’s product
formula for abelian extensions of Q by eliminating the multiple of log 2 in question.

Colmez first looks at the example of 2πi, which is a period for the variety Gm,
rather than for an abelian variety. For each prime p, one can view 2πi as an element
tp of Fontaine’s ring of periods Bp, and its p-adic absolute value is |tp|p = p1/(1−p).
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The archimedean absolute value | · |∞ is the standard one, so |2πi|∞ = 2π. The
logarithm of the product of all of these absolute values is

log 2π −
∑

p<∞

log p

p− 1
.

This sum does not converge, but formally, it is equal to log 2π − ζ′(1)
ζ(1) , where ζ is

the Riemann zeta function. Using the functional equation of ζ (and ignoring the

Γ factors), we obtain log 2π − ζ′(0)
ζ(0) , which is equal to 0. In this sense, we can say

that the product formula holds for 2πi.
The above method can be adapted to give a definition of what it means to

take the logarithm of the product of all the absolute values of a period, and thus
to give a product formula meaning. Many subtleties arise, and the excellent and
thorough introduction to [Col93] discusses them in detail. We will not attempt
to recreate this discussion. Instead, we will just note that Colmez shows that the
product formula for periods of CM-abelian varieties with complex multiplication
by an abelian extension of Q (in logarithmic form) is equivalent to the formula

(1.1) ht(a) = Z(a∗, 0)

for all a ∈ CMab ([Col93, Théorème II.2.12(iii)]). Here, CMab is the vector space of
Q-valued, locally constant functions a : Gal(Qab/Q) → Q such that, if c represents
complex conjugation, then a(g)+a(cg) does not depend on g ∈ GQ. Such a function
can be decomposed into a C-linear combination of Dirichlet characters whose L-
functions do not vanish at 0. If a ∈ CMab then we define a∗ ∈ CMab by a∗(g) =

a(g−1). Also, Z(·, 0) is the unique C-linear function on CMab ⊗ C equal to L′(χ,0)
L(χ,0)

when its argument is a Dirichlet character χ whose L-function does not vanish at
0. Lastly, ht(·) is a C-linear function on CMab ⊗ C related to Faltings heights of
abelian varieties (see [Col93, Théorème 0.3] for a precise definition, also [Yan10]).

Colmez shows ([Col93, Proposition III.1.2, Remarque on p. 676]) that

(1.2) Z(a∗, 0)− ht(a) =
∑

p prime

wp(a) log p,

where wp : CMab → Q is a Q-linear function (depending on p) that will be defined

in §2. He then further shows that wp(a) = 0 for all p ≥ 3 and all a ∈ CMab ([Col93,
Corollaire III.2.7]). Thus (1.1) is correct up to a adding a rational multiple of log 2.

Our main theorem (Theorem 4.9) states that w2(a) = 0 for all a ∈ CMab, thus
proving (1.1).

We note that, in light of the expression (1.1), Colmez’s formula is fundamen-
tally about relating periods of CM-abelian varieties to logarithmic derivatives of
L-functions. That this can be expressed as a product formula is aesthetically pleas-
ing, but the main content is encapsulated by (1.1).

In §2, we define wp and show how it is related to De Rham cohomolgy of Fermat
curves. In §3 we collect some results on base 2 expansions of integers that are useful
for calculating w2. In §4.1, we write down the important properties of the stable
model of a certain quotient of the Fermat curve F2n of degree 2n (n ≥ 2) over Q2,
and we discuss the monodromy action on the stable reduction. In §4.2, we show
how knowledge of this stable model allows us to understand the Galois action on
the De Rham cohomology of F2n . In §4.3, we show how this is used to prove that
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w2(a) = 0. Lastly, in §5, we collect some technical power series computations that
are used in §4.2, but would interrupt the flow of the paper if included there.

1.1. Conventions. The letter p always represents a prime number. If x ∈ Q/Z,
then 〈x〉 is the unique representative for x in the interval [0, 1). For a nonnegative
integer ℓ, we write S(ℓ) for the sum of the digits in the base 2 expansion of ℓ. So,
for instance, S(3) = 2 and S(11) = 3. If ℓ ∈ Q\{0, 1, 2, . . .}, set S(ℓ) = ∞. The
standard p-adic valuation on Q is denoted vp, and the subring Z(p) ⊆ Q consists of
the elements x ∈ Q with vp(x) ≥ 0. If K is a field, then GK is its absolute Galois
group.

Acknowledgements
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2. Galois actions on De Rham cohomology

The canonical isomorphism Gal(Qab/Q) ∼= Ẑ× gives a homomorphism χ : GQ →
Ẑ×, called the cyclotomic character. Multiplication by the cyclotomic character
gives a well-defined action of GQ on Q/Z, factoring through Gal(Qab/Q).

The following definitions are from [Col93, III]. Recall that CMab is the vector
space of Q-valued, locally constant functions a : Gal(Qab/Q) → Q such that, if
c represents complex conjugation, then a(g) + a(cg) does not depend on g ∈ GQ

([Col93, p. 627]). For r ∈ Q/Z, define an element ar ∈ CMab by

ar(g) = 〈gr〉 − 1

2
.

One can show that the ar generate CMab as a Q-vector space. For r ∈ Q/Z, set
vp(r) = min(vp(〈r〉), 0), and set

r(p) =

{

r r ∈ Z(p)/Z

p−vp(r)r otherwise.

Set

Vp(r) =

{

0 r ∈ Z(p)/Z

(〈r〉 − 1
2 )vp(r)− 1

(p−1)p−vp(r)−1 (〈
r(p)
p 〉 − 1

2 ) otherwise,

where the division r(p)/p is performed in Z(p)/Z.

Let q = (ρ, σ, τ) ∈ (Q/Z)3, such that ρ+σ+τ = 0 and none of ρ, σ, or τ are 0. Let
m be a positive integer such that mρ = mσ = mτ = 0. Let ǫq = 〈ρ〉+ 〈σ〉+ 〈τ〉− 1.
Let Fm be the mth Fermat curve, that is, the smooth, proper model of the affine
curve over Q given by um + vm = 1, and let Jm be its Jacobian. Write 〈ρ〉 = a

m

and 〈σ〉 = b
m . Consider the closed differential form

ηm,q := m〈ρ+ σ〉ǫquavb
v

u
d
(u

v

)

on Fm. We can view its De Rham cohomology class as a class ωm,q ∈ H1
DR(Jm) ∼=

H1
DR(Fm) over Q. It turns out that there is a particular rational factor Jq of Jm

with complex multiplication, and a class ωq ∈ H1
DR(Jq), such that the pullback of

ωq to Jm is ωm,q. Furthermore, ωq is an eigenvector for the complex multiplication
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on Jq. As is suggested by the notation, the pair (Jq, ωq) depends only on q, not on
m, up to isomorphism ([Col93, p. 674]).

Now, GQ acts on q componentwise by the cyclotomic character. If γ ∈ GQ, then

Jq = Jγq ([Col93, p. 674]). Fix an embedding Q →֒ Qp, which gives rise to an
embedding GQp

→֒ GQ. If γ lies in the inertia group IQp
⊆ GQp

⊆ GQ, then γ

acts on Jq, and thus on H1
DR(Jq,Qp). We have γ∗ωq = βγ(q)ωγq for some constant

βγ(q) in some finite extension of Qp ([Col93, pp. 676-7]). We also note that IQp

acts on H1
DR(Fm,Qp) ∼= H1

DR(Jm,Qp) via its action on Fm. One derives

(2.1) γ∗ωm,q = βγ(q)ωm,γq.

If K is a p-adic field with a valuation vp, then there is a notion of p-adic valuation
of ω ∈ H1

DR(A) whenever A is a CM-abelian variety defined over K and ω is an
eigenvector for the complex multiplication ([Col93, p. 659]—note that ωq is such a
class). By abuse of notation, we also write this valuation as vp. It has the property
that, if c ∈ K, then vp(cω) = vp(c) + vp(ω).

Lemma 2.1. If γ lies in an inertia group above p, then vp(ωq) − vp(ωγq) =
vp(βγ(q)).

Proof. By [Col93, Théorème II.1.1], we have vp(ωq) = vp(γ
∗ωq). The lemma then

follows from the definition of βγ(q). ✷

Let bq = aρ + aσ + aτ ∈ CMab. There is a unique linear map wp : CMab → Q

such that
wp(bq) = vp(ωq)− Vp(q)

([Col93, Corollaire III.2.2]). This is the map wp from (1.2). Recall from §1 that

Colmez showed wp(a) = 0 for all p ≥ 3 and all a ∈ CMab. In Theorem 4.9, we will

show that w2(a) = 0 for all a ∈ CMab.

3. Base 2 expansions

Recall that S(ℓ) is the sum of the digits in the base 2 expansion of ℓ, or ∞ if
ℓ ∈ Q\{0, 1, 2, . . .}. It is clear that S(ℓ) = 1 iff ℓ is an integer and a power of 2.
Note also that if ℓ1 and ℓ2 are positive integers whose ratio is a power of 2, then
S(ℓ1) = S(ℓ2).

Lemma 3.1. If ℓ1 and ℓ2 are nonnegative integers, then S(ℓ1+ℓ2) ≤ S(ℓ1)+S(ℓ2).
Equality never holds if ℓ1 = ℓ2. Furthermore, if ℓ is a positive integer, there are
exactly 2S(ℓ) − 2 ordered pairs of positive integers (ℓ1, ℓ2) such that ℓ1 + ℓ2 = ℓ and
S(ℓ1) + S(ℓ2) = S(ℓ).

Proof. The first two assertions are clear from the standard addition algorithm.
Now, for positive integers ℓ1 and ℓ2, we have S(ℓ1 + ℓ2) = S(ℓ1) + S(ℓ2) exactly
when no carrying takes place in the addition of ℓ1 and ℓ2 in base 2. This happens
when ℓ1 is formed by taking a nonempty, proper subset of the 1’s in the base
2 expansion of ℓ, and converting them to zeros. There are 2S(ℓ)−2 such subsets,
proving the lemma. ✷

The following lemma gathers several elementary facts. The somewhat strange
phrasings will pay off in §4. Notice that all inequalities are phrased in terms of
something being less than or equal to 1

2S(ℓ).

Lemma 3.2. Let ℓ be a positive integer.
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(i) 2S( ℓ4 )− 2 ≤ 1
2S(ℓ) iff ℓ ≥ 4 is a power of 2.

(ii) S( ℓ2 )− 1 ≤ 1
2S(ℓ) iff S(ℓ) ≤ 2 and ℓ is even.

(iii) There are exactly 2S(ℓ) − 2 ordered pairs of positive integers (ℓ1, ℓ2) such that
ℓ1 + ℓ2 = ℓ and 1

2S(ℓ1) +
1
2S(ℓ2) ≤ 1

2S(ℓ).
(iv) If ℓ1 and ℓ2 are distinct positive integers such that 2(ℓ1+ℓ2) = ℓ, then S(ℓ1)+

S(ℓ2)− 1 ≤ 1
2S(ℓ) iff S(ℓ1) = S(ℓ2) = 1 and S(ℓ) = 2.

(v) If ℓ1, ℓ2, and ℓ3 are positive integers, not all distinct, such that ℓ1+ℓ2+ℓ3 = ℓ,
then it is never the case that 1

2S(ℓ1) +
1
2S(ℓ2) +

1
2S(ℓ3) ≤ 1

2S(ℓ).
(vi) If ℓ1, ℓ2, and ℓ3 are distinct positive integers such that ℓ1 + ℓ2 +2ℓ3 = ℓ, then

it is never the case that 1
2S(ℓ1) +

1
2S(ℓ2) + S(ℓ3) ≤ 1

2S(ℓ).
(vii) If ℓ1, ℓ2, ℓ3, and ℓ4 are distinct nonnegative integers such that ℓ1+ℓ2+ℓ3+ℓ4 =

ℓ, then it is never the case that 1
2S(ℓ1)+

1
2S(ℓ2)+

1
2S(ℓ3)+

1
2S(ℓ4)+1 ≤ 1

2S(ℓ).

Proof. Parts (i) and (ii) are easy, using that S(ℓ/4) and S(ℓ/2) are either equal to
S(ℓ) or ∞. Part (iii) follows from Lemma 3.1. Part (iv) follows from that fact that
S(ℓ) = S(ℓ1+ℓ2) ≤ S(ℓ1)+S(ℓ2). Parts (v), (vi), and (vii) also follow from Lemma
3.1. ✷

4. Fermat curves

4.1. The monodromy action. Fix n ≥ 2. Let f : Y → X := P1 be the branched
cover given birationally by the equation y2

n

= xa(x − 1)b, defined over Q2, where
x is a fixed coordinate on P1. Assume for this entire section that a is odd, that
1 ≤ v2(b) ≤ n − 2, and that 0 < a, b < 2n. Set s = n − v2(b) (this makes 2s the
branching index of f at x = 1). Thus s ≥ 2. Let K/Q2 be a finite extension, with
valuation ring R, over which f admits a stable model f st : Y st → Xst (i.e., f st is
a finite map of flat R-curves whose generic fiber is f , and where Y st has reduced,
stable fibers, considering the ramification points of f and their specializations as
marked points). Let k be the residue field of K. We write IQ2 ⊆ GQ2 for the inertia

group. Let f : Y → X be the special fiber of f st (called the stable reduction of f).

Since f is defined over Q2, the inertia group IQ2 acts on f by reducing its canonical
action on f . Throughout this section we write v for the valuation on K satisfying
v(2) = 1.

The following proposition is the result that underlies our entire computation.

Proposition 4.1 ([Obu09], Lemma 4.10). (i) There is exactly one irreducible com-

ponent Xb of X above which f is generically étale.
(ii) Furthermore, f is étale above X

sm

b , i.e., the smooth points of X that lie on
Xb.

(iii) Let

d =
a

a+ b
+

√
2nbi

(a+ b)2
.

and e ∈ K such that v(e) = n − s
2 + 1

2 . Here, i can be either square root of

−1 and
√
2nbi can be either square root of 2nbi. Extend K, if necessary, so

that it contains d. Then, in terms of the coordinate x, the K-points of X that
specialize to X

sm

b form a closed disc of radius |e| centered at d.

(iv) For each k-point u of X
sm

b , the K-points of X that specialize to u form an
open disc of radius |e|.
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Remark 4.2. The result [Obu09, Lemma 4.10] is more general, in that it proves an
analogous statement when 2 is replaced by any prime p. Such a result was already
shown in [Col90] when p is an odd prime (with some restrictions in the case p = 3).
In [Obu09, Lemma 4.10], k is assumed to be algebraically closed, but as long as we
restrict to k-points in Proposition 4.1(iv), everything works.

For any K-point w in the closed disc from Proposition 4.1(iii), write w for its
specialization to Xb, which is a k-point. For such a w, if t is defined by x = w+ et,
then ÔXst,w = R[[t]]. The variable t is called a parameter for ÔXst,w. One thinks
of R[[t]] as the ring of functions on the open unit disc |t| < 1, which corresponds to
the open disc |x− w| < |e|.

For γ ∈ IQ2 , let χ(γ) ∈ Z×
2 be the cyclotomic character applied to γ. Maintain

the notation d from Proposition 4.1.

Lemma 4.3. Fix γ ∈ IQ2 . Let a′ (resp. b′) be the integer between 0 and 2n − 1
congruent to χ(γ)a (resp. χ(γ)b) modulo 2n. Let

d′ =
a′

a′ + b′
+

√
2nb′i

(a′ + b′)2

(here i is the same square root of −1 chosen in the definition of d, but
√
2nb′i can

be either choice of square root). Then we have γ(d) = d′.

Proof. We first claim that

(4.1) d′ ≡ a

a+ b
+ χ(γ)−3/2

√
2nbi

(a+ b)2
(mod 2n)

as long as the square root of χ(γ) is chosen correctly. One verifies easily that

(4.2)
a′

a′ + b′
≡ a

a+ b
(mod 2n).

One also sees easily that

(4.3)

√
2nb′i

(a′ + b′)2
≡ 1

χ(γ)2

√
2nb′i

(a+ b)2
(mod 2n).

Now,

(4.4)
√
2nb′i =

√

2n(χ(γ)b+ r)i = χ(γ)1/2
√
2nbi

√

1 +
r

χ(γ)b
,

where r is some integer divisible by 2n, where
√

1 + r
χ(γ)b is chosen to be no further

from 1 than from −1, and where χ(γ)1/2 is chosen to make the equality work. But

v
(

r
χ(γ)b

)

≥ s, and thus

v

(
√

1 +
r

χ(γ)b
− 1

)

≥ s− 1 ≥ s

2

(recall that we assume s ≥ 2). Since v(
√
2nbi) = n− s

2 , it follows from (4.4) that√
2nb′i ≡ χ(γ)1/2

√
2nbi (mod 2n). Combining this with (4.2) and (4.3) proves the

claim.
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Now, γ(d) = a
a+b + ζγ

√
2nbi

(a+b)2 , where ζγ is a fourth root of unity that depends on

γ. In particular, ζγ = ±i if χ(γ) ≡ 3 (mod 4) and ζγ = ±1 if χ(γ) ≡ 1 (mod 4).

In both cases, one computes that ζγ ≡ χ(γ)−3/2 (mod 2). So

(4.5) γ(d) ≡ a

a+ b
+ χ(γ)−3/2

√
2nbi

(a+ b)2
(mod 2n−

s
2+1).

Combining this with (4.1), we obtain that γ(d) ≡ d′ (mod 2min(n,n− s
2+1)). Since

s ≥ 2, this implies γ(d) ≡ d′ (mod 2n−
s
2+1). By Proposition 4.1(iv), γ(d) and d′

specialize to the same point, and we are done. ✷

Remark 4.4. Note that v(d) = v(d′) = 0 and v(d − 1) = v(d′ − 1) = n− s.

Combining Proposition 4.1 and Lemma 4.3, and using the definitions of d, d′, e,
and γ therein, we obtain:

Corollary 4.5. If x = d+ et, then t is a parameter for Spec ÔXst,d. Likewise, if

x = d′ + et′, then t′ is a parameter for Spec ÔXst,γ(d).

4.2. Differential forms. Maintain the notation of §4.1, including d, d′, e, and γ.
All De Rham cohomology groups will be assumed to have coefficients in K.

As in §2, let q = (ρ, σ, τ) ∈ (Q/Z)3, such that ρ+σ+τ = 0. Furthermore, suppose
〈ρ〉 = a

2n with a odd and 〈σ〉 = b
2n with 1 ≤ v(b) ≤ n−2. Set ǫq = 〈ρ〉+〈σ〉+〈τ〉−1.

Let F2n be the Fermat curve given by u2n + v2
n

= 1, defined over Q2, and let J2n

be its Jacobian. Let ω2n,q be the element of H1
DR(F2n) ∼= H1

DR(J2n) given by the
differential form η2n,q = 2n〈ρ + σ〉ǫquavb v

ud
(

u
v

)

. Recall that this is the pullback
of a cohomology class ωq on a rational factor Jq of J2n . One can rewrite η2n,q as

〈ρ + σ〉ǫqua−2nvb−2nd(u2n) (cf. [Col90, (1.2)]). Making the substitution y = uavb

and x = u2n shows that η2n,q (and thus ω2n,q) descends to the curve Y given by

the equation y2
n

= xa(x − 1)b (which we will also call F2n,a,b), and is given in
(x, y)-coordinates by

η2n,q =
〈ρ+ σ〉ǫq
x(1 − x)

ydx.

Each γ ∈ IQ2 acts on q = (ρ, σ, τ) componentwise via the cyclotomic character,

and we have 〈γρ〉 = a′

2n and 〈γσ〉 = b′

2n , where a′ and b′ are as in Lemma 4.3. We
define η2n,γq, ω2n,γq, and ωγq as above. Now, η2n,γq (and thus ω2n,γq) descends to

the curve F2n,a′,b′ given by the equation (y′)2
n

= xa′

(x − 1)b
′

, where y′ = ua′

vb
′

.
Then η2n,γq is given in (x, y′)-coordinates by

η2n,γq =
〈γρ+ γσ〉ǫγq

x(1− x)
y′dx.

Note that we can identify F2n,a′,b′ with F2n,a,b via y′ = yhxj(1 − x)k, where h,
j, and k are such that a′ = ha+ 2nj and b′ = hb+ 2nk.

Recall from (2.1) that, for each γ ∈ IQ2 , there exists βγ(q) ∈ K (after a possible
finite extension of K) such that γ∗ω2n,q = βγ(q)ω2n,γq in H1

DR(J2n). We will
compute βγ(q) by viewing ω2n,q and ω2n,γq as cohomology classes on F2n,a,b =
F2n,a′,b′ .

The following proposition relies on calculations from §5.
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Proposition 4.6 (cf. [Col90], Corollary 7.6). We have

v(βγ(q)) = v(〈ρ〉)(〈ρ〉 − 〈γρ〉) + v(〈σ〉)(〈σ〉 − 〈γσ〉) + v(〈τ〉)(〈τ〉 − 〈γτ〉).

Proof. We work with the representatives η2n,q and η2n,γq of ω2n,q and ω2n,γq on the
curve F2n,a,b = F2n,a′,b′ .

If x = d + et, then Proposition 5.4 defines (after a possible finite extension
of R) a power series α(t) ∈ R[[t]] such that α(t)2

n

= xa(x − 1)bd−a(d − 1)−b

(Remark 5.5). Corollary 5.6 defines α̃(t) = d(1−d)α(t)
x(1−x) ∈ R[[t]] (after substituting

x = d + et), and shows that the valuation of the coefficient of tℓ in α̃(t) is 1
2S(ℓ).

Since y2
n

= xa(x − 1)b, we have
(4.6)

η2n,q =
2n
√

da(d− 1)b〈ρ+ σ〉ǫq α̃(t)
d(1 − d)

e dt = µd〈ρ〉−1(d− 1)〈σ〉−1〈ρ+ σ〉ǫq α̃(t)e dt,

where µ is some root of unity and d〈ρ〉, (d−1)〈σ〉. are calculated using some choices
of 2nth roots.

Likewise, letting d′ be as in Lemma 4.3 and setting x′ = d′ + et′, we have

(4.7) η2n,γq = µ′(d′)〈γρ〉−1(d′ − 1)〈γσ〉−1〈γρ+ γσ〉ǫγq α̃′(t′)e dt′,

where µ′ is some root of unity, and α̃′(t′) is some power series in t′ whose coefficients
have the same valuations as the coefficients of α̃(t) (Remark 5.7).

By Corollary 4.5, t (resp. t′) is a parameter for Spec ÔXst,d (resp. Spec ÔXst,γ(d)).

Since the map Y st → Xst is completely split above d (Proposition 4.1(ii)), we can

also view t as a parameter for Spec ÔY st,u for any point u ∈ Y above d. Then t′

can be viewed as a parameter for Spec ÔY st,γ(u). Write η2n,q =
∑∞

ℓ=0 zℓt
ℓdt and

η2n,γq =
∑∞

ℓ=0 z
′
ℓ(t

′)ℓdt′. By [Col90, Theorem 4.1] (using q = 1 in that theorem),

v(βγ(q)) = lim
i→∞

v

(

zℓi
z′ℓi

)

,

where ℓi is any sequence such that limi→∞ v(zℓi)−v(ℓi+1) = −∞. Take ℓi = 2i−1.
Then, by Remark 4.4, Corollary 5.6, (4.6), and (4.7), we have

v(zℓi) = (n− s)(〈σ〉 − 1)− nǫq +
i

2
+ (n− s

2
+

1

2
)

and

v(z′ℓi) = (n− s)(〈γσ〉 − 1)− nǫγq +
i

2
+ (n− s

2
+

1

2
).

So

v(βγ(q)) = (n− s)(〈σ〉 − 〈γσ〉) + n(ǫγq − ǫq).

Some rearranging shows that this is equal to

n(〈γρ〉 − 〈ρ〉) + s(〈γσ〉 − 〈σ〉) + n(〈γτ〉 − 〈τ〉),

which is equal to the expression in the proposition. ✷
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4.3. Finishing the product formula. If γ ∈ IQ2 and r ∈ Q/Z, then let w2,γ(r) =
w2(ar) − w2(aγr), where the terms on the right hand side are defined in §2. The
following result is an important consequence of Proposition 4.6.

Corollary 4.7. Let γ ∈ IQ2 . If q = (ρ, σ, τ) ∈ (Q/Z)3 with ρ + σ + τ = 0, and
none of 〈ρ〉, 〈σ〉, or 〈τ〉 is 1

2 , then w2,γ(ρ) + w2,γ(σ) + w2,γ(τ) = 0.

Proof. This has already been proven in [Col93, Lemme III.2.5] when any of ρ, σ, or
τ is in Z(2)/Z, so we assume otherwise. Furthermore, [Col93, Lemme III.2.6] states
that w2,γ(α) = w2,γ(α

′) whenever α− α′ ∈ Z(2)/Z. For each α ∈ (Q/Z), there is a

unique α′ ∈ Q/Z such that α− α′ ∈ Z(2)/Z and 〈α′〉 = j
k , where k is a power of 2.

Furthermore, if ρ + σ + τ = 0, then ρ′ + σ′ + τ ′ = 0. So we may assume that the
denominators of ρ, σ, and τ are powers of 2.

Let n be minimal such that 〈ρ〉 = a
2n , 〈σ〉 = b

2n , and 〈τ〉 = c
2n , with a, b, c ∈ Z.

Then n ≥ 3. Assume without loss of generality that v2(b) ≥ max(v2(a), v2(c)).
Then a and c must be odd, and 1 ≤ v(b) ≤ n − 2 (cf. §4.2—recall that we assume
that 〈σ〉 /∈ {0, 12}).

One can then copy the proof of [Col93, Lemme III.2.5], with our Proposition 4.6
substituting for [Col90, Corollary 7.6]. In more detail, w2,γ(ρ)+w2,γ(σ)+w2,γ(τ) =
w2(bq)−w2(bγq). Using the definitions from §2, this is V2(bγq)− V2(bq) + v2(ωq)−
v2(ωγq), which is equal to V2(bγq)−V2(bq)−v(βγ(q)), by Lemma 2.1. By Proposition
4.6 and the fact that ρ(p), (γρ)(p), σ(p), (γσ)(p), τ(p), and (γτ)(p) are all zero, this
is equal to zero. ✷

Corollary 4.8. For all γ ∈ IQ2 and r in Q/Z, we have w2,γ(r) = 0.

Proof. If 〈r〉 ∈ {0, 12}, then r = γr, thus w2,γ(r) = 0 by definition. We also have
w2,γ(−r) = −w2,γ(r) for all r ∈ Q/Z (this follows from plugging (ρ, σ, τ) = (r,−r, 0)
into Corollary 4.7, unless 〈r〉 = 1

2 , in which case it is obvious). Plugging any
(a, b,−(a+ b)) into Corollary 4.7 then shows that w2,γ(a) + w2,γ(b) = w2,γ(a+ b),
as long as none of 〈a〉, 〈b〉, or 〈a+ b〉 is 1

2 .

We now claim that, if k > 4 is even, and if a ∈ Q/Z satisfies 〈a〉 = 1
k , then

w2,γ(ja) = jw2,γ(a) for 1 ≤ j ≤ k
2 − 1 and for k

2 +1 ≤ j ≤ k. Admitting the claim,
we set j = k to show that w2,γ(a) = 0, which in turn shows that w2,γ(ja) = 0 for
all j above. Since any r ∈ ([0, 1) ∩ Q)\{ 1

2} is the fractional part of some such ja,
the claim implies the corollary.

To prove the claim, we note by additivity of w2,γ that w2,γ(ja) = jw2,γ(a) for

1 ≤ j ≤ k
2 − 1. By additivity again (using (k2 − 1)a and 2a, neither of which has

fractional part 1
2 ), we have w2,γ((

k
2 +1)a) = (k2 +1)w2,γ(a). Then, additivity shows

that w2,γ(ja) = jw2,γ(a) for
k
2 + 1 ≤ j ≤ k. ✷

Theorem 4.9. We have w2(a) = 0 for all a ∈ CMab.

Proof. This follows from Corollary 4.8 exactly as [Col93, Corollaire III.2.7] follows
from [Col93, Lemme III.2.6(i)]. ✷

Theorem 4.9 completes the proof of Colmez’s product formula when the field of
complex multiplication is an abelian extension of Q.

Remark 4.10. Colmez already proved Corollary 4.8 when r ∈ 1
8Z(2)/Z ([Col93,

Lemma III.2.8]). This was used to give a geometric proof of the Chowla-Selberg
formula ([Col93, III.3]).
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5. Computations

The results of this section are used only in the proof of Proposition 4.6.
As in §4, let f : Y → X = P1 be the branched cover of smooth curves given

birationally by y2
n

= xa(x − 1)b. Throughout this section, we take K/Q2 to be
a finite extension over which f admits a stable model, and R to be the ring of
integers of K. We will take further finite extensions of K and R as necessary. The
valuation v on K (and any finite extension) is always normalized so that v(2) = 1.
Throughout this section, we fix a square root i of −1 in K. We let f st : Y st → Xst

be the stable model of f , and f : Y → X the stable reduction (§4.1).
Set d = a

a+b +
√
2nbi

(a+b)2 , and set s := n− v2(b) ≥ 2. Let d be the specialization of

d to X. Let e be any element of R with valuation n − s
2 + 1

2 . If x = d + et, then

t is a parameter of ÔXst,d (Corollary 4.5). We set g(x) = xa(x− 1)bd−a(d − 1)−b.

Note that g(d) = 1.

Lemma 5.1. Expanding out g(x) in terms of t yields an expression of the form

γ(t) := g(d+ et) =

∞
∑

ℓ=0

cℓt
ℓ

where c0 = 1, v(c2) = n,
c21
c2

≡ 2n+1i (mod 2n+2), and v(cℓ) > n + 1
2S(ℓ) for all

ℓ ≥ 3. In particular, v(c1) = n+ 1
2 .

Remark 5.2. Of course, the “series” above is actually just a polynomial.

Proof. The claim at the beginning of the proof of the p = 2 part of [Obu09, Lemma
4.10] proves everything except the statement for ℓ ≥ 3. By the next paragraph
after the claim,

v(cℓ) = n+ 1 +
ℓ− 2

2
(s+ 1)− v(ℓ) ≥ n+ ℓ− 1− v(ℓ)

(recall, s ≥ 2). It is easy to see that ℓ > 1 + v(ℓ) + 1
2S(ℓ) for ℓ ≥ 3, from which the

lemma follows. ✷

Lemma 5.3. After possibly replacing R by a finite extension, the power series
γ(t) =

∑∞
ℓ=0 cℓt

ℓ from Lemma 5.1 has a 2n−2nd root in R[[t]] of the form

δ(t) =

∞
∑

ℓ=0

dℓt
ℓ,

where d0 = 1, v(d2) = 2,
d2
1

d2
≡ 8i (mod 16), and v(dℓ) > 2 + 1

2S(ℓ) for ℓ ≥ 3. In

particular, v(d1) =
5
2 .

Proof. Let w = γ(t)− 1. Binomially expanding (1 + w)1/2
n−2

gives

δ(t) = 1 +
w

2n−2
+

∞
∑

j=2

(

1/2n−2

j

)

wj .

The valuation of
(

1/2n−2

j

)

is S(j)− j− j(n−2) = S(j)+ j− jn. On the other hand,

the valuation of cℓ (the coefficient of tℓ in w) is at least n + 1
2S(ℓ) − 1

2 (Lemma

5.1, equality only if ℓ = 2). So, by Lemma 3.1, the coefficient of tℓ in wj for j ≥ 2

has valuation greater than jn + 1
2S(ℓ) −

j
2 (equality could only occur if ℓ = 2j,
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but in fact, does not, because j(n + 1
2S(2) − 1

2 ) > jn + 1
2S(2j) −

j
2 ). Combining

everything, the coefficient of tℓ in
(

1/2n−2

j

)

wj (for j ≥ 2) has valuation greater than

S(j)+ j
2 +

1
2S(ℓ), which is at least 2+ 1

2S(ℓ). Note also that S(j)+ j
2 +

1
2S(ℓ) tends

to ∞ as j goes to ∞, and R is complete, so our expression for δ(t) lives in R[[t]].
Thus, for the purposes of the lemma, we may replace δ(t) by 1 + w

2n−2 . The
lemma then follows easily from Lemma 5.1. ✷

Proposition 5.4. After possibly replacing R by a finite extension, the power series
δ(t) =

∑∞
ℓ=0 dℓt

ℓ from Lemma 5.3 has a 4th root in R[[t]] of the form

α(t) =

∞
∑

j=0

aℓt
ℓ,

where a0 = 1, and

aℓ ≡ dℓ1(1 + i)S(ℓ)−5ℓ (mod (1 + i)S(ℓ)+1).

Here i is a square root of −1. In particular, v(aℓ) =
1
2S(ℓ).

Remark 5.5. Note that α(t) is a 2nth root of g(d+ et) = xa(x− 1)bd−a(d− 1)−b,
where x = d+ et.

Proof of Proposition 5.4. By Proposition 4.1(ii), the stable model f st of f splits

completely above ÔXst,d = R[[t]]. Thus, by [Ray94, Proposition 3.2.3 (2)], xa(x −
1)b (when written in terms of t) is a 2nth power in R[[t]]. This does not change
when it is multiplied by the constant d−a(d− 1)−b (as long as we extend R appro-
priately), so we see that α(t) lives in R[[t]] (this can also be shown using an explicit
computation with the binomial theorem).

We have the equation

(5.1)

(

1 +
∞
∑

ℓ=1

aℓt
ℓ

)4

≡ 1 +
∞
∑

ℓ=1

dℓt
ℓ.

We prove the proposition by strong induction, treating the base cases ℓ = 1, 2
separately. Recall that v(d1) =

5
2 and v(d2) = 2. For ℓ = 1, we obtain from (5.1)

that d1 = 4a1, so

a1 =
d1
4

≡ d1(1 + i)−4 (mod (1 + i)2).

For ℓ = 2, we obtain d2 = 4a2 + 6a21 = 4a2 +
3
8d

2
1, so a2 = d2

4 − 3
32d

2
1. Using that

d2
1

d2
≡ 8i (mod 16) (Lemma 5.3), one derives that d2

4 ≡ d2
1

32i (mod 2). Thus,

a2 ≡ (−i− 3)
d21
32

≡ d21(1 + i)−9 (mod (1 + i)2),

proving the proposition for ℓ = 2.
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Now, suppose ℓ > 2. Then (5.1) yields (setting aj = 0 for any j /∈ Z, and with
all ℓi assumed to be positive integers):

dℓ = 4aℓ + 6a2ℓ/2 + 4a3ℓ/3 + a4ℓ/4 +
∑

ℓ1+ℓ2=ℓ
ℓ1<ℓ2

12aℓ1aℓ2 +
∑

ℓ1+ℓ2+ℓ3=ℓ
ℓ1<ℓ2<ℓ3

24aℓ1aℓ2aℓ3

+
∑

ℓ1+2ℓ2=ℓ
ℓ1 6=ℓ2

12aℓ1a
2
ℓ2 +

∑

ℓ1+ℓ2+ℓ3+ℓ4=ℓ
ℓ1<ℓ2<ℓ3<ℓ4

24aℓ1aℓ2aℓ3aℓ4

+
∑

ℓ1+ℓ2+2ℓ3=ℓ
ℓ1<ℓ2,ℓ3 6=ℓ1,ℓ3 6=ℓ2

12aℓ1aℓ2a
2
ℓ3 +

∑

2ℓ1+2ℓ2=ℓ
ℓ1<ℓ2

6a2ℓ1a
2
ℓ2 .

or

aℓ = −1

4
dℓ +

3

2
a2ℓ/2 + a3ℓ/3 +

1

4
a4ℓ/4 +

∑

ℓ1+ℓ2=ℓ
ℓ1<ℓ2

3aℓ1aℓ2 +
∑

ℓ1+ℓ2+ℓ3=ℓ
ℓ1<ℓ2<ℓ3

6aℓ1aℓ2aℓ3

+
∑

ℓ1+2ℓ2=ℓ
ℓ1 6=ℓ2

3aℓ1a
2
ℓ2 +

∑

ℓ1+ℓ2+ℓ3+ℓ4=ℓ
ℓ1<ℓ2<ℓ3<ℓ4

6aℓ1aℓ2aℓ3aℓ4

+
∑

ℓ1+ℓ2+2ℓ3=ℓ
ℓ1<ℓ2,ℓ3 6=ℓ1,ℓ3 6=ℓ2

3aℓ1aℓ2a
2
ℓ3 +

∑

2ℓ1+2ℓ2=ℓ
ℓ1<ℓ2

3

2
a2ℓ1a

2
ℓ2 .

Since we need only determine aℓ modulo (1+ i)S(ℓ)+1, and all terms on the right
hand side have half-integer valuation, we can throw out all terms with valuation
greater than 1

2S(ℓ). Using the inductive hypothesis, along with Lemmas 5.3 and
3.2 (v), (vi), and (vii), we obtain

(5.2) aℓ ≡
3

2
a2ℓ/2+

1

4
a4ℓ/4+

∑

ℓ1+ℓ2=ℓ
ℓ1<ℓ2

3aℓ1aℓ2+
∑

2ℓ1+2ℓ2=ℓ
ℓ1<ℓ2

3

2
a2ℓ1a

2
ℓ2 (mod (1+i)S(ℓ)+1).

If ℓ is a power of 2 (i.e., S(ℓ) = 1), then by Lemma 3.2 (i)–(iv), the induction
hypothesis, and (5.2), we have

aℓ ≡
3

2
a2ℓ/2 +

1

4
a4ℓ/4 ≡ dℓ1

(

3

2
(1 + i)2−5ℓ +

1

4
(1 + i)4−5ℓ

)

≡ dℓ1(3i− 1)(1 + i)−5ℓ ≡ dℓ1(1 + i)1−5ℓ (mod (1 + i)2),

thus proving the proposition for such ℓ.
For all other ℓ, we have (by Lemma 3.2 (i), the induction hypothesis, and (5.2))

that

(5.3) aℓ ≡
3

2
a2ℓ/2 +

∑

ℓ1+ℓ2=ℓ
ℓ1<ℓ2

3aℓ1aℓ2 +
∑

2ℓ1+2ℓ2=ℓ
ℓ1<ℓ2

3

2
a2ℓ1a

2
ℓ2 (mod (1 + i)S(ℓ)+1).

By Lemma 3.2 (ii) and (iv), the first and last terms matter only when S(ℓ) = 2 and
ℓ is even, in which case their combined contribution is 3dℓ1(1+i)4−5ℓ (mod (1+i)3),
which is trivial. So in any case, we need only worry about the middle term. By
Lemma 3.2 (iii), the middle term is the sum of 2S(ℓ)−1−1 subterms, each congruent
to 3dℓ1(1+i)S(ℓ)−5ℓ (mod (1+i)S(ℓ)+1). Since S(ℓ) ≥ 2, this sum is in turn congruent
to dℓ1(1 + i)S(ℓ)−5ℓ (mod (1 + i)S(ℓ)+1), proving the proposition. ✷
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Corollary 5.6. In the notation of Proposition 5.4, the power series α̃(t) := d(1−d)α(t)
x(1−x) =

d(1−d)α(t)
(d+et)(1−d−et) has the form

∞
∑

i=0

ãℓt
ℓ,

where ã0 = 1 and v(ãℓ) = v(aℓ) =
1
2S(ℓ) for all ℓ.

Proof. Recall that v(1 − d) = n − s (Remark 4.4), that v(e) = n − s−1
2 , and that

we assume 2 ≤ s ≤ n− 1. Set µ = − e
d and ν = e

1−d . Then v(µ) = n− s−1
2 > 1 and

v(ν) = s+1
2 > 1. Expanding α̃(t) out as a power series yields

α̃(t) = α(t)(1 + µt+ µ2t2 + · · · )(1 + νt+ ν2t2 + · · · ) = α(t)(1 + ξ1t+ ξ2t
2 + · · · ),

where v(ξℓ) > ℓ for all ℓ. The constant term is 1, so ã0 = 1. The coefficient of tℓ is

ãℓ = aℓ + ξℓ +
ℓ−1
∑

j=1

aℓ−jξj .

We know v(aℓ) =
1
2S(ℓ). We have seen that v(ξℓ) > ℓ > 1

2S(ℓ). Also, for 1 ≤ j ≤
ℓ− 1, we have

v(aℓ−jξj) >
1

2
S(ℓ− j) + j >

1

2
S(ℓ− j) +

1

2
S(j) ≥ 1

2
S(ℓ).

By the non-archimedean property, we conclude that v(ãℓ) =
1
2S(ℓ). ✷

Remark 5.7. Note that v(ãℓ) does not depend on a or b.
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