
ar
X

iv
:1

10
7.

10
35

v1
  [

m
at

h-
ph

] 
 6

 J
ul

 2
01

1
TH-1472

On General Form of N -fold Supersymmetry

Toshiaki Tanaka∗

Institute of Particle and Nuclear Studies,

High Energy Accelerator Research Organization (KEK),
1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

Abstract
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I. INTRODUCTION

N -fold supersymmetry (SUSY) [1–3] is one of the most powerful frameworks for construct-
ing a one-dimensional quantum mechanical (QM) system which admits analytic solutions
in closed form in a certain sense. This is due to the fact that N -fold SUSY is essentially
equivalent to weak quasi-solvability which is until now the least restrictive concept about the
availability of solutions in closed form. The latter crucial fact was first proved in a general
fashion in Ref. [2] and was later complemented slightly in Ref. [4]. For a review, see, e.g.,
Ref. [5].

In general, construction of an N -fold SUSY system get more difficult as the number
N ∈ N increases since we must solve coupled nonlinear differential equations for N unknown
functions (see the next section). To bypass the latter difficulty, a systematic algorithm for
constructing an N -fold SUSY system based on quasi-solvability (in the strong sense) was
proposed in Ref. [6]. A key ingredient of the algorithm is to choose first an N -dimensional
linear space of specific functions such that it can be preserved by a second-order linear
differential operator. It has been proved to be quite efficient and so far four inequivalent
types of N -fold SUSY, namely, type A [4, 7], type B [8], type C [6], and type X2 [9] are
successfully constructed with the algorithm. We note that almost all the models having
essentially the same symmetry as N -fold SUSY but called with other terminologies in the
literature, such as Pöschl–Teller and Lamé potentials are actually particular cases of type
A N -fold SUSY.

It is evident, however, that the algorithm is helpless to construct a weakly quasi-solvable
system which only admits a finite-dimensional invariant subspace determined by another
differential equation. The framework of N -fold SUSY covers such systems and thus provides
a more general formalism than higher-derivative generalizations of Darboux transformation
such as the Crum’s method [10] which relies on a set of exact eigenfunctions of a regular
Sturm–Liouville system. To construct a weakly quasi-solvable system, we must in general
treat directly the aforementioned coupled nonlinear differential equations. For the simplest
case of N = 2, the general result was already studied and reported in Refs. [2, 11, 12]. On
the other hand, for the cases of N > 2 until now on there is, at the best of our knowledge,
only one paper [13] which studied the N = 3 case. This fact would reflect the difficulty and
complexity of the problems for larger N .

In this work, we investigate general strucuture ofN -fold SUSY systems to extract relevant
clues to construct them which have in particular weak quasi-solvability. For this purpose, we
first employ dimensional analysis which is a well-known powerful tool in general physics. It
turns out that it is also quite efficient in acquiring deeper understandings of N -fold SUSY.
We then introduce equivalent classes of linear differential operators associated with N -fold
SUSY. We find that it enables us to deal with operator equalities appeared in N -fold SUSY
more systematically and transparently.

We organize the paper as follows. In the next section, we first briefly review the in-
gredients of N -fold SUSY. Then, we introduce two key concepts for analyzing its general
structure, namely, dimensional analysis and equivalent classes of linear differential operators
associated with N -fold SUSY. In Sections III–IV, we apply the general arguments to obtain
general form of N -fold SUSY for N = 2, 3, and 4, respectively. We show how dimensional
analysis enables us to reduce the complexity of the problems on solving the conditions for
N -fold SUSY and on finding integral constants of the systems. In the last section, we
summarize the paper and provide comments on the future issues.
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II. GENERAL CONSIDERATION

To begin with, we shall briefly review ingredients of N -fold SUSY as preliminaries. For
details, see the review [5]. An N -fold SUSY QM system in one-dimension is composed of a
pair of Hamiltonians H± and a pair of N th-order linear differential operators P±

N

H± = −
1

2

d2

dq2
+ V ±(q), P−

N =
dN

dqN
+

N−1
∑

k=0

w
[N ]
k (q)

dk

dqk
, P+

N = (P−
N )T, (2.1)

where the superscript T denotes the transposition of a linear operator [3], which satisfy the
intertwining relation

P−
NH− −H+P−

N =
N
∑

k=0

I
[N ]
k

dk

dqk
= 0, (2.2)

and its transposed relation H−P+
N −P+

NH+ = 0. The operators P±
N are actually components

of N -fold supercharges.
One of the most significant consequences of the intertwining relation (2.2) is weak quasi-

solvability [2, 4]. That is, each N -fold SUSY Hamiltonian H± preserves the linear space
kerP±

N :

H± kerP±
N ⊂ kerP±

N . (2.3)

If the differential equation P−
Nφ = 0 and/or P+

Nφ = 0 admits a number of analytic solutions
in closed form, H− and/or H+ is not only weakly quasi-solvable but is quasi-solvable in the
strong sense. But in general, an N -fold SUSY Hamiltonian is merely weakly quasi-solvable
and does not admit any analytic local solutions. We also note that kerP±

N is not necessarily
a subspace of the linear space, which is usually the Hilbert space L2(S) (S ⊂ R), in which
the operator H± acts.

Another peculiar feature of an N -fold SUSY system is that the product P∓
NP±

N which
arises as a component of the anti-commutator of N -fold supercharges is an N th-degree
polynomial in the Hamiltonian H± [2, 3] and thus has the following form:

P∓
NP±

N = 2N

[

(H± + C0)
N +

N−1
∑

k=1

Ck(H
± + C0)

N−k−1

]

, (2.4)

where Ck (k = 0, . . . ,N −1) are all constants. The N zeros of the polynomial in the r.h.s. of
(2.4) correspond the spectrum of H± in the space kerP±

N . Hence, they are actually a part of
the eigenvalues of H± if kerP±

N ⊂ L2(S). In the latter case, we can calculate the part of the
eigenvalues algebraically from (2.4) even though the corresponding eigenfunctions cannot be
obtained in closed form.

One of the most difficult problems on N -fold SUSY is to analyze the condition (2.2)
for N -fold SUSY. It is composed of coupled nonlinear differential equations for the so far

undetermined functions w
[N ]
k (k = 0, . . . ,N − 1). As is easily expected, its complexity gets

terrible as the integer N increases. Hence, it is quite difficult to solve directly the condition
(2.2) for larger N . In the subsequent two sections, we shall investigate general aspects of
the complicated structure of N -fold SUSY systems which would provide us a clearer view
on them.
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A. Dimensional Analysis

Dimensional analysis is one of the powerful methods to make physical consideration and
in particular to estimate a physical quantity under consideration without solving equations
directly, cf., any textbook on general physics. In this section, we shall see that it supplies
us with a valuable guiding principle in solving the condition for N -fold SUSY.

To make dimensional analysis on our system (2.1), we first note that we have implicitly
employed the unit system where the ratio of action (the Planck constant) to mass ~/m
is dimensionless. The only relevant physical dimension is then the length, denoted by [L],
which is carried by the physical position variable q. It is easy to see from (2.1) and (2.4)

that the physical dimensions of V ±, Ck, and w
[N ]
k in terms of the length are given by

V ± [L−2], Ck [L−2(k+1)] (k = 0, . . . ,N − 1),

w
[N ](m)
k [Lk−N−m] (k = 0, . . . ,N − 1, m = 0, 1, 2, . . .),

(2.5)

where w
[N ](m)
k (q) is the mth derivative of w

[N ]
k (q) with respect to q.

Dimensional analysis relies on the obvious fact that all the terms which appear in a
single formula under consideration must have the same physical dimension. For instance, a
potential has the physical dimension [L−2] and thus must be expressed as a sum of terms all
of which have the same physical dimension [L−2]. Hence, if we only consider a polynomial

of Ck and w
[N ](m)
k (m = 0, 1, 2, . . .), it must have the following form

V = α0w
[N ]
N−2 + α1w

[N ]′
N−1 + α2

(

w
[N ]
N−1

)2
− C0 [L−2], (2.6)

where αk (k = 0, 1, 2) are all dimensionless parameters. In fact, we can see that a pair of
N -fold SUSY potentials V ± satisfying (2.2) does have the form (2.6). The l.h.s. of (2.2)
is a linear differential operator of at most N th order, as is indicated in (2.2), and it is

evident that the identity (2.2) holds if and only if all the coefficients I
[N ]
k of ∂k = dk/dqk

(k = 0, . . . ,N ) vanish. The latter requirement for the coefficients of ∂N and ∂N−1 reads as

I
[N ]
N = w

[N ]′
N−1 − (V + − V −) = 0 [L−2], (2.7a)

2I
[N ]
N−1 = w

[N ]′′
N−1 + 2w

[N ]′
N−2 + 2NV −′ − 2w

[N ]
N−1(V

+ − V −) = 0 [L−3]. (2.7b)

The set of conditions (2.7) can be easily solved as

V ± = −
1

N
w

[N ]
N−2 +

(

N − 1

2N
±

1

2

)

w
[N ]′
N−1 +

1

2N

(

w
[N ]
N−1

)2
− C0 [L−2], (2.8)

which indeed has the form of (2.6). The formula (2.8) provides a general expression for a
pair ofN -fold SUSY potentials V ± for an arbitrary N ∈ N. One of its characteristic features

is that they are expressible solely in terms of the two functions w
[N ]
N−1 and w

[N ]
N−2 irrespective

of what additional conditions w
[N ]
k (k = 0, . . . ,N − 1) should satisfy.

The remaining conditions for N -fold SUSY coming from the coefficients of ∂k for k =

0, . . . ,N −2 in (2.2) are in general algebraic equations consisting of w
[N ](m)
k (m = 0, 1, 2, . . .)

after the substitution of (2.8) into (2.2). Dimensional analysis tells us that the operator in
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the l.h.s. of (2.2) has the physical dimension [L−N−2] and thus I
[N ]
k (k = 0, . . . ,N − 2) has

the physical dimension [Lk−N−2]. For instance, I
[N ]
N−2 and I

[N ]
N−3 are calculated as

−4N I
[N ]
N−2 = N (N − 1)w

[N ]′′′
N−1 + 2N (N − 2)w

[N ]′′
N−2 − 4Nw

[N ]′
N−3 − 2(N − 1)2w

[N ]
N−1w

[N ]′′
N−1

− 2N (N − 1)
(

w
[N ]′
N−1

)2
+ 4Nw

[N ]′
N−1w

[N ]
N−2 + 4(N − 1)w

[N ]
N−1w

[N ]′
N−2

− 4(N − 1)
(

w
[N ]
N−1

)2
w

[N ]′
N−1 [L−4], (2.9)

−12N I
[N ]
N−3 = N (N − 1)(N − 2)

(

w
[N ]′′′′
N−1 + 2w

[N ]′′′
N−2

)

− 6N
(

w
[N ]′′
N−3 + 2w

[N ]′
N−4

)

− (N − 1)(N − 2)
[

(2N − 3)w
[N ]
N−1w

[N ]′′′
N−1 + 6Nw

[N ]′
N−1w

[N ]′′
N−1

]

+ 6(N − 2)
[

w
[N ]′′
N−1w

[N ]
N−2 + (N − 1)w

[N ]
N−1w

[N ]′′
N−2

]

+ 12Nw
[N ]′
N−1w

[N ]
N−3

+ 12(N − 2)w
[N ]
N−2w

[N ]′
N−2 − 6(N − 1)(N − 2)

[

(

w
[N ]
N−1

)2
w

[N ]′′
N−1 + w

[N ]
N−1

(

w
[N ]′
N−1

)2
]

− 12(N − 2)w
[N ]
N−1w

[N ]′
N−1w

[N ]
N−2 [L−5], (2.10)

and consist of the terms which are consistent with the dimensional analysis.
Ideally, one can obtain a general form of N -fold SUSY systems if one succeeds in express-

ing all the N functions w
[N ]
k (k = 0, . . . ,N − 1), which characterize the systems, in terms

of a single function, say, u and its derivatives u′, u′′, . . . by solving the set of the N − 1

constraints I
[N ]
k = 0 (k = 0, . . . ,N − 1). If it is eventually the case, we have a set of N

functionals u
[N ]
k (k = 0, . . . ,N − 1) such that

w
[N ]
k = u

[N ]
k [u] [Lk−N ] (k = 0, . . . ,N − 1). (2.11)

One of the most important aspects of (2.11) is that each u
[N ]
k (k = 0, . . . ,N − 1) has the

same physical dimension as the one of w
[N ]
k . It in particular means that there would be a

set of transformations w
[N ]
k → u

[N ]
k which preserve all the physical dimensions. Conversely,

if we can find a set of dimension-preserving transformations w
[N ]
k → u

[N ]
k , we may solve the

set of the constraints more easily. In Sections III–V, we will employ this strategy to see how
drastically we can reduce the complexity of the constraints.

To solve the constraints to get (2.11) is in principle possible unless some of the constraints
automatically imply others since we have N − 1 constraints for the N unknown functions.
However, the task would get drastically harder as the integer N increases. One of the clues
to circumvent the situation is in (2.4). All the coefficients of derivative operators (except
for the highest 2N th-order and including the lowest 0th-order) in the l.h.s. of (2.4) are

quadratic forms of w
[N ](m)
k while the r.h.s. depends on, in addition to the potentials V ±, the

N constants Ck (k = 0, . . . ,N−1) which are absent in the l.h.s. The latter fact indicates the
existence of N integral constants of any N -fold SUSY system which would be functionals of

w
[N ]
j (j = 0, . . . ,N − 1) and V ± whose physical dimensions are the same as the ones of Ck:

Ck = Jk[w
[N ], V ] [L−2(k+1)] (k = 0, . . . ,N − 1). (2.12)

They must emerge from the integration of the set of differential equations

d

dq
Jk[w

[N ], V ] = 0 [L−(2k+3)] (k = 0, . . . ,N − 1). (2.13)
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The latter equations are another set of constraints. On the other hand, the set of equalities

I
[N ]
k = 0 (k = 0, . . . ,N ) are the only constraints which come from the condition for N -fold
SUSY. Hence, the differential equations (2.13) must be such equations that hold whenever

all the conditions I
[N ]
k = 0 (k = 0, . . . ,N ) are satisfied. This means that all the quantities

dJk/dq (k = 0, . . . ,N − 1) in the l.h.s. of (2.13) would be expressible in terms of I
[N ]
j in

a way such that the identities I
[N ]
j = 0 (j = 0, . . . ,N ) apparently imply (2.13). The most

general form of such a kind would be

dJk

dq
=

N
∑

j=0

LkjI
[N ]
j [L−(2k+3)] (k = 0, . . . ,N − 1), (2.14)

where Lkj are all linear differential operators whose coefficients consist of only w
[N ]
k , V ±,

and their derivatives. Each Lkj must has the physical dimension [LN−2k−j−1] since the ones

of dJk/dq and I
[N ]
j are [L−(2k+3)] and [LN−2−j], respectively.

To see the validity of the above argument, let us consider the constant C0. From (2.8),
we immediately know the form of J0 as

C0 = J0[w
[N ], V ] = −V − −

1

N
w

[N ]
N−2 +

1

2N
w

[N ]′
N−1 +

1

2N

(

w
[N ]
N−1

)2
[L−2]. (2.15)

Hence, the differential equation which leads to the latter equation is

0 =
dJ0

dq
= −V −′ −

1

N
w

[N ]′
N−2 +

1

2N
w

[N ]′′
N−1 +

1

N
w

[N ]
N−1w

[N ]′
N−1 [L−3]. (2.16)

We then check by using (2.7) that the r.h.s. of (2.16) can be in fact expressed in terms of

I
[N ]
j as

dJ0

dq
=

1

N
w

[N ]
N−1I

[N ]
N −

1

N
I
[N ]
N−1 [L−3], (2.17)

which indeed has the form of (2.14) with

L0N =
1

N
w

[N ]
N−1 [L−1], L0N−1 = −

1

N
[L0], L0k = 0 (k = 0, . . . ,N − 2), (2.18)

all having the correct physical dimensions [LN−j−1] for L0j (j = 0, . . . ,N ).
In practice, we already solved the two conditions (2.7) to obtain the general form of

V ± as (2.8), and thus we can totally eliminate V ± in the remaining conditions I
[N ]
k = 0

(k = 0, . . . ,N − 2). As a result, the remaining integral constants Ck (k = 1, . . . ,N − 1)

would be functionals of only w
[N ]
j (j = 0, . . . ,N − 1):

Ck = Jk[w
[N ], V [w[N ]]] := Jk[w

[N ]] [L−2(k+1)] (k = 1, . . . ,N − 1). (2.19)

Accordingly, dJk/dq (k = 1, . . . ,N − 1) would be expressed in terms of the remaining I
[N ]
j

(j = 0, . . . ,N − 2) as

0 =
dJk

dq
=

N−2
∑

j=0

LkjI
[N ]
j [L−(2k+3)] (k = 1, . . . ,N − 1). (2.20)
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We will later see in Sections III–V that the above analysis is actually valid and helps us to
obtain general forms of N -fold SUSY for N = 2, 3, and 4.

To summarize, the existence of N constants Ck (k = 0, . . . ,N − 1) in the r.h.s. of (2.4)

has the direct relation to the existence of N constraints I
[N ]
k = 0 (k = 0, . . . ,N − 1) which

are differential equations after eliminating the algebraic constraint I
[N ]
N = 0. The physical

dimensions of the relevant quantities are

I
[N ]
k [Lk−N−2], u

[N ]
k [Lk−N ], Jk [L−2(k+1)], Lkj [L

N−2k−j−1]. (2.21)

B. Equivalent Classes of Linear Differential Operators

The existence of N − 1 constraints I
[N ]
j = 0 (j = 0, . . . ,N − 2) after the determination

of the potential pair (2.8) results in the existence of null operators associated with the
N -fold SUSY system under consideration. Let us first introduce a linear space of linear

differential operators, denoted by K[N ], whose coefficients are all functionals of only w
[N ]
k

(k = 0, . . . ,N − 1). Let Kij [w
[N ]] ∈ K[N ] (i = 0, 1, 2, . . .) and define a set of functionals

f
[N ]
i [w[N ]] by

f
[N ]
i [w[N ]] =

N−2
∑

j=0

Kij [w
[N ]]I

[N ]
j . (2.22)

We then define a subspace of K[N ], denoted by K
[N ]
0 , which consists of linear differential

operators whose coefficients are all given by f
[N ]
i introduced in (2.22). That is, K0 ∈ K

[N ]
0

means that there exists a set of linear differential operators Kij [w
[N ]] ∈ K[N ] such that

K0 =
∑

i

f
[N ]
i [w[N ]]∂i =

∑

i

(

N−2
∑

j=0

Kij [w
[N ]]I

[N ]
j

)

∂i. (2.23)

It is obvious by definition that any element of K
[N ]
0 is a null operator so long as all the N -fold

SUSY constraints I
[N ]
j = 0 (j = 0, . . . ,N − 2) are satisfied. Hence, the linear space in which

an N -fold SUSY system is considered is actually the quotient space K[N ]/K
[N ]
0 . It naturally

leads us to introduce an equivalence class of linear differential oerators in K[N ]. We shall
say that two linear differential operators L1, L2 ∈ K[N ] belong to equivalent class associated

with N -fold supersymmetry and express the equivalence as L2
N
∼ L1 if L2 − L1 ∈ K

[N ]
0 . Any

equality between operators L2 = L1 appeared in an N -fold SUSY system should be thus

regarded as an equivalent relation L2
N
∼ L1 of the latter equivalent class. In particular, any

explicit expression for a specific operator such as H± and P±
N should be considered as a

representative of it with respect to the equivalent class. In what follows, we will employ the

equivalence relation
N
∼ only when we would like to stress that the left and the right hand

sides of the formula under consideration is identical if and only if (some of) the constraints

I
[N ]
j = 0 (j = 0, · · · ,N − 2) are satisfied.
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III. 2-FOLD SUPERSYMMETRY

It is quite instructive to see how the general consideration in the previous section make
sense in the case of 2-fold SUSY though its general form was already obtained by the direct
integrations of the constraints [2, 11, 12]. Components of 2-fold supercharges are given by

P−
2 = ∂2 + w1∂ + w0, P+

2 = ∂2 − w1∂ + w0 − w′
1, (3.1)

where and hereafter we shall omit the superscript [N ] of w
[N ]
k etc. for the simplicity unless

the omission would not cause any ambiguity or confusion. The condition for 2-fold SUSY
P−
2 H− −H+P−

2 = 0 is satisified if and only if the following three equalities hold:

V + − V − = w′
1, (3.2)

w′′
1 + 2w′

0 + 4V −′ − 2w1(V
+ − V −) = 0, (3.3)

w′′
0 + 2V −′′ + 2w1V

−′ − 2w0(V
+ − V −) = 0. (3.4)

Substituting (3.2) into (3.3) and (3.4), and integrating the resulting equation from (3.3), we
obtain

4V + = 3w′
1 − 2w0 + (w1)

2 − 4C0, (3.5)

4V − = −w′
1 − 2w0 + (w1)

2 − 4C0, (3.6)

−4I0 = w′′′
1 − w1w

′′
1 − 2(w′

1)
2 + 4w′

1w0 + 2w1w
′
0 − 2(w1)

2w′
1 = 0, (3.7)

where C0 is an integral constant. To integrate the third equation (3.7), we shall first make a
dimension-preserving transformation w0 → u0. We choose it such that it will convert simul-
taneously both the pairs P±

2 and V ± into symmetric forms. The most general transformation
of polynomial type preserving the physical dimension [L−2] of w0 would be

w0 = u0 +
1

2
w′

1 − α0(w1)
2 [L−2], (3.8)

where u0 [L
−2] and α0 is a dimensionless parameter. We note that the latter transformation

indeed renders both the pair of 2-fold supercharge components and the pair of potentials of
symmetric forms as

P±
2 = ∂2 ∓ w1∂ + u0 − α0(w1)

2 ∓
1

2
w′

1, (3.9)

4V ± = −2u0 + (2α0 + 1)(w1)
2 ± 2w′

1 − 4C0. (3.10)

With the transformation (3.8), the condition (3.7) reads as

−4I0 = w′′′
1 + 4w′

1u0 + 2w1u
′
0 − 2(4α0 + 1)(w1)

2w′
1 = 0 [L−4]. (3.11)

Hence, it gets simplest when

α0 = −1/4. (3.12)

The next task we should do is to construct the total differential dJ1/dq in (2.20). We note
that dJ1/dq and I0 have the physical dimensions [L−5] and [L−4], respectively. Hence, the
operator L10 defined in (2.20) in this case must have the physical dimension [L−1]. Except
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for the differential operator d/dq, there is essentially only one multiplicative operator of
polynomial type which have that dimension, namely, L10 ∝ w1 [L−1]. In fact, we can easily
check that w1I0 is of a total differential form and thus we put

16
dJ1

dq
= −8w1I0 = 2w1w

′′′
1 + 8w1w

′
1u0 + 4(w1)

2u′
0 = 0 [L−5]. (3.13)

The latter differential equation is integrated to yield

16J1[w] = 2w1w
′′
1 − (w′

1)
2 + 4(w1)

2u0 = 16C1 [L−4], (3.14)

where C1 is another integral constant having the correct physical dimension [L−4] listed in
(2.5). Hence, we can express u0, and thus w0 as well, in terms of w1 as

u0 = w0 −
w′

1

2
−

(w1)
2

4
= −

w′′
1

2w1
+

(w′
1)

2

4(w1)2
+

4C1

(w1)2
. (3.15)

Substituting it into (3.9) and (3.10), we finally get the general form of 2-fold SUSY systems
as

P±
2

2
∼ ∂2 ∓ w1∂ +

(w1)
2

4
−

w′′
1

2w1
+

(w′
1)

2

4(w1)2
+

4C1

(w1)2
∓

w′
1

2
, (3.16)

V ± 2
∼

(w1)
2

8
+

w′′
1

4w1
−

(w′
1)

2

8(w1)2
−

2C1

(w1)2
±

w′
1

2
− C0. (3.17)

Finally, products of the components of 2-fold supercharges P∓
2 P±

2 are calculated as

P−
2 P+

2 = 4[(H+ + C0)
2 + C1]− 2I0, (3.18)

P+
2 P−

2 = 4[(H− + C0)
2 + C1] + 2I0, (3.19)

where I0 and C1 are given by (3.7) and (3.14), respectively. Hence, we obtain the equality
(2.4) for N = 2 as an equivalent relation associated with 2-fold SUSY:

P∓
2 P±

2
2
∼ 4[(H± + C0)

2 + C1]. (3.20)

IV. 3-FOLD SUPERSYMMETRY

Next, we shall reexamine the case of 3-fold SUSY, which was once investigated briefly in
Ref. [13], by utilizing our general analysis. Components of 3-fold supercharges are given by

P−
3 = ∂3 + w2∂

2 + w1∂ + w0,

P+
3 = −∂3 + w2∂

2 − (w1 − 2w′
2)∂ + w0 − w′

1 + w′′
2 .

(4.1)

The condition for 3-fold SUSY P−
3 H− −H+P−

3 = 0 is satisfied if and only if the following
four equalities hold:

V + − V − = w′
2, (4.2)

w′′
2 + 2w′

1 + 6V −′ − 2w2(V
+ − V −) = 0, (4.3)

w′′
1 + 2w′

0 + 6V −′′ + 4w2V
−′ − 2w1(V

+ − V −) = 0, (4.4)

w′′
0 + 2V −′′′ + 2w2V

−′′ + 2w1V
−′ − 2w0(V

+ − V −) = 0. (4.5)
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Substituting (4.2) into (4.3)–(4.5) and integrating the resulting equation from (4.3), we
obtain

6V + = 5w′
2 − 2w1 + (w2)

2 − 6C0, (4.6)

6V − = − w′
2 − 2w1 + (w2)

2 − 6C0, (4.7)

−6I1 = 3w′′′
2 + 3w′′

1 − 6w′
0 − 4w2w

′′
2 − 6(w′

2)
2 + 6w′

2w1 + 4w2w
′
1 − 4(w2)

2w′
2 = 0, (4.8)

−6I0 = w′′′′
2 + 2w′′′

1 − 3w′′
0 − w2w

′′′
2 − 6w′

2w
′′
2 + w′′

2w1 + 2w2w
′′
1 + 6w′

2w0 + 2w1w
′
1

− 2(w2)
2w′′

2 − 2w2(w
′
2)

2 − 2w2w
′
2w1 = 0, (4.9)

where C0 is an integral constant. To integrate the remaining equations (4.8) and (4.9), we
shall first construct a set of dimension-preserving transformations wk → uk (k = 0, 1) which
will convert simultaneously both the pairs P±

3 and V ± into symmetric forms, like (3.8) in
the case of 2-fold SUSY. The most general transformations of polynomial type preserving
the physical dimensions [Lk−3] of wk would be

w1 = 6u1 + w′
2 − α1(w2)

2 [L−2],

w0 = u0 + 3u′
1 − β1w

′′
2 − α1w2w

′
2 − 6β2w2u1 − β3(w2)

3 [L−3],
(4.10)

where uk [Lk−3] and α0, βk (k = 1, 2, 3) are all dimensionless parameters. They actually
render both the pair of 3-fold supercharge components and the pair of potentials of symmetric
forms as

P±
3 = ∓ ∂3 + w2∂

2 ∓ [6u1 − α1(w2)
2 ∓ w′

2]∂

+ u0 − β1w
′′
2 − 6β2w2u1 − β3(w2)

3 ∓ (3u′
1 − α1w2w

′
2), (4.11a)

6V ± = − 12u1 + (2α1 + 1)(w2)
2 ± 3w′

2 − 6C0. (4.11b)

With the transformations (4.10), the two constraints (4.8) and (4.9) are equivalent to the
following new set of conditions:

−3Ī1 = 9I1

= 3(β1 + 1)w′′′
2 − 3u′

0 + 18(β2 + 1)w′
2u1 + 6(3β2 + 2)w2u

′
1

− (7α1 − 9β3 + 2)(w2)
2w′

2 = 0 [L−4], (4.12)

3Ī0 = − 9(2I0 − ∂I1)

= 3u′′′
1 − (α1 − 1)w2w

′′′
2 − 3(2β1 + α1 + 1)w′

2w
′′
2 + 6w′

2u0

+ 72u1u
′
1 − 12(2α1 + 3β2 + 1)w2w

′
2u1 − 12α1(w2)

2u′
1

+ 2[2(α1)
2 + α1 − 3β3](w2)

3w′
2 = 0 [L−5]. (4.13)

Hence, they would get simplest when

α1 = 1, β1 = −1, β2 = −1, β3 = 1. (4.14)

With the latter choice of parameter values, the new set of conditions (4.12) and (4.13) reads
as

Ī1 = u′
0 + 2w2u

′
1 = 0 [L−4], (4.15)

Ī0 = u′′′
1 + 2w′

2u0 + 24u1u
′
1 − 4(w2)

2u′
1 = 0 [L−5]. (4.16)
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The first equation (4.15) enables us to express u0 in terms of u1 and w2 as an indefinite
integral

u0 = −2

∫

dq w2u
′
1 [L−3]. (4.17)

Next, let us construct the total differential dJ1/dq in (2.20). We note that dJ1/dq and Īk
(k = 1, 2) have the physical dimensions [L−5] and [Lk−5], respectively. Hence, the operators
L1k defined in (2.20) in this case must have the physical dimension [L−k]. Thus, L10 is just
a dimensionless constant while L11 ∝ w2 if we restrict L1k to multiplicative operators of
polynomial type. Indeed, we can easily find that one of the latter choices leads to a total
differential

−4
dJ1

dq
= Ī0 + 2w2Ī1 = u′′′

1 + 2(w′
2u0 + w2u

′
0) + 24u1u

′
1 = 0 [L−5], (4.18)

which can be easily integrated as

−4J1[w] = u′′
1 + 2w2u0 + 12(u1)

2 = −4C1 [L−4], (4.19)

where C1 is another integral constant having the correct physical dimension [L−4] listed in
(2.5). From (4.16) and (4.19), we can express u0 in terms of u1 and w2 without recourse to
any indefinite integral as

u0 = −
u′′′
1 + 24u1u

′
1 − 4(w2)

2u′
1

2w′
2

= −
u′′
1 + 12(u1)

2 + 4C1

2w2
. (4.20)

To construct the second integral C2 of 3-fold SUSY systems, we first note that dJ2/dq and Īk
(k = 0, 1) have the physical dimensions [L−7] and [Lk−5], respectively. Hence, the operators
L2k defined in (2.20) in this case must have the physical dimension [L−k−2]. Thus, candidates
for L20 are w′

2, u1, and (w2)
2, while those for L21 are w′′

2 , u
′
1, u0, w2w

′
2, w2u1, and (w2)

3, if
we restrict L2k to multiplicative operators of polynomial type. With the choice of L20 = 0
and L21 ∝ u0, we can construct a total differential as

4
dJ2

dq
= u0Ī1 = u0u

′
0 + 2w2u

′
1u0

= u0u
′
0 − u′

1u
′′
1 − 12(u1)

2u′
1 − 4C1u

′
1 = 0 [L−7], (4.21)

where (4.19) has been used. The latter relation is indeed easily integrated as

8J2[w] = (u0)
2 − (u′

1)
2 − 8(u1)

3 − 8C1u1 = 8C2 [L−6], (4.22)

with another integral constant C2 having the correct physical dimension [L−6] listed in
(2.5). With the use of (4.22) we can express u0 solely in terms of u1. Then, substituting the
obtained expression for u0 into (4.15), we can also express w2 solely in terms of u1. Hence,
we can eventually have an expression for V ± and P±

3 in terms of only a single arbitrary
function u1. However, the latter expression is relatively complicated and thus it would be
more convenient in practice to express them in terms of two of the three functions w2, u1,
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and u0. If we eliminate u0 in (4.11) by using (4.20), we have the expression in terms of w2

and u1 as

P±
3

3
∼ ∓ ∂3 + w2∂

2 ∓
[

6u1 − (w2)
2 ∓ w′

2

]

∂

+ w′′
2 + 6w2u1 − (w2)

3 −
u′′
1

2w2
−

6(u1)
2

w2
−

2C1

w2
∓ (3u′

1 − w2w
′
2), (4.23a)

V ± = − 2u1 +
1

2
(w2)

2 ±
1

2
w′

2 − C0. (4.23b)

On the other hand, if we eliminate w2 in (4.11) by using (4.15), we have the expression in
terms of u1 and u0 as

P±
3

3
∼ ∓ ∂3 −

u′
0

2u′
1

∂2 ∓

[

6u1 −
(u′

0)
2

4(u′
1)

2
±

(

u′′
0

2u′
1

−
u′′
1u

′
0

2(u′
1)

2

)]

∂ + u0 −
u′′′
0

2u′
1

+
u′′
1u

′′
0

(u′
1)

2

+

(

u′′′
1

2(u′
1)

2
−

(u′′
1)

2

(u′
1)

3
−

3u1

u′
1

)

u′
0 +

(u′
0)

3

8(u1)3
∓

(

3u′
1 −

u′
0u

′′
0

4(u′
1)

2
+

u′′
1(u

′
0)

2

4(u′
1)

3

)

, (4.24a)

V ± 3
∼ − 2u1 +

(u′
0)

2

8(u′
1)

2
∓

(

u′′
0

4u′
1

−
u′′
1u

′
0

4(u′
1)

2

)

− C0. (4.24b)

Finally, products of the components of 3-fold supercharges P∓
3 P±

3 are calculated as

P−
3 P+

3 = 8[(H+ + C0)
3 + C1(H

+ + C0) + C2] + 3I1∂
2 + 2[(2∂ + w2)I1 − I0]∂

+ (2∂2 + 2w2∂ − 2w′
2 + w1)I1 − 2(∂ + w2)I0, (4.25)

P+
3 P−

3 = 8[(H− + C0)
3 + C1(H

− + C0) + C2]− 3I1∂
2 − 2[(∂ − w2)I1 + I0]∂

− w1I1 − 2(∂ − w2)I0, (4.26)

where I1, I0, C1, and C2 are given by (4.8), (4.9), (4.19), and (4.22), respectively. Hence, we
obtain the equality (2.4) for N = 3 as an equivalent relation associated with 3-fold SUSY:

P∓
3 P±

3
3
∼ 8[(H± + C0)

3 + C1(H
± + C0) + C2]. (4.27)

V. 4-FOLD SUPERSYMMETRY

In this section, we shall study the case of 4-fold supersymmetry. Components of 4-fold
supercharges are given by

P−
4 = ∂4 + w3∂

3 + w2∂
2 + w1∂ + w0,

P+
4 = ∂4 − w3∂

3 + (w2 − 3w′
3)∂

2 − (w1 − 2w′
2 + 3w′′

3)∂ + w0 − w′
1 + w′′

2 − w′′′
3 .

(5.1)

The condition for 4-fold supersymmetry P−
4 H− − H+P−

4 = 0 is satisfied if and only if the
following five equalities hold:

V + − V − = w′
3, (5.2)

w′′
3 + 2w′

2 + 8V −′ − 2w3(V
+ − V −) = 0, (5.3)

w′′
2 + 2w′

1 + 12V −′′ + 6w3V
−′ − 2w2(V

+ − V −) = 0, (5.4)

w′′
1 + 2w′

0 + 8V −′′′ + 6w3V
−′′ + 4w2V

−′ − 2w1(V
+ − V −) = 0, (5.5)

w′′
0 + 2V −′′′′ + 2w3V

−′′′ + 2w2V
−′′ + 2w1V

−′ − 2w0(V
+ − V −) = 0. (5.6)
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Substituting (5.2) into (5.3)–(5.6) and integrating the resulting equation from (5.3), we
obtain

8V + = 7w′
3 − 2w2 + (w3)

2 − 8C0, (5.7)

8V − = − w′
3 − 2w2 + (w3)

2 − 8C0, (5.8)

−8I2 = 6w′′′
3 + 8w′′

2 − 8w′
1 − 9w3w

′′
3 − 12(w′

3)
2 + 8w′

3w2 + 6w3w
′
2 − 6(w3)

2w′
3 = 0, (5.9)

−8I1 = 4w′′′′
3 + 8w′′′

2 − 4w′′
1 − 8w′

0 − 5w3w
′′′
3 − 24w′

3w
′′
3 + 2w′′

3w2 + 6w3w
′′
2

+ 8w′
3w1 + 4w2w

′
2 − 6(w3)

2w′′
3 − 6w3(w

′
3)

2 − 4w3w
′
3w2 = 0, (5.10)

−8I0 = w′′′′′
3 + 2w′′′′

2 − 4w′′
0 − w3w

′′′′
3 − 8w′

3w
′′′
3 − 6(w′′

3)
2 + w′′′

3 w2 + 2w3w
′′′
2

+ w′′
3w1 + 8w′

3w0 + 2w2w
′′
2 + 2w′

2w1 − 2(w3)
2w′′′

3 − 6w3w
′
3w

′′
3

− 2w3w
′′
3w2 − 2(w′

3)
2w2 − 2w3w

′
3w1 = 0. (5.11)

where C0 is an integral constant. To integrate the remaining equations (5.9)–(5.11), let us
first look for a set of dimension-preserving transformations wk → uk (k = 0, 1, 2) which will
convert simultaneously both the pairs P±

4 and V ± into symmetric forms as in the cases of
2- and 3-fold SUSY. The most general transformations of polynomial type preserving the
physical dimensions [Lk−4] of wk would be

w2 = u2 +
3

2
w′

3 − α1(w3)
2 [L−2], (5.12)

w1 = u1 + u′
2 − β1w

′′
3 − 2α1w3w

′
3 − β2w3u2 − β3(w3)

3 [L−3], (5.13)

w0 = u0 +
1

2
u′
1 − γ1u

′′
2 −

(

β1

2
+

1

4

)

w′′′
3 − γ2w3w

′′
3 − γ3(w

′
3)

2 −
β2

2
(w3u2)

′

− γ4w3u1 − γ5(u2)
2 −

3β3

2
(w3)

2w′
3 − γ6(w3)

2u2 + γ7(w3)
4 [L−4], (5.14)

where uk [Lk−4] and α0, βk (k = 1, 2, 3), and γk (k = 1, . . . , 7) are all dimensionless param-
eters. They indeed make both the pair of 4-fold supercharge components and the pair of
potentials symmetric as

P±
4 = ∂4 ∓ w3∂

3 +

[

u2 − α1(w3)
2 ∓

3

2
w′

3

]

∂2 ∓

[

u1 − β1w
′′
3 − β2w3u2 − β3(w3)

3

∓ (u′
2 − 2α1w3w

′
3)

]

∂ + u0 − γ1u
′′
2 − γ2w3w

′′
3 − γ3(w

′
3)

2 − γ4w3u1 − γ5(u2)
2

− γ6(w3)
2u2 − γ7(w3)

4 ∓

[

1

2
u′
1 −

(

β1

2
+

1

4

)

w′′′
3 −

β2

2
(w3u2)

′ −
3β3

2
(w3)

2w′
3

]

,

(5.15a)

8V ± = − 2u2 + (2α1 + 1)(w3)
2 ± 4w′

3 − 8C0. (5.15b)

With the transformations (5.14), the remaining three constraints (5.9)–(5.11) are equivalent
to the following new set of conditions:

Ī2 = 4I2

= − (4β1 + 9)w′′′
3 + 4u′

1 − 4(β2 + 1)w′
3u2 − (4β2 + 3)w3u

′
2

+ (10α1 − 12β3 + 3)(w3)
2w′

3 = 0 [L−4], (5.16)
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4Ī1 = 4(I1 − ∂I2)

= − 2(2γ1 + 1)u′′′
2 + 4u′

0 − (4β1γ4 − 4α1 + 4γ2 + 9γ4 + 2)w3w
′′′
3

+ 2(6α1 + 2β1 − 2γ2 − 4γ3 + 3)w′
3w

′′
3 − 4(γ4 + 1)w′

3u1

− 2(4γ5 + 1)u2u
′
2 − 2(2β2γ4 − 2α1 − 2β2 + 2γ4 + 4γ6 − 1)w3w

′
3u2

− (4β2γ4 − 2α1 + 3γ4 + 4γ6)(w3)
2u′

2

− [4(α1)
2 − 10α1γ4 + 12β3γ4 + 2α1 − 3γ4 − 4β3 + 16γ7](w3)

3w′
3 = 0 [L−5], (5.17)

Ī0 = − 4(4I0 − 2∂I1 + ∂2I2)

= w′′′′′
3 + 4w′′′

3 u2 − (4β1 + 3)w′′
3u

′
2 − 4(4γ1 + 1)w′

3u
′′
2 + w3u

′′′
2 + 16w′

3u0

+ 4u′
2u1 − (6α1 + 1)(w3)

2w′′′
3 + 4(2α1β1 + 2α1 + β1 − 4γ2)w3w

′
3w

′′
3

+ 8(α1 − 2γ3)(w
′
3)

3 − 4(2α1 + 4γ4 + 1)w3w
′
3u1 − 16γ5w

′
3(u2)

2

− 4β2w3u2u
′
2 + 4(2α1β2 + β2 − 4γ6)(w3)

2w′
3u2 − 4β3(w3)

3u′
2 (5.18)

+ 4(2α1β3 + β3 − 4γ7)(w3)
4w′

3 = 0 [L−6]. (5.19)

Hence, they would get simplest when1

α1 = 3/2, β1 = −9/4, β2 = −1, β3 = 3/2, γ1 = −1/2, γ2 = 1,

γ3 = 11/8, γ4 = −1, γ5 = −1/4, γ6 = 1/2, γ7 = −3/8.
(5.20)

With the latter choice of parameter values, the new set of conditions (5.16)–(5.19) reads as

Ī2 = 4u′
1 + w3u

′
2 = 0 [L−4], (5.21)

Ī1 = u′
0 = 0 [L−5], (5.22)

Ī0 = w′′′′′
3 + 4w′′′

3 u2 + 6w′′
3u

′
2 + 4w′

3u
′′
2 + w3u

′′′
2 + 16w′

3u0 + 4u′
2u1

− 10(w3)
2w′′′

3 − 40w3w
′
3w

′′
3 − 10(w′

3)
3 + 4w′

3(u2)
2 + 4w3u2u

′
2

− 24(w3)
2w′

3u2 − 6(w3)
3u′

2 + 30(w3)
4w′

3 = 0 [L−6]. (5.23)

The first equation (5.21) enables us to express u1 in terms of u2 and w3 as an indefinite
integral

4u1 = −

∫

dq w3u
′
2 [L−3]. (5.24)

The second equation (5.22) just means that u0 is a constant. On the other hand, Ck

(k = 0, . . . ,N − 1) are the only constants which appear in general form of N -fold SUSY.
The physical dimension of u0 is [L−4] and thus we can put

u0 = 2C1 [L−4], (5.25)

1 Another possible choice could be α1 = 0, β1 = −9/4, β2 = −3/4, β3 = 1/4, γ1 = −1/2, γ2 = −1/2,

γ3 = −1/8, γ4 = −1, γ5 = −1/4, γ6 = 0, γ7 = 1/16. With the latter choice, it turns out that the third

integral C3 admits a simpler expression than (5.31) but the expression for the second integral C2 contains

terms which are linear in u1, in contrast with (5.27) and (5.29).
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where C1 is an integral constant having the correct physical dimension [L−4] listed in (2.5).
We have now obtained the first integral C1 and thus can skip over the step to construct the
quantity J1.

Next, to construct the second integral C2 of 4-fold SUSY systems, we first note that
dJ2/dq and Īk (k = 0, 1, 2) have the physical dimensions [L−7] and [Lk−6], respectively.
Hence, the operators L2k defined in (2.20) in this case must have the physical dimension
[L−k−1]. Thus, candidates for L20 are w3, those for L21 are w′

3, u2, and (w3)
2, while those

for L22 are w′′
3 , u

′
2, u1, w3w

′
3, w3u2, and (w3)

3, if we restrict L2k to multiplicative operators
of polynomial type. With the choice of L20 ∝ w3 and L21 = L22 = 0, we can construct a
total differential as

−128
dJ2

dq
= 2w3Ī0 = 0 [L−7], (5.26)

where we have omitted the explicit expression. The integration of the latter yields

−128J2[w] = 2w3w
′′′′
3 − 2w′

3w
′′′
3 + (w′′

3)
2 − 16(u1)

2 + 8w3w
′′
3u2 − 4(w′

3)
2u2

+ 4w3w
′
3u

′
2 + 2(w3)

2u′′
2 − 20(w3)

3w′′
3 − 10(w3)

2(w′
3)

2 + 4(w3)
2(u2)

2

− 12(w3)
4u2 + 10(w3)

6 + 32C1(w3)
2 = −128C2 [L−6], (5.27)

where (5.25) has been applied, and C2 is another integral constant having the correct physical
dimension [L−6] listed in (2.5). From (5.23) and (5.25), we can express u1 in terms of u2 and
w3 without recourse to any indefinite integral as

u1 = [−w′′′′′
3 − 4w′′′

3 u2 − 6w′′
3u

′
2 − 4w′

3u
′′
2 − w3u

′′′
2 + 10(w3)

2w′′′
3

+ 40w3w
′
3w

′′
3 + 10(w′

3)
3 − 4w′

3(u2)
2 − 4w3u2u

′
2 + 24(w3)

2w′
3u2

+ 6(w3)
3u′

2 − 30(w3)
4w′

3 − 32C1w
′
3]/(4u

′
2). (5.28)

Instead, using (5.27), we can express u1 in terms of u2 and w3 as a solution to the following
quadratic equation

16(u1)
2 = 2w3w

′′′′
3 − 2w′

3w
′′′
3 + (w′′

3)
2 + 8w3w

′′
3u2 − 4(w′

3)
2u2 + 4w3w

′
3u

′
2

+ 2(w3)
2u′′

2 − 20(w3)
3w′′

3 − 10(w3)
2(w′

3)
2 + 4(w3)

2(u2)
2

− 12(w3)
4u2 + 10(w3)

6 + 32C1(w3)
2 + 128C2. (5.29)

To obtain the third integral C3 of 4-fold SUSY systems, we note that dJ3/dq and Īk (k =
0, 1, 2) have the physical dimensions [L−9] and [Lk−6], respectively. Hence, the operators
L3k defined in (2.20) in this case must have the physical dimension [L−k−3]. With a similar
dimensonal analysis, we find that the choice of L30 ∝ w′′

3 + 4u1 + 2w3u2 − 2(w3)
3 and

L31 = L32 = 0 leads to a total differential:

512
dJ3

dq
= [w′′

3 + 4u1 + 2w3u2 − 2(w3)
3]Ī0 = 0 [L−9], (5.30)
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where we have omitted the explicit expression. The integral of the latter equation reads as

1024J3[w] = 2w′′
3w

′′′′
3 − (w′′′

3 )
2 + 8w′′′′

3 u1 + 4w3w
′′′′
3 u2 − 4w′

3w
′′′
3 u2 + 6(w′′

3)
2u2

− 2w3w
′′′
3 u

′
2 + 6w′

3w
′′
3u

′
2 + 2w3w

′′
3u

′′
2 + 32w′′

3u2u1 + 24w′
3u

′
2u1 + 8w3u

′′
2u1

+ 32u2(u1)
2 − 4(w3)

3w′′′′
3 + 12(w3)

2w′
3w

′′′
3 − 16(w3)

2(w′′
3)

2 − 24w3(w
′
3)

2w′′
3

+ (w′
3)

4 − 80(w3)
2w′′

3u1 − 80w3(w
′
3)

2u1 + 16w3w
′′
3(u2)

2 − 4(w′
3)

2(u2)
2

+ 8w3w
′
3u2u

′
2 + 4(w3)

2u2u
′′
2 − (w3)

2(u′
2)

2 + 32w3(u2)
2u1 − 56(w3)

3w′′
3u2

− 20(w3)
2(w′

3)
2u2 − 4(w3)

4u′′
2 − 64(w3)

3u2u1 + 8(w3)
2(u2)

3 + 40(w3)
5w′′

3

+ 10(w3)
4(w′

3)
2 + 48(w3)

5u1 − 28(w3)
4(u2)

2 + 36(w3)
6u2 − 15(w3)

8 + 32C1(w
′
3)

2

+ 256C1w3u1 + 64C1(w3)
2u2 − 32C1(w3)

4 + 256(C1)
2 = 1024C3 [L−8], (5.31)

with another integral constant C3 having the correct physical dimension [L−8] listed in (2.5).
By using (at least) two of the equalities (5.28), (5.29), and (5.31), we can eliminate u1 to
obtain the relation between w3 and u2. Hence, we are now, in principle, able to express a
4-fold SUSY system solely in terms of a single arbitrary function. As in the case of 3-fold
SUSY, however, it would be more convenient for a practical purpose to have an expression
in terms of two of the four functions w3, u2, u1, and u0. For example, if we eliminate u1

and u0 in the system by using (5.28) and (5.25), respectively, the system (5.15) with the
parameter values (5.20) can be represented in terms of w3 and u2 as

P±
4

4
∼ ∂4 ∓ w3∂

3 +

[

u2 −
3

2
(w3)

2 ∓
3

2
w′

3

]

∂2 ∓

[

3

4
w′′

3 −
w′′′′′

3

4u′
2

−
w′′′

3 u2

u′
2

−
w′

3u
′′
2

u′
2

−
w3u

′′′
2

4u′
2

+
5(w3)

2w′′′
3

2u′
2

+
10w3w

′
3w

′′
3

u′
2

+
5(w′

3)
3

2u′
2

−
w′

3(u2)
2

u′
2

+
6(w3)

2w′
3u2

u′
2

−
15(w3)

4w′
3

2u′
2

−
8C1w

′
3

u′
2

∓ (u′
2 − 3w3w

′
3)

]

∂ +
1

2
u′′
2 −

5

2
w3w

′′
3 −

11

8
(w′

3)
2 +

1

4
(u2)

2 −
3

2
(w3)

2u2

+
15

8
(w3)

4 −
w3w

′′′′′
3

4u′
2

−
w3w

′′′
3 u2

u′
2

−
w3w

′
3u

′′
2

u′
2

−
(w3)

2u′′′
2

4u′
2

+
5(w3)

3w′′′
3

2u′
2

+
10(w3)

2w′
3w

′′
3

u′
2

+
5w3(w

′
3)

3

2u′
2

−
w3w

′
3(u2)

2

u′
2

+
6(w3)

3w′
3u2

u′
2

−
15(w3)

5w′
3

2u′
2

−
8C1w3w

′
3

u′
2

+ 2C1 ∓

[

7

8
w′′′

3 +
1

2
w′

3u2 +
3

8
w3u

′
2 −

9

4
(w3)

2w′
3

]

, (5.32)

V ± = −
1

4
u2 +

1

2
(w3)

2 ±
1

2
w′

3 − C0. (5.33)

Finally, products of the components of 4-fold supercharges P∓
4 P±

4 are calculated as

P−
4 P+

4 = 16[(H+ + C0)
4 + C1(H

+ + C0)
2 + C2(H

+ + C0) + C3] +
4
∑

i=0

f+
i [w]∂

i, (5.34)

P+
4 P−

4 = 16[(H− + C0)
4 + C1(H

− + C0)
2 + C2(H

− + C0) + C3] +

4
∑

i=0

f−
i [w]∂

i, (5.35)

C1, C2, and C3 are given by (5.25), (5.27), and (5.31), respectively. Both of the second terms
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in the above are elements of K
[4]
0 introduced in Section IIB and have the form of (2.23) with

f+
4 = − 4I2, f+

3 = 4I1 − 4(3∂ + w3)I2,

f+
2 = − 4I0 + (8∂ + 3w3)I1 −

1

2
[28∂2 + 15w3∂ − 9w′

3 + 4w2 + (w3)
2]I2,

f+
1 = − 2(2∂ + w3)I0 + 2(3∂2 + 2w3∂ − 2w′

3 + w2)I1

− 2[4∂3 + 3w3∂
2 − 2(2w′

3 − w2)∂ − 4w′′
3 + w1 − 2w3w

′
3]I2,

f+
0 = − 2(∂2 + w3∂ − 2w′

3 + w2)I0 + [2∂3 + 2w3∂
2 − 2(2w′

3 − w2)∂ − 4w′′
3 + w1

− 2w3w
′
3]I1 −

1

16
[32∂4 + 32w3∂

3 − 32(2w′
3 − w2)∂

2 − 4(31w′′
3 − 2w′

2 − 6w1

+ 14w3w
′
3)∂ − 60w′′′

3 + 8w′′
2 + 16w0 − 68w3w

′′
3 + 7(w′

3)
2 − 4w′

3w2 + 8w3w
′
2

− 4(w2)
2 − 22(w3)

2w′
3 + 4(w3)

2w2 − (w3)
4]I2,

(5.36)

and

f−
4 = 4I2, f−

3 = 4I1 + 4(∂ − w3)I2,

f−
2 = 4I0 + (4∂ − 3w3)I1 +

1

2
[4∂2 − 3w3∂ − 3w′

3 + 4w2 − (w3)
2]I2,

f−
1 = 2(2∂ − w3)I0 + 2(∂2 − w3∂ − w′

3 + w2)I1 + 2(w′′
3 + 2w′

2 − w1 − 2w3w
′
3)I2,

f−
0 = 2(∂2 − w3∂ − w′

3 + w2)I0 + (w′′
3 + 2w′

2 − w1 − 2w3w
′
3)I1 −

1

16
[4(w′′

3 + 2w′
2

− 2w1 − 2w3w
′
3)∂ − 12w′′′

3 − 24w′′
2 + 16w0 + 28w3w

′′
3 + 23(w′

3)
2 − 4w′

3w2

+ 8w3w
′
2 − 4(w2)

2 − 6(w3)
2w′

3 + 4(w3)
2w2 − (w3)

4]I2,

(5.37)

where I2, I1, and I0 are given by (5.9), (5.10), and (5.11), respectively. Hence, we obtain
the equality (2.4) for N = 4 as an equivalent relation associated with 4-fold SUSY:

P∓
4 P±

4
4
∼ 16[(H± + C0)

4 + C1(H
± + C0)

2 + C2(H
± + C0) + C3]. (5.38)

VI. DISCUSSION AND SUMMARY

In this work, we have clarified general structure of N -fold SUSY systems by considering
dimensional analysis and introducing the equivalent classes of linear differential operators
associated with them. We have then shown that the latter general consideration is in fact
effective in constructing the most general N -fold SUSY systems and their integral constants
for N = 2, 3, and 4. Application to systems for N > 4 would be straightforward and the
problems would get more transparent even though still remain highly complicated. Finally,
some remarks on the future issues are in order.

1. Although we have only considered ordinary one-dimensional Schrödinger operators,
generalization to other operators would be possible. In physical applications, one of the
interesting extensions is to a quantum system with position-dependent mass for which
N -fold SUSY was successfully formulated in Ref. [14]. In the latter case, there is an
additional freedom of mass function and it is particularly interesting to see how its existence
would force us to modify or generalize the general considerations made in Section II.
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2. In this work, we have restricted the dimension-preserving transformations (3.8), (4.10),

and (5.14) to polynomial type, namely, transformations which are polynomials in w
[N ](m)
k

(m = 0, 1, 2, . . .). On the other hand, the obtained results such as (3.15), (4.20), and (5.28)

indicate that the relations among w
[N ](m)
k are in general expressed by rational functions.

Hence, we may be able to reduce further the complexity of the conditions for N -fold SUSY
by extending the type of transformations from polynomial to rational function. However, the
number of admissible forms of rational functions which preserve physical dimension would

drastically increase. For instance, any sum of rational functions of the form f
[N ]
n [w]/g

[N ]
n [w]

(n ∈ Z)

w
[N ]
k = u

[N ]
k +

∑

n∈Z

f
[N ]
n [w]

g
[N ]
n [w]

[Lk−N ],

where f
[N ]
n [w] and g

[N ]
n [w] are polynomials in w

[N ](m)
k having the physical dimensions

[Ln+k−N ] and [Ln], respectively, can serve as a (part of) transformation which preserves

the physical dimension [Lk−N ] of w
[N ]
k . As a result, we may need additional guidelines to

restrict the forms of transformations to make an efficient analysis. We are curious to know
how to get such guidelines systematically for the purpose.

3. As was pointed out in Section II, an N -fold SUSY system is in general only weakly quasi-
solvable but is not quasi-solvable in the strong sense and thus does not necessarily admit
analytic local solutions in closed form. In the case of N = 2, it was proved in Ref. [15] that
type A 2-fold SUSY is a necessary and sufficient condition for a one-dimensional quantum
mechanical system to have quasi-solvability in the strong sense with two independent analytic
local solutions. So, it is interesting to see what kind of condition is necessary and sufficient
for a quantum system to admit three or four independent analytic local solutions. We will
report on the latter subjects in subsequent publications.
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