RADIUS OF CLOSE-TO-CONVEXITY OF HARMONIC FUNCTIONS

DAVID KALAJ, SAMINATHAN PONNUSAMY, AND MATTI VUORINEN

ABSTRACT. Let \mathcal{H} denote the class of all normalized complex-valued harmonic functions $f=h+\overline{g}$ in the unit disk \mathbb{D} , and let $K=H+\overline{G}$ denote the harmonic Koebe function. Let a_n,b_n,A_n,B_n denote the Maclaurin coefficients of h,g,H,G, and

$$\mathcal{F} = \{ f = h + \overline{g} \in \mathcal{H} : |a_n| \le A_n \text{ and } |b_n| \le B_n \text{ for } n \ge 1 \}.$$

We show that the radius of univalence of the family \mathcal{F} is 0.112903... We also show that this number is also the radius of the starlikeness of \mathcal{F} . Analogous results are proved for a subclass of the class of harmonic convex functions in \mathcal{H} . These results are obtained as a consequence of a new coefficient inequality for certain class of harmonic close-to-convex functions. Surprisingly, the new coefficient condition helps to improve Bloch-Landau constant for bounded harmonic mappings.

1. Introduction and Main Results

Denote by \mathcal{H} the class of all complex-valued harmonic functions f in the unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ normalized by $f(0) = 0 = f_z(0) - 1$. Each f can be decomposed as $f = h + \overline{g}$, where g and h are analytic in \mathbb{D} so that [6, 8]

(1.1)
$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n \text{ and } g(z) = \sum_{n=1}^{\infty} b_n z^n.$$

Let S_H denote the class of univalent and orientation-preserving functions $f = h + \overline{g}$ in \mathcal{H} . Then the Jacobian of f is given by $J_f(z) = |h'(z)|^2 - |g'(z)|^2$. We note that if $f = h + \overline{g} \in S_H$ and $g(z) \equiv 0$ in \mathbb{D} , then $f = h \in S$, where S denotes the well-known class of normalized univalent analytic functions in \mathbb{D} . A necessary and sufficient condition (see [6] or Lewy [10]) for a harmonic function f to be locally univalent in \mathbb{D} is that $J_f(z) > 0$ in \mathbb{D} . The function $\omega(z) = g'(z)/h'(z)$ denotes the complex dilatation of f. Thus, for $f = h + \overline{g} \in S_H$ with $g'(0) = b_1$ and $|b_1| < 1$ (because $J_f(0) = 1 - |b_1|^2 > 0$), the function

$$F = \frac{f - \overline{b_1 f}}{1 - |b_1|^2}$$

is also in S_H . Thus, it is customary to restrict our attention to the subclass

$$\mathcal{S}_H^0 = \{ f \in \mathcal{S}_H : f_{\overline{z}}(0) = 0 \}.$$

File: KaPoVu_final6.tex, printed: 2011-7-5, 1.08

²⁰⁰⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Coefficient inequality, partial sums, radius of univalence, analytic, univalent, convex and starlike harmonic functions.

The family \mathcal{S}_H^0 is known to be compact. The uniqueness result of the Riemann mapping theorem does not extend to these classes of harmonic functions, [6, 8]. Several authors have studied the subclass of functions that map \mathbb{D} onto specific domains, eg. starlike domains, convex and close-to-convex domains. Let \mathcal{S}_H^* (\mathcal{K}_H , \mathcal{C}_H resp.) consist of all sense-preserving harmonic mappings $f = h + \overline{g} \in \mathcal{H}$ of \mathbb{D} onto starlike (convex, close-to-convex, resp.) domains. Denote by \mathcal{S}_H^{*0} (\mathcal{K}_H^0 , \mathcal{C}_H^0 resp.) the class consists of those functions f in \mathcal{S}_H^* (\mathcal{K}_H , \mathcal{C}_H resp.) for which $f_{\overline{z}}(0) = 0$.

In [6, Lemma 5.15], Clunie and Sheil-Small proved the following result.

Lemma A. If h, g are analytic in \mathbb{D} with |h'(0)| > |g'(0)| and $h + \epsilon g$ is close-to-convex for each ϵ , $|\epsilon| = 1$, then $f = h + \overline{g}$ is close-to-convex in \mathbb{D} .

This lemma has been used to obtain many important results. In the case of \mathcal{S}_H^0 , we have the harmonic Koebe function $K = H + \overline{G}$ in \mathcal{S}_H^0 , where

(1.2)
$$H(z) = \frac{z - \frac{1}{2}z^2 + \frac{1}{6}z^3}{(1-z)^3} \text{ and } G(z) = \frac{\frac{1}{2}z^2 + \frac{1}{6}z^3}{(1-z)^3}.$$

We see that the function K has the dilatation $\omega(z) = z$ and K maps the unit disk \mathbb{D} onto the slit plane $\mathbb{C}\setminus\{u+iv:u\leq -1/6,\ v=0\}$. Moreover,

$$H(z) = z + \sum_{n=2}^{\infty} A_n z^n$$
 and $G(z) = \sum_{n=2}^{\infty} B_n z^n$,

where

(1.3)
$$A_n = \frac{1}{6}(2n+1)(n+1)$$
 and $B_n = \frac{1}{6}(2n-1)(n-1)$, $n \ge 1$.

A well-known coefficient conjecture of Clunie and Sheil-Small [6], is that if $f = h + \overline{g} \in \mathcal{S}_H^0$ then the Taylor coefficients of the series of h and g satisfy the inequality

$$(1.4) |a_n| \le A_n \text{ and } |b_n| \le B_n \text{ for all } n \ge 1.$$

Although, the coefficients conjecture remains an open problem for the full class \mathcal{S}_H^0 , the same has been verified for certain subclasses, namely, the class \mathcal{T}_H (see [8, Section 6.6]) of harmonic univalent typically real functions, the class of harmonic convex functions in one direction, harmonic starlike functions in \mathcal{S}_H^0 (see [8, Section 6.7]), and the class of harmonic close-to-convex functions (see [17]).

It is interesting to know to what extent do the conditions (1.4) influence the univalency of the normalized harmonic function f(z) and of all of its partial sums, namely, $f_n(z)$ and $f_{\overline{m}}(z)$, where

$$f_n(z) = h_n(z) + \overline{g_m(z)}$$
 if $n \ge m$; $f_{\overline{m}}(z) = h_n(z) + \overline{g_m(z)}$ if $m \ge n$.

Here $h_n(z)$ and $g_m(z)$ represent the n-th section/partial sums of h and g given by

$$h_n(z) = z + \sum_{k=2}^n a_k z^k$$
 and $g_m(z) = \sum_{k=1}^m b_k z^k$,

respectively. According to our notation, the degree of the polynomials $f_n(z)$ and $f_{\overline{m}}(z)$ is n if n=m.

Theorem 1.5. Let h and g have the form (1.1) and the coefficients of the series satisfy the conditions (1.4). Then $f = h + \overline{g}$ is close-to-convex (univalent), and starlike in the disk $|z| < r_S$, where

$$r_S = 1 + \frac{\sqrt{2}}{4} - \sqrt{\sqrt{2} + \frac{1}{8}} \approx 0.112903$$

is the root of the quadratic equation

$$\sqrt{2}r^2 - (1 + 2\sqrt{2})r + \sqrt{2} - 1 = 0$$

in the interval (0,1). The result is sharp.

The radii problems for various subclasses of univalent harmonic mappings are open [2, Problem 3.3] (see also [6, 8, 15, 14]). However, Theorem 1.5 quickly yields

Corollary 1.6. The radius of close-to-convexity and the radius of starlikeness for mappings in \mathcal{S}_H^{*0} (resp. \mathcal{C}_H^0 and \mathcal{T}_H) is at least 0.112903.

Under the hypotheses of Theorem 1.5, all the partial sums of f are close-to-convex (univalent), and starlike in $|z| < r_S$. Similar comments apply to the next two results.

Another well-known result due to Clunie and Sheil-Small [6] states that the coefficients of the series of h and g of every convex function $f = h + \overline{g} \in \mathcal{K}_H^0$ satisfy the inequalities

(1.7)
$$|a_n| \le \frac{n+1}{2} \text{ and } |b_n| \le \frac{n-1}{2} \text{ for all } n \ge 1.$$

Equality occurs for the function $L = M + \overline{N} \in \mathcal{K}_H^0$, where

(1.8)
$$M(z) = \frac{1}{2} \left(\frac{z}{1-z} + \frac{z}{(1-z)^2} \right) \text{ and } N(z) = \frac{1}{2} \left(\frac{z}{1-z} - \frac{z}{(1-z)^2} \right).$$

We observe that

$$L(z) = \text{Re}\left(\frac{z}{1-z}\right) + \text{Im}\left(\frac{z}{(1-z)^2}\right) = z + \sum_{n=2}^{\infty} \frac{n+1}{2} z^n - \sum_{n=2}^{\infty} \frac{n-1}{2} z^n.$$

At this place it is worth recalling that the convexity (resp. starlikness) property is not a hereditary property in the harmonic case, unlike the analytic case. For instance, the convex function L maps the subdisk |z| < r onto a convex domain for $r \le \sqrt{2} - 1$, but onto a non-convex domain for $\sqrt{2} - 1 < r < 1$.

Theorem 1.9. Let h and g have the form (1.1) and the coefficients of the series satisfy the conditions (1.7). Then $f = h + \overline{g}$ is close-to-convex (univalent), and starlike in the disk $|z| < r_S$, where

$$r_S = 1 + \frac{\sqrt[3]{-18 + \sqrt{330}}}{6^{2/3}} - \frac{1}{\sqrt[3]{6(-18 + \sqrt{330})}} \approx 0.164878$$

is the real root of the cubic equation

$$2r^3 - 6r^2 + 7r - 1 = 0$$

in the interval (0,1). The result is sharp.

Theorem 1.9 easily gives the following corollary although Theorem 1.9 is much more stronger.

Corollary 1.10. The radius of close-to-convexity and the radius of starlikeness for convex mappings in \mathcal{S}_H^0 is at least 0.164878.

Theorem 1.11. Let h and g have the form (1.1) with $|b_1| = |g'(0)| < 1$, and the coefficients of the series satisfy the conditions

$$|a_n| + |b_n| \le c$$
 for all $n \ge 2$.

Then $f = h + \overline{g}$ is close-to-convex (univalent), and starlike in the disk $|z| < r_S$, where

$$r_S = 1 - \sqrt{\frac{c}{c + 1 - |b_1|}}.$$

The result is sharp.

Theorem 1.11 helps to improve the Bloch-Landau's theorem for bounded harmonic functions. Consider the class \mathcal{B}_H^M of a harmonic mapping f of the unit disk \mathbb{D} with $f(0) = f_{\overline{z}}(0) = f_z(0) - 1 = 0$, and |f(z)| < M for $z \in \mathbb{D}$. There are two important constants one is relative to the domain of the function while the other one, namely the Bloch constant, is defined relative to the range. In [3], authors proved that if $f \in \mathcal{B}_H^M$ then f is univalent in $|z| < \rho_0$ and $f(|z| < \rho_0)$ contains a disk $|w| < R_0$, where

$$\rho_0 \approx \frac{1}{11.105M} \text{ and } R_0 = \frac{\rho_0}{2} \approx \frac{1}{22.21M}.$$

Better estimates were given in [7, 9, 11, 12] and later in [5], see Table 1 in which the functions ϕ and ψ are explicitly given by

$$\phi(x) = \frac{x}{\sqrt{2}(x^2 + x - 1)} \text{ and } \psi(x) = \frac{1}{\sqrt{2}} \left[1 + \left(\frac{x^2 - 1}{x} \right) \log \left(\frac{x^2 - 1}{x^2 + x - 1} \right) \right].$$

This result is the best known but not sharp.

The purpose the next theorem is to give a new proof of one of these results. Indeed our method of proof is simple and improves the best known result. In fact our distortion estimate for $f \in \mathcal{B}_H^M$ provides the radius of close-to-convexity and the radius starlikeness of \mathcal{B}_H^M .

Theorem 1.12. Let $f \in \mathcal{B}_H^M$. Then $f = h + \overline{g}$ is close-to-convex (univalent) in the disk $|z| < r_0$, where

$$r_S = 1 - \sqrt{\frac{4M}{4M + \pi}}$$

and $f(\mathbb{D}_{r_0})$ contains a univalent disk of radius at least

$$R_S = r_S - \frac{4M}{\pi} \frac{r_S^2}{1 - r_S}.$$

M	$r = \phi(8M/\pi)$	$R_0 = \psi(8M/\pi)$	M	r_S	R_S
1	0.22421	0.12629	1	0.251602	0.143904
2	0.11992	0.06367	2	0.152633	0.082622
3	0.08311	0.04328	3	0.109765	0.0580693

TABLE 1. The left side columns refer to Theorem 4 in [5] and the right side columns refer to Theorem 1.12.

2. Useful Lemmas and their Proofs

We need the following two lemmas to prove our main results.

Lemma 2.1. Let h and g have the form (1.1) with $|b_1| < 1$, $f = h + \overline{g}$, and satisfy the condition

(2.2)
$$\sum_{n=2}^{\infty} n|a_n| + \sum_{n=1}^{\infty} n|b_n| \le 1.$$

Then $f \in \mathcal{C}_H^2$, where $\mathcal{C}_H^2 = \{ f \in \mathcal{S}_H : |f_z(z) - 1| < 1 - |f_{\overline{z}}(z)| \text{ in } \mathbb{D} \}$. The bound in (2.2) is sharp as the harmonic function

$$f(z) = z + \sum_{n=2}^{\infty} \frac{\epsilon_n}{n} z^n + \sum_{n=1}^{\infty} \frac{\epsilon'_n}{n} \overline{z^n},$$

for which $\sum_{n=2}^{\infty} |\epsilon_n| + \sum_{n=1}^{\infty} |\epsilon'_n| = 1$, shows.

Proof. In [13], it was shown that Re $f_z(z) > |f_{\overline{z}}(z)|$ whenever (2.2) holds. The proof of this lemma follows from an easy modification of the proof of the corresponding result from [13]. For the sake of completeness, we include the detail. Note that the coefficient inequality implies that both h and g are analytic in \mathbb{D} . Thus, $f = h + \overline{g}$ is harmonic in \mathbb{D} . Without loss of generality, we may assume that f is not affine. Then, as $f_z = h'$ and $f_{\overline{z}} = \overline{g'}$, it follows from the hypotheses that

$$|h'(z) - 1| \le \sum_{n=2}^{\infty} n|a_n| |z|^{n-1}$$

$$\le \sum_{n=2}^{\infty} n|a_n| \le 1 - \sum_{n=1}^{\infty} n|b_n|$$

$$\le 1 - |g'(z)|$$

implying that $f \in \mathcal{C}^2_H$ (since strict inequality occurs either at the second or fourth inequality). In particular, $\operatorname{Re} h'(z) > |g'(z)|$ in $\mathbb D$ and hence, f is locally univalent in $\mathbb D$

For example, the functions

$$f_n(z) = z + \frac{n+1}{2n^2} z^n + \frac{n-1}{2n^2} \overline{z^n}$$
 for $n \ge 2$

satisfy the condition (2.2) and hence, belong to the class \mathcal{C}_H^2 . In the following lemma, we show that functions in \mathcal{C}_H^2 are indeed close-to-convex in \mathbb{D} .

Lemma 2.3. Let h and g have the form (1.1) with $|b_1| < 1$, $f = h + \overline{g}$. Suppose $f \in \mathcal{C}^2_H$. Then, we have the following

- (a) f is close-to-convex in \mathbb{D} .
- (b) $|a_n| |b_n| \le 1/n$ for $n \ge 2$ whenever $b_1 = 0$. The equality occurs, for example, for the function

$$f(z) = z + \frac{e^{i\theta}}{n} z^n$$
 or $f(z) = z + \frac{e^{i\theta}}{n} \overline{z^n}$ for $n \ge 2$ and θ real.

(c)
$$\sum_{n=2}^{\infty} n^2 (|a_n|^2 + |b_n|^2) \le 1 - |b_1|^2$$
.

Proof. First we prove part (a). Let $f = h + \overline{g} \in \mathcal{C}_H^2$ and $F = h + \epsilon g$, where $|\epsilon| = 1$. Then,

$$|F'(z) - 1| \le |h'(z) - 1| + |g'(z)| < 1$$

showing that F is analytic and close-to-convex in \mathbb{D} . According to Lemma A, it follows that the harmonic function f is also close-to-convex (and univalent) in \mathbb{D} .

Next, set $\omega(z) = F'(z) - 1$. Then, as $b_1 = g'(0) = 0$, we have $\omega(0) = 0$ and $|\omega(z)| < 1$ for $z \in \mathbb{D}$. It is well-known property that the coefficients of such an analytic function ω satisfy the inequality $|\omega^{(n)}(0)| \leq n!$ for each $n \geq 1$. This gives the estimate

$$|na_n + \epsilon nb_n| < 1$$
 for each $n > 2$.

As $|\epsilon| = 1$, triangle inequality gives the proof for part (b).

For the proof of part (c), we observe that

$$|F'(z) - 1| = \left| \sum_{n=2}^{\infty} n a_n z^{n-1} + \epsilon \sum_{n=1}^{\infty} n b_n z^{n-1} \right| < 1, \quad z \in \mathbb{D}.$$

Therefore, with $z = re^{i\theta}$ for $r \in (0,1)$ and $0 \le \theta \le 2\pi$, the last inequality gives

$$\sum_{n=2}^{\infty} n^2 (|a_n|^2 + |b_n|^2) r^{2(n-1)} + |b_1|^2 = \frac{1}{2\pi} \int_0^{2\pi} |F'(re^{i\theta}) - 1|^2 d\theta \le 1.$$

Letting $r \to 1^-$, we obtain the inequality

$$\sum_{n=2}^{\infty} n^2 (|a_n|^2 + |b_n|^2) \le 1 - |b_1|^2$$

and the proof is complete.

In [13], under the hypotheses of Lemma 2.1, it was actually shown that $f \in \mathcal{C}_H^1$, where

$$\mathcal{C}_H^1 = \{ f \in \mathcal{S}_H : \operatorname{Re} f_z(z) > |f_{\overline{z}}(z)| \text{ in } \mathbb{D} \}.$$

Clearly, Lemma 2.1 improves this result because of the strict inclusion $C_H^2 \subsetneq C_H^1$. Later, in [1], it was also shown that if $b_1 = g'(0) = 0$, then the coefficient condition

(2.2) ensures that $f \in \mathcal{S}_H^{*0}$ (see also [16]). In view of Lemma 2.1, the result of [1, 16] may be stated in an improved form.

Lemma 2.4. Let h and g have the form (1.1) with $b_1 = g'(0) = 0$, $f = h + \overline{g}$, and satisfy the condition

(2.5)
$$\sum_{n=2}^{\infty} n|a_n| + \sum_{n=2}^{\infty} n|b_n| \le 1.$$

Then $f \in \mathcal{C}_H^2 \cap \mathcal{S}_H^{*0}$.

The following generalization of Lemma 2.1 is easy to obtain and so we omit its details.

Corollary 2.6. Let h and g have the form (1.1) with $|b_1| < 1-\beta$ for some $\beta \in [0,1)$, and $f = h + \overline{g}$. Then we have the following:

(a) If the coefficients of h and g satisfy the condition

(2.7)
$$\sum_{n=2}^{\infty} n|a_n| + \sum_{n=1}^{\infty} n|b_n| \le 1 - \beta,$$

then $f \in \mathcal{C}^2_H(\beta)$, where

$$\mathcal{C}_H^2(\beta) = \{ f \in \mathcal{S}_H : |f_z(z) - 1| < 1 - \beta - |f_{\overline{z}}(z)| \text{ in } \mathbb{D} \}.$$

In particular, f is close-to-convex in \mathbb{D} . The bound here is sharp as the harmonic function

$$f(z) = z + \sum_{n=2}^{\infty} \frac{\epsilon_n}{n} z^n + \sum_{n=1}^{\infty} \frac{\epsilon'_n}{n} \overline{z^n},$$

for which $\sum_{n=2}^{\infty} |\epsilon_n| + \sum_{n=1}^{\infty} |\epsilon'_n| = 1 - \beta$, shows. **(b)** If $f \in \mathcal{C}^2_H(\beta)$, then one has

$$|a_n| - |b_n| \le (1 - \beta)/n$$
 for $n \ge 2$ whenever $b_1 = 0$.

The equality occurs, for example, for the function

$$f(z) = z + (1 - \beta) \frac{e^{i\theta}}{n} z^n$$
 or $f(z) = z + (1 - \beta) \frac{e^{i\theta}}{n} \overline{z^n}$ for $n \ge 2$ and θ real.

We also have

$$\sum_{n=2}^{\infty} n^2 (|a_n|^2 + |b_n|^2) \le (1 - \beta)^2 - |b_1|^2.$$

It is a matter of routine checking to see that the coefficient condition (2.7) is necessary for $f = h + \overline{g}$ to belong to $\mathcal{C}_H^2(\beta)$ whenever the Taylor coefficients $a_n \leq 0$ for all $n \geq 2$, and $b_n \leq 0$ for all $n \geq 1$.

3. Proofs of Main Theorems

Proof of Theorem 1.5. Let h and g have the form (1.1) satisfying the coefficient conditions (1.4). First we observe that $b_1 = g'(0) = 0$. The conditions (1.4) implies that the series (1.1) are convergent in the unit disk |z| < 1, and hence, the sum h and g are analytic in \mathbb{D} . Thus, $f = h + \overline{g}$ is harmonic in \mathbb{D} . Let 0 < r < 1, we let

$$f_r(z) := r^{-1}f(rz) = r^{-1}h(rz) + r^{-1}\overline{g(rz)}$$

so that $f_r(z) = h_r(z) + \overline{g_r(z)}$ and

$$f_r(z) = z + \sum_{n=2}^{\infty} a_n r^{n-1} z^n + \sum_{n=2}^{\infty} b_n r^{n-1} z^n, \ z \in \mathbb{D}.$$

By hypotheses, $|a_n| \leq A_n$ and $|b_n| \leq B_n$ for $n \geq 2$, where A_n and B_n are given by (1.3). Using these coefficient estimates, we obtain

$$S = \sum_{n=2}^{\infty} n|a_n|r^{n-1} + \sum_{n=2}^{\infty} n|b_n|r^{n-1}$$

$$\leq \sum_{n=2}^{\infty} nA_nr^{n-1} + \sum_{n=2}^{\infty} nB_nr^{n-1}.$$

We show that $f_r \in \mathcal{C}_H^2 \cap \mathcal{S}_H^{*0}$. According to Lemma 2.4, it suffices to show that $S \leq 1$. By the last inequality, $S \leq 1$ if r satisfies the inequality

$$\sum_{n=2}^{\infty} nA_n r^{n-1} \le 1 - \sum_{n=2}^{\infty} nB_n r^{n-1},$$

or equivalently (as $A_n + B_n = (2n^2 + 1)/3$),

(3.1)
$$2\sum_{n=2}^{\infty} n^3 r^{n-1} + \sum_{n=2}^{\infty} n r^{n-1} \le 3.$$

As

$$\frac{r}{(1-r)^2} = \sum_{n=1}^{\infty} nr^n$$
 and $\frac{r(1+r)}{(1-r)^3} = \sum_{n=1}^{\infty} n^2 r^n$,

it follows that

$$\frac{(1-r)(1+2r)+3r(1+r)}{(1-r)^4} = \sum_{n=1}^{\infty} n^3 r^{n-1}$$

and (3.1) reduces to the inequality,

$$\frac{2(r^2+4r+1)}{(1-r)^4} + \frac{1}{(1-r)^2} \le 6, \text{ i.e. } 2(1-r)^4 - (1+r)^2 \ge 0.$$

This gives

$$\sqrt{2}(1-r)^2 - (1+r) = \sqrt{2}r^2 - (1+2\sqrt{2})r + \sqrt{2}-1 > 0.$$

Thus, from Lemma 2.4, f_r is close-to-convex (univalent) in \mathbb{D} and starlike in \mathbb{D} for all $0 < r \le r_S$, where r_S is the root of the quadratic equation

$$\sqrt{2}r^2 - (1 + 2\sqrt{2})r + \sqrt{2} - 1 = 0$$

in the interval (0,1). In particular, f is close-to-convex (univalent) and starlike in $|z| < r_S$.

Next, to prove the sharpness part of the statement of the theorem, we consider the function

$$F_0(z) = H_0(z) + \overline{G_0(z)}$$

with

$$H_0(z) = 2z - H(z)$$
 and $G_0(z) = -\overline{G(z)}$.

Here H and G are defined by (1.2). We note that

$$F_0(z) = z - \sum_{n=2}^{\infty} A_n z^n - \sum_{n=2}^{\infty} B_n z^n.$$

As F_0 has real coefficients we obtain.

$$J_{F_0}(r) = (H'_0(r) + G'_0(r)) (H'_0(r) - G'_0(r))$$

$$= \left(1 - \sum_{n=2}^{\infty} nA_n r^{n-1} - \sum_{n=2}^{\infty} nB_n r^{n-1}\right) \left(1 - \sum_{n=2}^{\infty} n(A_n - B_n)r^{n-1}\right)$$

$$= \left(1 - \sum_{n=2}^{\infty} \frac{n(2n^2 + 1)}{3} r^{n-1}\right) \left(1 - \sum_{n=2}^{\infty} n^2 r^{n-1}\right)$$

$$= \left(1 - \frac{-4r^2 + 3r^3 - r^4}{(-1+r)^3r}\right) \left(1 + \frac{-6r^2 + 5r^3 - 4r^4 + r^5}{(-1+r)^4r}\right)$$

$$= \frac{(-1 + 7r - 6r^2 + 2r^3)(1 - 10r + 11r^2 - 8r^3 + 2r^4)}{(-1+r)^7}.$$

Thus $J_{F_0}(r) = 0$, 0 < r < 1 if and only if

$$r = r_S = \frac{1}{4} \left(4 + \sqrt{2} - \sqrt{2 + 16\sqrt{2}} \right) \approx 0.112903$$

or

$$r = r_S' = 1 + \left(-18 + \sqrt{330}\right)^{1/3} 6^{-2/3} - \left(6\left(-18 + \sqrt{330}\right)\right)^{-1/3} \approx 0.164878.$$

Moreover for $r_S < r < r_S'$ we have $J_{F_0}(r) < 0$. The graph of the function $J_{F_0}(r)$ for $r \in (0, 0.25)$ is shown in Figure 1.

This observation together with Lewy's theorem gives that (as the Jacobian changes sign), the function $F_0(z)$ is not univalent in |z| < r if $r > r_S$ and thus, r_S cannot be replaced by a larger number.

Proof of Theorem 1.9. Following the notation and the method of the proof of Theorem 1.5, it suffices to show that $f_r \in \mathcal{C}_H^2 \cap \mathcal{S}_H^{*0}$. According to Lemma 2.4,

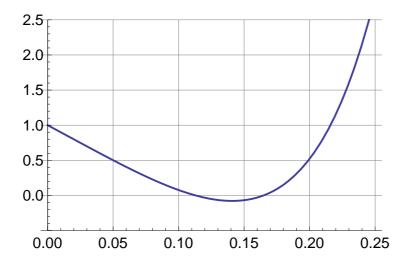


FIGURE 1. The graph of the Jacobian $J_{F_0}(r)$ for $r \in (0, 0.25)$.

 $f_r \in \mathcal{C}_H^2 \cap \mathcal{S}_H^{*0}$ whenever $S \leq 1$, where

$$S = \sum_{n=2}^{\infty} n|a_n|r^{n-1} + \sum_{n=2}^{\infty} n|b_n|r^{n-1}$$

when a_n and b_n satisfy the coefficient inequalities given by (1.7). Finally, using (1.7), we see that $S \leq 1$ if r satisfies the inequality

$$\sum_{n=2}^{\infty} \frac{n(n+1)}{2} r^{n-1} \le 1 - \sum_{n=2}^{\infty} \frac{n(n-1)}{2} r^{n-1}.$$

The last inequality is easily seen to be equivalent to

$$\frac{1}{2} \left[\frac{1}{(1-r)^2} + \frac{1+r}{(1-r)^3} - 1 \right] \le 1 + \frac{1}{2} \left[\frac{1}{(1-r)^2} - \frac{1+r}{(1-r)^3} - 1 \right]$$

which upon simplification reduces to

$$2(1-r)^3 - 1 - r = -(2r^3 - 6r^2 + 7r - 1) \ge 0.$$

The first part of the conclusion easily follows as in the proof of Theorem 1.5.

The sharpness part of the statement of Theorem 1.9 follows if we consider the function

$$L_0(z) = 2z - M(z) - \overline{N(z)},$$

where M and N are defined by (1.8). We note that

$$L_0(z) = z - \sum_{n=2}^{\infty} \frac{n+1}{2} z^n + \sum_{n=2}^{\infty} \frac{n-1}{2} z^n.$$

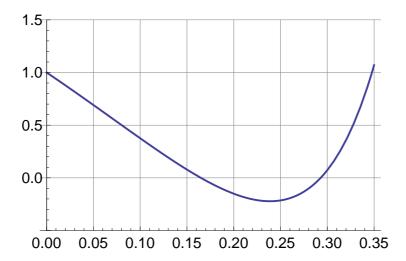


FIGURE 2. The graph of the Jacobian $J_{L_0}(r)$ for $r \in (0, 0.35)$.

Again, as L_0 has real coefficients, we can easily obtain that for $r \in (0,1)$

$$J_{L_0}(r) = (2 - M'(r))^2 - (N'(r))^2$$

$$= (2 - M'(r) + N'(r)) ((2 - M'(r) - N'(r))$$

$$= \left(2 - \frac{1 + r}{(1 - r)^3}\right) \left(2 - \frac{1}{(1 - r)^2}\right)$$

$$= \frac{2}{(1 - r)^5} \left(2(1 - r)^3 - (1 + r)\right) \left(r - 1 - \frac{\sqrt{2}}{2}\right) \left(r - 1 + \frac{\sqrt{2}}{2}\right).$$

We see that $J_{L_0}(r_S) = 0$, 0 < r < 1 if and only if

$$r = r_S \approx 0.16487$$

or

$$r = r_S' = \frac{2 - \sqrt{2}}{2} \approx 0.292893.$$

Moreover for $r_S < r < r'_S$ we have $J_{L_0}(r) < 0$. The graph of the function $J_{L_0}(r)$ for $r \in (0, 0.35)$ is shown in Figure 2.

Thus, according to Lewy's theorem, $L_0(z)$ is not univalent in |z| < r if $r > r_S$ and this observation shows that r_S cannot be replaced by a larger number.

Proof of Theorem 1.11. This time we apply Lemma 2.1 and show that f_r defined by $f_r(z) := r^{-1}f(rz) = r^{-1}h(rz) + r^{-1}\overline{g(rz)}$ belongs to \mathcal{C}_H^2 .

As in the proof of previous two theorems, it suffices to show the corresponding coefficient inequality (2.2), namely,

$$S = \sum_{n=2}^{\infty} n(|a_n| + |b_n|)r^{n-1} + |b_1| \le 1.$$

By the hypothesis, $|a_n| + |b_n| \le c$ for all $n \ge 2$ and so, the last inequality $S \le 1$ clearly holds if r satisfies the inequality

$$c\left(\frac{1}{(1-r)^2}-1\right) \le 1-|b_1|$$
, i.e. $r \le r_S = 1-\sqrt{\frac{c}{c+1-|b_1|}}$.

Thus, by Lemma 2.1,

$$|h'_r(z) - 1| < 1 - |g'_r(z)|$$

holds for all $z \in \mathbb{D}$ whenever $r \leq r_S$. Thus, $f \in \mathcal{C}_H^2$.

The function $f_0(z) = h_0(z) + \overline{g_0(z)}$, where

$$h_0(z) = z - \frac{c}{2} \left(\frac{z^2}{1-z} \right)$$
 and $g_0(z) = -|b_1|z - \frac{c}{2} \left(\frac{z^2}{1-z} \right)$,

shows that the result is sharp. Indeed, it is easy to compute that

$$J_{f_0}(r) = |h'_0(r)|^2 - |g'_0(r)|^2 = (1 + |b_1|) \left(1 + c - |b_1| - \frac{c}{(1 - r)^2}\right)$$

which shows that $J_{f_0}(r_S) = 0$ and $J_{f_0}(r) < 0$ for $r > r_S$. The proof of the theorem is complete.

Proof of Theorem 1.12. Let $f = h + \overline{g}$ be a harmonic mapping defined on the unit disk \mathbb{D} with $f(0) = f_{\overline{z}}(0) = f_z(0) - 1 = 0$, and |f(z)| < M for $z \in \mathbb{D}$, where h and g have the form (1.1) with $b_1 = 0$. According to [4, Lemma 1] (see also [5]), we obtain the sharp estimates

(3.2)
$$|a_n| + |b_n| \le \frac{4M}{\pi} for any n \ge 1.$$

As $b_1 = 0$ and $a_1 = 1$, it follows that $M \ge \pi/4 \approx 0.785398$. By Theorem 1.11 with $c = 4M/\pi$, we conclude that f is close-to-convex and starlike (because $b_1 = 0$) for $|z| < 1 - \sqrt{c/(c+1)} = r_S$.

In particular, f is univalent for $|z| < r_S$ and furthermore, we have for $|z| = r_S$,

$$|f(z)| = \left| z + \sum_{n=2}^{\infty} \left(a_n z^n + \overline{b_n z^n} \right) \right|$$

$$\geq |z| - \left| \sum_{n=2}^{\infty} \left(a_n z^n + \overline{b_n z^n} \right) \right|$$

$$\geq r_S - \sum_{n=2}^{\infty} (|a_n| + |b_n|) r_S^n$$

$$\geq r_S - \frac{4M}{\pi} \sum_{n=2}^{\infty} r_S^n$$

$$= r_S - \frac{4M}{\pi} \frac{r_S^2}{1 - r_S} = R_S$$

and the proof is complete.

References

- 1. S. V. Bharanedhar and S. Ponnusamy, Coefficient conditions for harmonic univalent mappings and hypergeometric mappings, *Preprint*
- 2. D. BSHOUTY AND A. LYZZAIK, Problems and conjectures in planar harmonic mappings: in the Proceedings of the ICM2010 Satellite Conference: International Workshop on Harmonic and Quasiconformal Mappings (HQM2010) (edited by D. Minda, S. Ponnusamy, and N. Shanmugalingam); Special issue in: *J. Analysis* **18**(2010), 69–82
- 3. H. Chen, P. M. Gauthier and W. Hengartner, Bloch constants for planar harmonic mappings, *Proc. Amer. Math. Soc.* **128**(2000), 3231–3240.
- 4. Sh. Chen, S. Ponnusamy and X. Wang, Bloch and Landau's theorems for planar p-harmonic mappings, J. Math. Anal. and Appl. 373(2011), 102–110.
- 5. Sh. Chen, S. Ponnusamy and X. Wang, Coefficient estimates and Landau-Bloch's constant for planar harmonic mappings, *Bull. Malaysian Math. Sciences Soc.* (2)**34**(2)(2011), 255–265.
- 6. J. G. Clunie and T. Sheil-Small, Harmonic univalent functions, *Ann. Acad. Sci. Fenn. Ser. A.I.* **9** (1984), 3–25.
- 7. M. DORFF AND M. NOWAK, Landau's theorem for planar harmonic mappings, *Comput. Methods Funct. Theory* **4**(2004), 151–158.
- 8. P. Duren, *Harmonic Mappings in the Plane*, Cambridge Tracts in Mathematics, **156**, Cambridge Univ. Press, Cambridge, 2004.
- 9. A. GRIGORYAN, Landau and Bloch theorems for planar harmonic mappings, *Complex Var. Elliptic Equ.* **51**(2006), 81–87.
- 10. H. Lewy, On the nonvanishing of the Jacobian in certain one-to-one mappings, *Bull. Amer. Math. Soc.* **42** (1936), 689–692.
- M. Sh. Liu, Landau's theorem for biharmonic mappings, Complex Var. Elliptic Equ. 9(2008), 843–855.
- 12. M. Sh. Liu, Estimates on Bloch constants for planar harmonic mappings, Sci. China Ser. A-Math. 52(1)(2009), 87-93.
- 13. S. Ponnusamy, H. Yamamoto and H. Yanagihara, Variability Regions for certain families of harmonic univalent mappings, *Complex Var. Elliptic Equ.* (2011), To appear. xxx–xxx.
- 14. S. Ruscheweyh and L. Salinas, On the preservation of direction-convexity and the Goodman-Saff conjecture, *Ann. Acad. Sci. Fenn. Ser. A I Math.*, **14** (1989), 63–73.
- 15. T. Sheil-Small, Constants for planar harmonic mappings, *J. London Math. Soc.*, **42**(1990), 237–248.
- 16. H. SILVERMAN, Univalent functions with negative coefficients, *J. Math. Anal. Appl.* **220**(1998), 283–289.
- 17. XIAO-TIAN WANG AND XIANG-QIAN LIANG, Precise coefficient estimates for Close-to-convex harmonic univalent mappings, *J. Math. Anal. Appl.* **263**(2001), 501–509.

DAVID KALAJ, UNIVERSITY OF MONTENEGRO, FACULTY OF NATURAL SCIENCES AND MATHEMATICS, CETINJSKI PUT B.B. 81000, PODGORICA, MONTENEGRO

E-mail address: davidk@t-com.me

S. Ponnusamy, Department of Mathematics, Indian Institute of Technology Madras, Chennai–600 036, India.

E-mail address: samy@iitm.ac.in

MATTI VUORINEN DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TURKU, FIN-20014 TURKU, FINLAND.

 $E ext{-}mail\ address: wworinen@utu.fi}$