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1 Introduction

Neumann and Zagier [9] study the variation of the volume function on a cusped hyperbolic
3–manifold of finite volume using a decomposition of the manifold into hyperbolic ideal tetra-
hedra. This is based on a construction by Thurston [12], which associates to the underlying
topological ideal triangulation a parameter space of shapes of ideal hyperbolic tetrahedra
satisfying certain polynomial equations. Such a parameter space can be associated to any
ideal triangulation of a non-compact 3-manifold with torus cusps, and several authors have
studied this affine algebraic set in this generality (see, for instance, Yoshida [16], Francaviglia
[4], Tillmann [15], Segerman [11]). A key step in many applications is the construction of a
so-called pseudo-developing map for a given point on the parameter space in order to produce
a representation of the fundamental group of the manifold into the group of orientation pre-
serving isometries of hyperbolic 3–space. The map is called a pseudo-developing map rather
than a developing map because it is not necessarily locally injective.

More recently, Luo [6] initiated the study of the parameter space for arbitrary ideally triangu-
lated manifolds. In Luo’s setting, they arise from (possibly semi-simplicial) triangulations of
closed 3-manifolds by removing the vertices. This raises the question of whether the existence
of pseudo-developing maps, their associated holonomies and continuous extensions depend on
topological hypotheses. This note considers the most general setting, and has the following
theorem as its core result. The relevant definitions can be found in Sections 2 and 3.

Theorem 1 Let N be a topologically finite, orientable 3–manifold with ideal triangulation.
If there is a solution to the hyperbolic gluing equations, then all edges in the triangulation
are essential.
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Corollary 2 Let N be a topologically finite, orientable 3–manifold with ideal triangulation.
If there is a solution to the hyperbolic gluing equations, then associated to it are a pseudo-
developing map Ñ → IH3 and a representation of π1(N) into PSL2(C), which makes this
map equivariant.

Luo [6] also introduced generalised hyperbolic gluing equations, which state that the product
of all shape parameters around an ideal edge is either +1 or −1. The sign may be different
at different edges. This can be generalised further by choosing, for each edge e ∈ N (1), an
element ξe ∈ S1 = {z ∈ C | |z| = 1} and requiring the product of all shape parameters
around e to equal ξe. The restriction of ξe to S1 is natural: if the shape parameters of all
tetrahedra have positive imaginary parts, then this gives a (possibly incomplete) hyperbolic
cone manifold structure on N with cone angle arg(ξe) + 2πke (for some ke ∈ IN) around e.
The most interesting case arises when each ξe is a root of unity, but we will consider the
general case throughout. These “S1–valued” gluing equations are determined by the vector
ξ = (ξe) = (ξe)e∈N(1) , and are called the ξ–hyperbolic gluing equations, since they depend on
the choice of ξ. Let o = o(ξ) = (o(ξe))e∈N(1) , where o(ξe) ∈ IN ∪ {∞} is the order of ξe.

If one drills out the edges in N, one obtains a handlebody H with a natural epimorphism
π1(H) � π1(N). We obtain a representation ρ : π1(H) → PSL2(C) for each solution to the
ξ–hyperbolic gluing equations. If each order o(ξe) is finite, then we obtain a natural branched
(not necessarily finite) cover No of N corresponding to the kernel of ρ. The branch locus is
contained in the 1–skeleton, and the cover has branch index o(ξe) at e. If some order is
infinite, one can still define No, but this will have an edge of infinite degree and the points
on such an edge of infinite degree are not manifold points. If all orders are equal to 1, then
N = No. Theorem 1 is thus a special case of the following result:

Theorem 3 Let N be a topologically finite, orientable 3–manifold with ideal triangulation.
If there is a solution to the ξ–hyperbolic gluing equations for N, then all edges in the induced
ideal triangulation of No are essential.

Treating each ξe as an additional, circle-valued variable gives the cone-hyperbolic gluing equa-
tions. The existence of interesting solutions to them comes from the following observation:

Observation 4 Given any ideally triangulated, topologically finite, orientable 3–manifold
N, there is a complete, non-compact hyperbolic cone-manifold structure on N with singular
locus contained in N (1) and having volume exactly the number of tetrahedra in N times the
volume of the regular hyperbolic ideal tetrahedron.

Outline: Triangulations, pseudo-manifolds and essential edges are discussed in Section 2. The
deformation variety and its generalisations are defined in Section 3, and Yoshida’s construction
is recalled. The handlebody construction as well as the proofs of the main results can be found
in Section 4. Examples are given in Section 5.

Acknowledgements: The authors thank the referee for useful comments. The second author
thanks Feng Luo for helpful discussions. This work was supported under the Australian
Research Council’s Discovery funding scheme (project number DP1095760).
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2 Triangulations with essential edges

2.1 Ideal triangulation

An ideal triangulation T of the topologically finite 3-manifold N consists of a pairwise disjoint
union of standard Euclidean 3–simplices, ∆̃ = ∪nk=1∆̃k, together with a collection Φ of

Euclidean isometries between the 2–simplices in ∆̃, termed face pairings, such that N =
(∆̃\∆̃(0))/Φ. It is well-known that every non-compact, topologically finite 3–manifold admits
an ideal triangulation.

Denote P = ∆̃/Φ the associated pseudo-manifold (or end-compactification of N ) with quo-
tient map p : ∆̃ → P. Let σ be a k–simplex in ∆̃. Then p(σ) may be a singular k–simplex
in P. Denote by P (k) the set of all (possibly singular) k–simplices in P. An ideal k–simplex
is a k–simplex with its vertices removed. The vertices of the k–simplex are termed the ideal
vertices of the ideal k–simplex. Similarly for singular simplices. The standard terminology
of (ideal) edges, (ideal) faces and (ideal) tetrahedra will be used for the singular simplices in
N and P.

In this note, it is assumed throughout that N is oriented and that all singular simplices in N
are given the induced orientations. It follows that the link of each vertex in P is an orientable
surface.

The case in which each vertex link is a torus and N has a complete, hyperbolic structure
supported by the ideal triangulation is the most common setting for the study of Thurston’s
hyperbolic gluing equations, see [2, 3, 4, 8, 9, 16]. The case in which each vertex link is a
sphere and P is a closed hyperbolic 3–manifold is treated in [7]. This note will not make any
of these additional assumption.

It is often convenient to start with the 3–dimensional, closed, orientable pseudo-manifold
P with (possibly singular) triangulation T . Then N = P \ P (0) is an ideally triangulated,
non-compact, orientable, topologically finite 3–manifold.

2.2 Abstract edge-neighbourhood

The degree of an edge e in P, deg(e), is the number of 1–simplices in ∆̃ which map to e.
Given the edge e in P, there is an associated abstract neighbourhood B(e) of e. This is a
ball triangulated by deg(e) 3–simplices, having a unique interior edge ẽ, and there is a well-
defined simplicial quotient map pe : B(e)→ P taking ẽ to e. This abstract neighbourhood is
obtained as follows.

If e has at most one pre-image in each 3–simplex in ∆̃, then B(e) is obtained as the quotient
of the collection ∆̃e of all 3–simplices in ∆̃ containing a pre-image of e by the set Φe of all
face pairings in Φ between faces containing a pre-image of e. There is an obvious quotient
map be : B(e) → P which takes into account the remaining identifications on the boundary
of B(e).

If e has more than one pre-image in some 3–simplex, then multiple copies of this simplex are
taken, one for each pre-image. The construction is modified accordingly, so that B(e) again
has a unique interior edge and there is a well defined quotient map be : B(e)→ P. Complete
details can be found in [14], Section 2.3.
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2.3 End-compactification and null-homotopic edges

As above, let P be a 3–dimensional, closed, orientable pseudo-manifold with (possibly singu-
lar) triangulation T , and N = P \ P (0). Let E = ν(P (0)) be an open regular neighbourhood
of P (0) in P, chosen in such a way that ∂E meets each singular 3–simplex σ3 in P in pre-
cisely four pairwise disjoint normal triangles, one at each of its corners. Hence E ∪ ∂E has
the natural cone structure (∂E × [0, 1])/ ∼ where (x, 1) ∼ (y, 1) if x, y lie on a connected
component of ∂E.

Then C = P \E is termed a compact core of N. It follows that P can be viewed as obtained
from C by taking each connected component B of ∂C and either collapsing it to a point
or by attaching the cone over B to a point. Neumann and Yang [10] call this the end-
compactification of N. We have

C ⊂ N ⊂ P.

Let P̃ be the space obtained from the universal cover C̃ of C by attaching the cone over each
connected boundary component to a point. We then have natural inclusions

C̃ ⊂ Ñ ⊂ P̃ ,

and P̃ is termed the end-compactification of Ñ with respect to N. Note that P̃ is also simply
connected since adding cones over connected spaces does not increase the fundamental group.

It is hoped that the notation and terminology does not lead to confusion. For instance, when
N is hyperbolic, then Ñ is an open ball and the natural compactification of this open ball
(without reference to N ) is homeomorphic to the 3–ball, whilst P̃ is Ñ with countably many
points added. Also, there are many examples where P is simply connected; for instance if C
is the complement of a knot or link in S3.

The space P̃ has a natural decomposition into 3–simplices coming from the decomposition of
C̃ into truncated 3–simplices and the coning construction. Lifting the ideal triangulation of
N to Ñ gives a natural decomposition into ideal 3–simplices. It follows from the construction
that the ideal triangulation of Ñ is precisely the restriction of the triangulation of P̃ to
P̃ \ P̃ (0). In particular, we have a well-defined simplicial map P̃ → P.

A triangulation T of P is said to be almost non-singular if no 3–simplex has two of its edges
identified. In this case, the only self-identifications of a 3–simplex are at the vertices. A
triangulation T of P is non-singular if no 3–simplex has any self-identifications.

A triangulation T of P is said to be virtually almost non-singular if the induced triangulation
of P̃ is almost non-singular, and virtually non-singular if the induced triangulation of P̃ is
non-singular.

Note that a triangulation T of P is virtually almost non-singular if and only if every ideal
3–simplex in Ñ is embedded.

An edge e ∈ P (1) is null-homotopic if and only if there is a map f : D2 → P such that
f(∂D2) = e. Equivalently, e is null-homotopic in P if and only if it represents the trivial
element in π1(P ).

The intersection α = e ∩ C is homotopic into ∂C if and only if there is an arc β ⊂ ∂C such
that α is homotopic to β by a fixed-endpoint homotopy.
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To simplify terminology, we will say that the edge e in P is essential if e∩C is not homotopic
into ∂C, and it is not essential otherwise. This reflects standard terminology for ideal edges
in ideal triangulations.

Lemma 5 T is virtually non-singular if and only if every edge in P is essential.

Proof Suppose the edge e is not essential. Then e ∩ C is homotopic into ∂C. The disc in
C lifts to a disc in C̃ with part of its boundary on a lift ẽ of e and the remainder of its
boundary on a connected component of ∂C̃. Hence ẽ is an edge in P̃ with both end-points
at the same vertex. Thus, any tetrahedron containing ẽ is not embedded and therefore T is
not virtually non-singular.

Conversely, suppose T is not virtually non-singular. There is a tetrahedron in P̃ (3) with self-
identifications and hence an edge e with both end-points at the same vertex. The end-points
of α = e ∩ C̃ lie on the same boundary component of C̃, and hence can be connected by an
arc β ⊂ ∂C̃. Since C̃ is simply connected, the loop α∪β bounds an immersed disc in C̃. Let
pC : C̃ → C be the covering map. It follows that pC(α) is homotopic to pC(β), and hence
the edge containing pC(α) is not essential. �

Lemma 6 If e is not essential in P, then e is null-homotopic in P.

Proof If α = e ∩ C is homotopic into ∂C, then both of its end-points lie on the same
boundary component, B, of C. Hence the map f : D2 → C can be extended to a continuous
map fP : D2 → P by coning it over β to the vertex of P corresponding to B. �

The converse of Lemma 6 is not true. For instance the ideal triangulation of a knot or link in
S3 gives rise to a simply connected pseudo-manifold, but there are many edges which are not
homotopic into the boundary. For instance, Thurston’s ideal triangulation of the figure eight
knot complement yields a simply connected pseudo-manifold P with the property that every
edge is null-homotopic and essential.

3 The deformation variety and its friends

3.1 Deformation variety

Let ∆3 be the standard 3–simplex with a chosen orientation. Suppose the edges from one
vertex of ∆3 are labeled by z, z′ and z′′ so that the opposite edges have the same labeling.
Then the cyclic order of z, z′ and z′′ viewed from each vertex depends only on the orientation
of the 3–simplex. It follows that, up to orientation preserving symmetries, there are two
possible labelings, and we fix one of these labelings. The labels are termed shape parameters.

Suppose P (3) = {σ1, . . . , σn}. For each σi ∈ P (3), fix an orientation preserving simplicial map

fi : ∆3 → σi. Let P (1) = {e1, . . . , em}, and let a
(k)
ij be the number of edges in f−1i (ej), which

have label z(k).

For each i ∈ {1, . . . , n}, define

pi = zi(1− z′′i )− 1, p′i = z′i(1− zi)− 1, p′′i = z′′i (1− z′i)− 1, (1)
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and for each j ∈ {1, . . . ,m}, let

gj =

n∏
i=1

z
aij
i (z′i)

a′ij (z′′i )
a′′ij − 1. (2)

Setting pi = p′i = p′′i = 0 gives the parameter relations, and setting gj = 0 gives the hyperbolic
gluing equations. For a discussion and geometric interpretation of these equations, see [12, 9].
The parameter relations imply that zi 6= 0, 1.

Definition 7 The deformation variety D(T ) is the variety in (C \ {0})3n defined by the
hyperbolic gluing equations together with the parameter relations.

Thurston’s original parameter space is obtained by choosing a coordinate from each coordinate
triple in the above. In calculations, we will often use such a smaller coordinate system.
Theorem 1 is equivalent to the statement that D(T ) 6= ∅ implies that all edges are essential.

3.2 Yoshida’s construction

Let C ⊂ N ⊂ P, T and D(T ) be as defined above. Given Z ∈ D(T ), each ideal tetrahedron
in N has edge labels which can be lifted equivariantly to Ñ . Following [16], we would like to
define a continuous map ΦZ : Ñ → IH3, which maps every ideal tetrahedron σ in Ñ to an
ideal hyperbolic 3–simplex ∆(σ), such that the labels carried forward to the edges of ∆(σ)
correspond to the shape parameters of ∆(σ) determined by its hyperbolic structure; see [12]
for the geometry of hyperbolic ideal tetrahedra. Thus,

we need to assume that T is virtually almost non-singular,

since no ideal hyperbolic simplex has edges identified with each other. It will be necessary
to have a consistent choice of parameterisation for the maps from ideal tetrahedra in Ñ to
IH3; following Thurston [12], we ensure this by assuming that the map σ → IH3 always is a
straight map. See [13, 4, 7] for the details, which play no role in the following.

Each ideal 3–simplex in Ñ inherits edge labels from Z. Choose a tetrahedron σ in Ñ and an
embedding of σ into IH3 of the specified shape. For each tetrahedron of Ñ distinct from σ
and which has a face in common with σ, there is a unique embedding into IH3 which coincides
with the embedding of σ on the common face and which has the shape determined by Z. If the
shape parameters of the new tetrahedron give an ideal hyperbolic tetrahedron of orientation
opposite to that of the first one, then this map is not locally injective along the common face.
Hence the map is called a pseudo-developing map rather than a developing map.

Lemma 8 Starting with an embedding of σ ⊂ Ñ , there is a unique way to extend this to a
well-defined, continuous map ΦZ : Ñ → IH3, such that each ideal tetrahedron in Ñ is mapped
to a hyperbolic ideal tetrahedron of the specified shape.

Proof Since Ñ is simply connected and each abstract edge neighbourhood is embedded, it
follows from the hyperbolic gluing equations that the map is well-defined. The reader may
find pleasure in doing this exercise or consult [2] for a full treatment. �

Lemma 9 If D(T ) 6= ∅ and T is virtually almost non-singular, then T is virtually non-
singular (hence all edges in P are essential).
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Proof Let Z ∈ D(T ). The Yoshida map ΦZ is well defined since T is virtually almost
non-singular. Suppose the ideal tetrahedron σ in Ñ has two ideal vertices at the same vertex
of P̃ . Let t and t′ denote the normal triangles in σ ∩ ∂C̃ dual to these vertices. Since t and
t′ are in the link of the same vertex of P̃ , there is a path in ∂C̃ from t to t′ passing through
finitely many normal triangles. This path corresponds to a finite sequence σ1, . . . , σk of ideal
tetrahedra in Ñ , and a corresponding sequence v1, . . . , vk of ideal vertices of the σi , dual to the

sequence of normal triangles. The map ΦZ extends to map these ideal vertices into IH
3
, and

as we develop along the sequence of tetrahedra, we see that ΦZ(v1) = ΦZ(v2) = · · · = ΦZ(vk).
But v1 and vk are two distinct vertices of σ , so the image of σ cannot be an ideal hyperbolic
3–simplex, and thus the Yoshida map is not well-defined. �

Corollary 10 If the Yoshida map ΦZ : Ñ → IH3 is well-defined, then it extends to a con-

tinuous map ΦZ : P̃ → IH
3
.

3.3 Representations

Suppose that the Yoshida map is well-defined and, in particular, that T is virtually almost
non-singular. We will see (in Corollary 2) that these hypotheses hold if D(T ) 6= ∅.

For each Z ∈ D(T ), the Yoshida map ΦZ can be used to define a representation ρZ : π1(N)→
PSL2(C) as follows (see [16]). A representation into PSL2(C) is an action on IH3, and this
is the unique representation which makes ΦZ π1(N)–equivariant: ΦZ(γ · x) = ρZ(γ)ΦZ(x)
for all x ∈ Ñ , γ ∈ π1(N). Thus, ρZ is well–defined up to conjugation, since it only depends
upon the choice of the embedding of the initial tetrahedron σ. This yields a well–defined
map χT : D(T ) → X(N) from the deformation variety to the PSL2(C)–character variety.
It is implicit in [8] that χT is algebraic; see [2] for details using a faithful representation of
PSL2(C)→ SL(3,C). Note that the image of each peripheral subgroup under ρZ has at least
one fixed point on the sphere at infinity.

Remark 11 The representation associated to a solution of the hyperbolic gluing equations
may be reducible, or even trivial. For instance, the triangulation of S3 with two tetrahedra
obtained by identifying the boundary spheres of the tetrahedra in the natural way has a
curve of solutions to the hyperbolic gluing equations, and the associated representations of
the fundamental group of S3 minus four points are all trivial.

The representation arising from Yoshida’s construction can be understood using elementary
face pairings as follows. An elementary face pairing of the hyperbolic ideal tetrahedron ∆ is
an element of PSL2(C) taking one face of ∆ to another. If the deck transformation γ ∈ π1(N)
takes the ideal triangle τ in Ñ to the ideal triangle γ · τ, and σ30, . . . , σ

3
k is a sequence of

tetrahedra with the property that τ ⊂ σ30, γ · τ ⊂ σ3k, and consecutive tetrahedra share a face
distinct from τ and γ · τ, then there is an associated product of elementary face pairings, one
for each ΦZ(σ3j ), such that ρZ(γ) is their product. This fact is used in [2] to show that χT
is algebraic; it will be used below for a different purpose.
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3.4 Generalisations

For each ej ∈ P (1), we introduce a variable ξej ∈ S1, and define

gej (ξej ) =

n∏
i=1

z
aij
i (z′i)

a′ij (z′′i )
a′′ij − ξej . (3)

Setting gej (ξej ) = 0 gives the cone-hyperbolic gluing equation for ej . Since the product of all
shape parameters associated to all edges equals 1, we have the following consequence:∏

e∈P (1)

ξe = 1.

We also define the holonomy around ej to be

h(ej) =
n∏
i=1

z
aij
i (z′i)

a′ij (z′′i )
a′′ij .

Definition 12 For a triangulation with n tetrahedra and m edges, the cone-deformation
variety D(T ; ?) is the variety in (C − {0})3n × (S1)m defined by the cone-hyperbolic gluing
equations together with the parameter relations.

The cone-deformation variety is non-empty for any triangulation. Indeed, if z = 1
2(1 +

√
−3),

then all of z, z′ and z′′ are roots of unity and specify the regular hyperbolic ideal 3–simplex.
This is the unique hyperbolic ideal 3–simplex with the property that all shape parameters are
roots of unity. Assigning values to all shape parameters in this way, one can solve ge(ξe) = 0
for ξe ∈ S1 uniquely for each e. It turns out that this solution has particularly nice properties,
giving us Observation 4.

Proof of Observation 4 Identify each ideal 3–simplex in ∆̃ \ ∆̃(0) with the regular ideal
3–simplex. Gluing faces in pairs by hyperbolic isometries according to the face pairings gives
a hyperbolic structure on N minus edges. Around the edges there is no shearing, and the
total angle around edge e is its degree times π

3 . Hence there is a non-compact hyperbolic

cone-manifold structure on N with singular locus contained in N (1). Near the ideal vertices
of the tetrahedra, one can consistently choose horospherical triangles that match up and the
structure is therefore complete. �

Denote the projections to the factors F1 : D(T ; ?)→ (C−{0})3n and F2 : D(T ; ?)→ (S1)m.
Given ξ ∈ (S1)m, we let D(T ; ξ) = F−12 (ξ). Then F−12 ((ξ1, . . . , ξm)) may be empty, and
D(T ) = D(T , (1, . . . , 1)).

4 The handlebody construction

4.1 The handlebody cover

Consider the compact manifold H := C \ ν(P (1)), where {ν(e) | e ∈ P (1)} is a set of pairwise
disjoint open tubular neighbourhoods of the edges P (1) . The manifold H is a handlebody,
and inherits a cell decomposition from T into doubly truncated tetrahedra: truncated at the
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vertices and at the edges. See Figure 1 for a picture of a doubly truncated tetrahedron. A
doubly truncated tetrahedron has four boundary hexagonal faces on ∂C , six rectangular faces
on ∂H \ ∂C, and four interior hexagonal faces.

Consider the decomposition of ∂H into the union of the vertex boundary ∂H∩∂C (composed
of boundary hexagonal faces) and the edge boundary ∂H\(∂H∩∂C ) (composed of rectangular
faces). The edge boundary consists of a pairwise disjoint union of annulus components, one
for each edge of C .

For any cover K of H , define a topological space K∗ as follows. Lift the decomposition of
H to K . The boundary of K decomposes into vertex boundary components made up out of
boundary hexagonal pieces, and edge boundary components made up out of rectangular faces.
For each edge boundary component of H, we fix a product structure which identifies it with
S1 × [0, 1]. Then the edge boundary components of K are either of the form S1 × [0, 1] or
R× [0, 1], and the product structure is preserved by the deck transformations. We form K∗

by first collapsing each edge boundary component of ∂K by projection to the [0, 1] factor,
to form a topological space K ′ . Next we collapse each component of the boundary of K ′ to
form K∗ .

As in the construction of P from C , we can equivalently construct K∗ from K by coning
rather than collapsing. Note that H∗ = P . Also note that K∗ is a union of tetrahedra
identified along faces. Unlike P or P̃ , K∗ can have edges incident with infinitely many
tetrahedra. We will be interested in the universal cover H̃ of H, and in H̃∗ . Since H is a
handlebody, H̃ is homotopy equivalent to a tree. Notice that the construction gives a natural
quotient map H̃∗ → P.

Lemma 13 Every tetrahedron in H̃∗ is non-singular.

Proof If there is a tetrahedron with self-identifications of any kind then there will be some
pair of its vertices that are identified, and thus an edge with its endpoints being the same
point.

Suppose that we have such an edge e. Truncate all of the tetrahedra of H̃∗ at the vertices
to form a topological space H̃∗C (a “core” of H̃∗ , analogous to the compact core C of P ).

Both points p1, p2 ∈ e ∩ ∂H̃∗C are on the same component of ∂H̃∗C , so we can choose a path

β contained in a single component of ∂H̃∗C whose endpoints are p1 and p2 . We may deform
β slightly so that it does not pass through any edges other than e. We can now drill out the
neighbourhoods ν(ei) of the edges of H̃∗C to get back H̃ , with the curve β contained in a

component of ∂H̃ ∩ ∂C̃ , and meeting ∂H̃ \ ∂C̃ only at its endpoints, which are on the edge
boundary near the two ends of e.

We may assume that the path β starts in some (doubly truncated) tetrahedron σ0 at an
intersection between a boundary hexagonal face and a rectangular face, traverses through the
tetrahedra of H̃ along ∂H̃ ∩ ∂C̃ , and then returns back to σ0 , ending at the other end of the
rectangular face.

Consider such a path β that visits a minimal number of tetrahedra. Since the tetrahedra
form a tree, there must be at least one “leaf” tetrahedron σ in the path. That is, the path
enters σ from one face gluing (at the interior hexagonal face f ) and exits at the same face
gluing. The path β is restricted to lie in ∂H̃ ∩ ∂C̃ , and so it enters σ at the edge of one
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of the three boundary hexagonal faces of σ adjacent to f . There is no path within σ along
∂H̃ ∩ ∂C̃ from one of the boundary hexagonal faces to any of the others, so it must exit σ at
the same edge. But then the part of β in σ could be homotoped away, and the path was not
minimal. This gives a contradiction. �

4.2 Representations of the handlebody group

Since there are no gluing consistency conditions to satisfy for the tetrahedra in H̃∗ (because
every edge of H̃∗ is of infinite degree), we can assign arbitrary shape parameters z ∈ C\{0, 1}
to the tetrahedra of H̃∗ and define a pseudo-developing map D : H̃∗ → IH

3
. This follows as

in the proof of Lemma 13 from the fact that H̃∗ is homotopy equivalent to a tree. In
particular, we can build the developing map by starting with a tetrahedron σ0 of H̃∗ and any
ideal hyperbolic tetrahedron in IH3 , and then developing along any non-backtracking path
of tetrahedra in H̃∗ starting with σ0 , using any non-degenerate shapes of ideal hyperbolic
tetrahedra. As we develop, we never have any consistency conditions to satisfy, because the
tetrahedra of H̃∗ form a tree.

Lemma 14 Suppose that the parameters for the tetrahedra in H̃∗ are lifts of the parameters
of the tetrahedra of H. Then there exists a well-defined representation ρ : π1H → PSL2(C).

Moreover, this representation makes D : H̃∗ → IH
3

equivariant if and only if for each edge e
in P, the holonomy around e, h(e) is an element of S1.

Proof The map D has been defined as in the Yoshida construction, and we would like to
define ρ in a similar fashion. Consider a triangle τ0 of H̃∗ , and its image γ · τ0 under the
deck transformation γ ∈ π1H . The image of the three vertices of τ0 under D give a triplet of
distinct points on ∂IH3 , and the three vertices of γ · τ0 give another triplet. We define ρ(γ)
to be the unique element of PSL2(C) which maps the first triplet to the second. Since the
parameters for the tetrahedra in H̃∗ are lifts of the parameters of the tetrahedra of H , this
definition is independent of the choice of τ0. This proves the existence of ρ.

It follows from the construction that D(γ · x) = ρ(γ)D(x) for all x ∈ H̃∗ and γ ∈ π1(H)
except possibly for those x that are contained in the 1–skeleton. In H̃, we have a product
structure on the lifts of the edge boundary components of H, which is preserved by the
deck transformations. Consider a deck transformation γ ∈ π1H, which preserves the edge
boundary component B of H̃. Now in H̃∗, B is mapped to a 1–simplex, e′, and l = D(e′)
is a geodesic in IH3. Composing D with an isometry of IH3, we may assume that l = [0,∞].
Since γ preserves the product structure, γ · x = x for each x ∈ e′ . Thus D is equivariant
with respect to ρ if and only if ρ(γ) acts on IH3 by fixing l pointwise, i.e. acts as a (possibly
trivial) rotation about l.

In H̃∗, γ acts as a translation on the set of all 3–simplices incident with e′. A connected
fundamental domain for this action consists of a finite number of 3–simplices meeting in e′,
and their number equals the degree of the corresponding edge e in P. Let σ be a 3-simplex
in this fundamental domain. There is a unique isometry taking D(σ) to D(γ · σ), and this
is the rotation with eigenvalue precisely the product h(e) of all shape parameters at e in P.
Hence ρ(γ) is a rotation if and only if h(e) is an element in S1. �
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Definition 15 Given H̃∗ → P, D : H̃∗ → IH
3

and ρ : π1H → PSL2(C) as above, let

Po = H̃∗/ ker(ρ) and No = Po \ P (0)
o . Since π1(H) acts simplicially, Po and No have natural

decompositions into simplices.

If o(ξe) is finite for each e ∈ N (1), then each edge in No has finitely many 3–simplices incident

with it; namely if N
(1)
o 3 ẽ→ e ∈ N (1), then deg(ẽ) = o(ξe) deg(e). In this case, the natural

map No → N is a (not necessarily finite) branched cover, with branch locus contained in the
1–skeleton and group of deck transformations isomorphic to π1H/ ker(ρ). If o(ξe) is infinite
for some e, then the points of No mapping to e are not manifold points.

Proofs of Theorems 1 and 3 We first give a proof of Theorem 1, and then modify it for
the general case. Note that the inclusion map H ↪→ C induces an epimorphism π1H � π1C .
The kernel of this map is generated by certain loops around the annuli in ∂H \ (∂H ∩ ∂C).
For each edge e we denote by γe a loop around the annulus corresponding to e, where γe is
a level set in the product structure, with an arbitrary orientation.

Given Lemma 9, it suffices to assume for contradiction that there is a solution Z ∈ D(T ),
but that T is not virtually almost non-singular. In particular, by Lemma 5, some edge is
inessential. We work with the compact core C of N .

Give the tetrahedra in H̃ the shape parameters inherited from Z ∈ D(T ) (which are first
inherited by H, then lifted to H̃ and finally inherited by H̃∗ ). Associated are a developing
map D : H̃∗ → IH3 and a representation ρ : π1(H) → PSL2(C). Recall that we specify a
quotient map H̃ → H̃∗ by collapsing edge boundary components R × [0, 1] to the second
factor, then collapsing each vertex boundary component.

Now let e be an inessential edge in N . Consider a path α′ : [0, 1] → H , which is the core
curve of a rectangular face of a doubly truncated tetrahedron incident to the edge boundary
annulus corresponding to e. Let α : [0, 1] → H be the result of pushing α′ slightly off the
rectangle into the tetrahedron, keeping the endpoints on the boundary hexagonal faces. Then
α is parallel to e, as in Figure 1.

Figure 1: A doubly truncated tetrahedron of H, with the path α parallel to the boundary
rectangle corresponding to an edge of P .

Since e is inessential in C , there is a homotopy of it into ∂C , fixing its endpoints. As α
(viewed as a path in C since H ⊂ C ) is parallel to e, we can use the same homotopy to
homotope α into ∂C , fixing its endpoints, by first homotoping across the rectangle with α
and e as one pair of opposite sides, and the other sides on ∂C in the obvious way. Viewing

11



the homotopy as a map D2 = © → C , we may deform it by a small amount to produce a
homotopy h transverse to P (1) , and moreover so that the intersection of h(©) with ∂(ν(P (1))
consists of a finite number of circles, each of which (pulled back through h) bounds a disk
in © which is contained in a neighbourhood ν(ei) and intersects ei once, transversely. Thus
each circle goes around the cylindrical part of ∂C corresponding to an edge of N , and is
homotopic to a γe . In particular let β : [0, 1]→ ∂C be the path after the homotopy, and by
deforming if necessary we may assume that β in fact maps into ∂H ∩ ∂C . See Figure 2.

H  ¶  ®
°
e

1

°
e

2

±e
1

±e
2

°
e
k

±
e
k

¯  µ  @H  \  @C

Figure 2: The homotopy h : © → C between α and β . The parts mapping into H are
shaded lightly, and the disks mapping into the neighbourhood of an edge in C shaded more
darkly.

We choose a base-point for π1(H) at α(0). Now ©∩ h−1(H) is a sphere with a number of
boundary components, where ∂© = αβ−1 and all other boundary components correspond to
circles γk : [0, 1] → H, which are fibres in the product structure of the edge boundary. For
each γk choose a non self-intersecting path δk on ©∩ h−1(H) from α(0) to γk(0) = γk(1).
We can choose these paths to be disjoint apart from at α(0). Then © ∩ h−1(H) gives the
following relation between the elements in π1(H,α(0)) represented by these loops:

[αβ−1] =
∏

[δkγkδ
−1
k ]. (4)

Choose a lift of α(0) to H̃ and lift α accordingly. Let α̃∗ be the composition with the

quotient H̃ → H̃∗. Then Dα̃∗ : [0, 1] → H3
is its image under the pseudo-developing map.

Define β̃ , β̃∗ and Dβ̃∗ similarly, choosing the lift β̃ to start from the same point as α̃ does.
Since the pseudo-developing map is well-defined and since the endpoints of e are on the same
components of ∂H ∩ ∂C as the respective ends of α, Dα̃∗(0) and Dα̃∗(1) are distinct points

on ∂H3 . With our choice of base-points, ρ([αβ−1]) is an isometry of H3
taking Dα̃∗(0) to

Dα̃∗(1).

We now claim that for each term δkγkδ
−1
k in the right hand side of relation (4), we have

ρ([δkγkδ
−1
k ]) = 1. Indeed, ρ([δkγkδ

−1
k ]) can be expressed as a product of elementary face

pairings. Now the products arising from δk and δ−1k are inverses. Hence ρ([δkγkδ
−1
k ]) =

1 if and only if the product corresponding to γk is trivial. But γk gives a rotation with
eigenvalue the product of all shape parameters around the edge corresponding to that loop.
By hypothesis, this product equals 1, and hence the claim.

But then ρ([αβ−1]) = 1, contradicting the fact that it acts non-trivially on ∂IH3. This com-
pletes the proof of Theorem 1.

For the general case, the above proof can be applied using a punctured sphere in No. The
curves γk can only correspond to edges of No which have finite degree, and the eigenvalue
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of the associated rotation is precisely of the form ξoee = 1, giving the same contradiction as
above. �

Remark 16 The main restriction in using Yoshida’s construction is the fact that ideal
simplices in the universal cover are mapped to hyperbolic ideal simplices in hyperbolic 3–
space. Daryl Cooper pointed out to us that the proofs in this section could be given using
local arguments by subdividing the ideal tetrahedra in N. The authors feel that the approach
using triangulations is more appropriate for this volume and the man it is dedicated to.

5 A trip to the zoo

We give three examples of triangulations of S3 with knotted or linked edges, which exhibit
interesting features. Special hyperbolic cone-manifold structures on the first triangulation can
be found in work by Boileau-Porti [1] and Hodgson [5], and the two concluding triangulations
were provided by Bus Jaco.

(a) (b) (c) 

Figure 3: Triangulation of S3 with the Hopf link as edges.

5.1 The Hopf link

Consider the one-tetrahedron three-edges triangulation of S3 shown in Figure 3(a). We have
D(T ) = ∅, since there are degree one edges. Giving the parameter z to the degree-one edges
e0 and e1 , and letting e2 be the degree-four edge, the cone-deformation variety is:

D(T ; ?) = {(Z, ξ) = ((z, z′, z′′), (z, z, z−2)) | z ∈ S1 \ {1} } ∼= S1 \ {1}.

There is one ideal point (corresponding to z → 1) and one flat solution (corresponding to
z = −1). The degeneration z → 1 corresponds to a normal surface which is a Heegaard torus
in S3, and the flat solution will be analysed below using the face pairings.

The remaining structures come in pairs (z, z) and it suffices to study the case =(z) > 0. Here,
|z| = 1 implies that the arguments of z, z′, z′′ are the angles of an isoceles triangle. Letting
α denote the argument of z, the angle around e2 is 2(π − α) and the angle around each of
e0 and e1 is α. This gives hyperbolic cone-manifold structures, with respective cone angles
(α, α, 2(π−α)). Since the parameter z at the degree-one edges is an element of S1, it is easily
verified that all of these hyperbolic cone-manifold structures are complete; see Figure 4.
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Figure 4: Geometry of the hyperbolic cone-manifolds for the Hopf link: The shown horo-
spherical triangles give a cross-section of the cusps. The two face pairings are rotations about
the left and right edges respectively.

In order to analyse the face pairings, we normalise the developing map so that the degree one
edges are mapped to the geodesics [1,∞] and [0, z′′]. The corresponding pairings for the faces
incident with these edges are denoted γ0 and γ1 respectively. The holonomy around the third
edge is denoted γ2. The images of the group elements under the holonomy representation are
determined by the following Möbius transformations:

ρz(γ0) : [1,∞, z′′] 7→ [1,∞, 0],

ρz(γ1) : [0, z′′, 1] 7→ [0, z′′,∞],

ρz(γ2) : [0,∞, 1] 7→ [0,∞, z−2],
where ρz(γ2) = ρz([γ1, γ0]). This gives:

ρz(γ0) =
1√
z

(
z 1− z
0 1

)
, ρz(γ1) =

1√
z

(
1 0
−z z

)
, ρz(γ2) =

(
z 0
0 z−1

)
.

Letting z = eiθ, we get the traces (2 cos(θ/2), 2 cos(θ/2), eiθ + e−iθ).

At z = −1, we have

ρ−1(γ0) =

(
i −2i
0 −i

)
, ρ−1(γ1) =

(
−i 0
−i i

)
, ρ−1(γ2) =

(
−1 0
0 −1

)
.

Geometrically, as z → −1, the fundamental domain degenerates to a quadrilateral, and the
identification space is a sphere with cone angles (0, 0, π). By construction, this is a hyperbolic
2–cone-manifold.

As z → 1, the limiting representation is infinite cyclic:

ρ1(γ0) =

(
1 0
0 1

)
, ρ1(γ1) =

(
1 0
−1 1

)
.

The fact that ρ1(γ1) is the generator of the image corresponds to the chosen normalisation:
The edge [0, z′′] pops off at infinity (since z′′ → 0 and z → 1), giving ρ1(γ0) = 1.
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5.2 The trefoil knot

Let T31 denote the minimal layered triangulation of S3 with one degree-one edge e1 and one
degree-five edge e2, as shown in Figure 5. Here, e1 is the trefoil knot. Again, D(T31) = ∅ and

D(T31 ; ?) = {(Z, ξ) = ((z, z′, z′′), (z, z−1)) | z ∈ S1 \ {1} } ∼= S1 \ {1},

where z is the parameter given to e1. The angle at e1 is α and the angle at e2 is 2π − α.

K(a) (b) 

1

0

1

z
z-1 4

1

K3
1

Figure 5: Triangulations of S3 with knots as edges. In diagram (a) the edge K31 is a trefoil.
In diagram (b) the edge K41 is the figure 8 knot.

As above, there is an ideal point (corresponding to z → 1), and one flat solution (correspond-
ing to z = −1). They will be analysed below using the face pairings. The degeneration z → 1
corresponds to a thin edge-linking torus for eK , and hence to the trefoil knot complement.

The remaining structures come in pairs (z, z) and it can again be verified directly that they
all give complete hyperbolic cone-manifold structures with singular locus consisting of the
three edges; see Figure 6.

The fundamental group is again generated by two face pairings, denoted γ3 and γ∞. The
holonomy images are:

ρz(γ3) : [0, 1,∞] 7→ [1,
z

z − 1
, 0], ρz(γ∞) : [∞, z

z − 1
, 0] 7→ [∞, z

z − 1
, 1].

These lead to representations:

ρz(γ3) =
1√
z

(
0 z
−1 z

)
, ρz(γ∞) =

1√
z

(
1 z
0 z

)
.

Their product γ2 = γ3γ∞ is always of order two:

ρz(γ2) =

(
0 z
−z−1 0

)
.

At z → 1, we have:

ρ1(γ3) =

(
0 1
−1 1

)
, ρ1(γ∞) =

(
1 1
0 1

)
, ρ1(γ2) =

(
0 1
−1 0

)
.

These generate the modular group, and the quotient of IH2 is a sphere with 2, 3 and ∞ cone
points. See Figure 7. The flat solution does not appear to have a nice interpretation.
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Figure 6: Geometry of the hyperbolic cone-manifolds for the trefoil: The shown horospherical
triangles give a cross-section of the cusps. One face pairing is a rotation about the left-hand
edge; the other identifies the faces incident with the right-hand edge with a twist.

5.3 The figure eight knot

In the previous examples, we have analysed structures arising at ordinary points of the cone-
deformation variety as well as a single ideal point which corresponding to a 1–dimensional or
2–dimensional collapse. In the last example, we exhibit a surface of ideal points parameterising
3–dimensional structures. See Figure 5(b).

Label the tetrahedra z0, z1 and z2 at their upper and lower edges in Figure 5. Then the
generalised gluing equations are:

z0 = ξK (5)(
1

z0

)(
1

z1

)(
z2 − 1

z2

)
= ξ1 (6)(

1

z0

)(
z1 − 1

z1

)(
1

z2

)
= ξ2 (7)

z0

(
z21

1− z1

)(
z22

1− z2

)
= ξ3 (8)

These simplify to:

z0 = ξK (9)

ξ3 = ξ−1K ξ−11 ξ−12 (10)

z1z2ξ2ξK = (z1 − 1) (11)

z1z2ξ1ξK = (z2 − 1) (12)

Hence D(T41 ; ?) is parameterised by (ξK , z1, z2), where ξK ∈ S1 and z1, z2 ∈ C \ {0, 1},
subject to

z′′2
z1
∈ S1 from (12) and

z′′1
z2
∈ S1 from (11) (note that z′′i = zi−1

zi
).
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Figure 7: A fundamental domain of the action of ρ1 for the trefoil on IH2 is marked D .

Putting z1 = e−iθz′′2 , where θ ∈ [0, 2π), the second condition gives z′2e
iθ − z′′2z′2 ∈ S1 . Letting

z′′2 = x+ iy for x, y ∈ IR, this yields a single equation in x, y, θ, and the space of solutions is
a surface in IR2 × S1 as shown in Figure 8. Now D(T41 ; ?) is parameterised by (ξK , x, y, θ),
and since ξK ∈ S1 is arbitrary, D(T ; ?) is the product of this surface with S1 .

Figure 8: D(T41 ; ?) is the product of this surface in IR2 × S1 with S1 .

The only ideal points are at ξK = 1, parameterised by (1, x, y, θ), and the associated normal
surface is the thin edge linking torus around K , which splits the manifold into a solid torus
and the figure 8 knot complement. Crushing along this surface identifies the single arrow
edge with the double arrow edge, and gives us the canonical triangulation of the figure 8 knot
complement. The equations become:
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z0 = 1 (13)

z2 − 1

z1z2
= ξ1 (14)

z1 − 1

z1z2
= ξ2 (15)

z21z
2
2

(1− z1)(1− z2)
= ξ3 (16)

To get the complete structure on the figure eight knot complement, we need ξ1 = 1 = ξ2 ,
which implies that z1 = z′′2 and z2 = z′′1 . Then z1 = e−iθz′′2 = e−iθz1 , so θ = 0, and we get
z1 = z′′2 . We also have z2 = z′′1 , which implies that z′′2 = z′1 , so z1 = z′1 , and z1 is the shape
parameter of the regular hyperbolic ideal tetrahedron. Similarly for z2 . Note that solutions
in a neighbourhood of this solution give 3–dimensional hyperbolic cone-manifold structures
on the figure eight knot complement with singular locus contained in the ideal edges.
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