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Abstract. We represent agents as sets of strings. Each string encodes
a potential interaction with another agent or environment. We represent
the total set of dynamics between two agents as the intersection of their
respective strings, we prove complexity properties of player interactions
using Algorithmic Information Theory. We show how the proposed con-
struction is compatible with Universal Artificial Intelligence, in that the
AIXI model can be seen as universal with respect to interaction.1
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1 Introduction

Whereas classical Information Theory is concerned with quantifying the ex-
pected number of bits needed for communication, Algorithmic Information The-
ory (AIT) principally studies the complexity of individual strings. A central
measure of AIT is the Kolmogorov Complexity C(x) of a string x, which is the
size of the smallest program that will output x on a universal Turing machine.
Another central definition of AIT is the universal prior m(x) that weights a
hypothesis (string) by the complexity of the programs that produce it [LV08].
This universal prior has many remarkable properties; if m(x) is used for in-
duction, then any computable sequence can be learned with only the minimum
amount of data. Unfortunately, C(x) and m(x) are not finitely computable.
Algorithmic Information Theory can be interpreted as a generalization of classi-
cial Information Theory [CT91] and the Minimum Description Length principal.
Some other applications include universal PAC learning and Algorithmic Statis-
tics [LV08,GTV01].

The question of whether AIT can be used to form the foundation of Artificial
Intelligence was answered in the affirmative with Hutter’s Universal Artificial
Intelligence (UAI) [Hut04]. This was achieved by the application of the universal
prior m(x) to the cybernetic agent model, where an agent communicates with
an environment through sequential cycles of action, perception, and reward. It
was shown that there exists a universal agent, the AIXI model, that inherits
many universality properties from m(x). In particular, the AIXI model will
converge to achieve optimal rewards given long enough time in the environment.

1 The authors are grateful to Leonid Levin for insightful discussions and acknowledge
partial support by NSF grant 0713229.
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As almost all AI problems can be formalized in the cybernetic agent model, the
AIXI model is a complete theoretical solution to the field of Artificial General
Intelligence [GP07].

In this paper, we represent agents as sets of strings and the potential dynam-
ics between them as the intersection of their respective sets of strings (Sec. 2).
We connect this interpretation of interacting agents to the cybernetic agent
model (Sec. 2.2). We provide background on Algorithmic Information Theory
(Sec. 3) and show how agent learning can be described with algorithmic com-
plexity (Sec. 4). We apply combinatorial and algorithmic proof techniques [VV10]
to study the dynamics between agents (Sec. 5). In particular, we describe the
approximation of agents (Th. 2), the conditions for removal of superfluous in-
formation in the encoding of an agent (Th. 3), and the consequences of having
multiple payers achieving the same rewards in an environment (Th. 4). We show
how the interpretation given in Sec. 2 is compatible with Universal Artificial
Intelligence, in that the AIXI model has universality properties with respect to
our definition of “interaction” (Sec. 6).

2 Interaction as Intersection

We define players A and B as two sets containing strings of size n. Each string
x in the intersection set A ∩ B represents a particular “interaction” between
players A and B. We will use the terms string and interaction interchangeably.
This set representation can be used to encode non-cooperative games (Sec. 2.1)
and instances of the cybernetic agent model (Sec. 2.2). Uncertainties in instances
of both domains can be encoded into the size of the intersections. The amount
of uncertainty between players is equal to |A ∩ B|. If the interaction between
the players is deterministic then |A∩B| = 1. If uncertainty exists, then multiple
interactions are possible and |A ∩ B| > 1. We say that player A interacts with
B if |A ∩B| > 0.

2.1 Non-cooperative Games

Sets can be used to encode adversaries in sequential games [RN09], where agents
exchange a series of actions over a finite number of plies. Each game or in-
teraction consists of the recording of actions by adversaries α and β, with
x = (a1, b1)(a2, b2)(a3, b3) for a game of three rounds. The player (set) rep-
resentation A of adversary α is the set of games representing all possible actions
by α’s adversary with α’s responding actions, and similarly for player B repre-
senting adversary β. An example game is rock-paper-scissors where adversaries
α and β play two sequential rounds with an action space of {R,P, S}. Adversary
α only plays rock, whereas adversary β first plays paper, then copies his adver-
sary’s play of the first round. The corresponding players (sets) A and B can be
seen in Fig. 1a. The intersection set of A and B contains the single interaction
x =“(R,P )(R,R),” which is the only possible game (interaction) that α and β
can play.

Example 1 (Chess Game). We use the example of a chess game with uncertainty
between two players: Anatoly as white and Boris as black. An interaction x ∈



A B
(R,R)(R,R) (R,P)(R,R)
(R,R)(R,P) (R,P)(P,R)
(R,R)(R,S) (R,P)(S,R)
(R,P)(R,R) (P,P)(R,P)
(R,P)(R,P) (P,P)(P,P)
(R,P)(R,S) (P,P)(S,P)
(R,S)(R,R) (S,P)(R,S)
(R,S)(R,P) (S,P)(P,S)
(R,S)(R,S) (S,P)(S,S)

working tape ... working tape ...
Environment

µ

y1 y2 y3 y4 y5 y6 y7 �

r1 o1 r2 o2 r3 o3 r4 o4 r5 o5 r6 o6 r7 o7 �

Agent

p

perception x:

action y:

Fig. 1. (a) The set representation of players A and B playing two games of pa-
per, rock, scissors. The intersection set of A and B contains the single interaction
x =“(R,P )(R,R).” (b) The cybernetic agent model.

A ∩B between Anatoly and Boris is a game of chess played for at most m plies
for each player, with x = a1b1a2b2 . . . ambm = ab1:m. The chess move space V ⊂
{0, 1}∗ has a short binary encoding, whose precise definition is not important. If
the game has not ended afterm rounds, then the game is considered a draw. Both
players are nondeterministic, where at every ply, they can choose from a selection
of moves. Anatoly’s decisions can be represented by a function fA : V∗ → 2V and
similarly Boris’ decisions by fB. Anatoly can be represented by a set A, with
A = {ab1:m : ∀1≤k≤m ak ∈ fA(ab1:k−1)}, and similarly Boris by set B. Their
intersection, A∩B, represents the set of possible games that Anatoly and Boris
can play together.

Generally, sets can encode adversaries of non-cooperative normal form games,
with their interactions consisting of pure Nash equilibriums [RN09]. A normal
form game is defined as (p, q) with the adversaries represented by normalized
payoff functions p and q of the form {0, 1}n × {0, 1}n → [0, 1]. The set of pure
Nash equilibriums is {〈x, y〉 : p(x, y) = q(y, x) = 1}. For each payoff function
p there is a player A = {〈x, y〉 | p(x, y) = 1}, and for each payoff function q
there is player B. The intersection of A and B is equal to the set of pure Nash
equilibriums of p and q.

2.2 Cybernetic Agent Model

The interpretation of “interaction as intersection” is also applicable to the cy-
bernetic agent model used in Universal Artificial Intelligence [Hut04]. With the
cybernetic agent model, there is an agent and an environment communicating in
a series of cycles k = 1, 2, . . . (Fig. 1b). At cycle k, the agent performs an action
yk ∈ Y, dependent on the previous history yx<k = y1x1 . . . yk−1xk−1. The envi-
ronment accepts the action and in turn outputs xk ∈ X , which can be interpreted
as the kth perception of the agent, followed by cycle k + 1 and so on. An agent
is defined by a deterministic policy function p : X ∗ → Y∗ with p(x<k) = y1:k to
denote output y1:k = y1y2 . . . yk on input x<k = x1x2 . . . xk−1. We use the terms
policy and agent interchangeably. The inputs are separated into two parts, xk ≡
rkok, with rk = r(xk) representing the reward and ok representing the observa-
tion. We say r(x1:m) =

∑m
i=1 r(xi) and we assume bounds on rewards with 0 ≤

rk ≤ c for all k. There is uncertainty in the environment; it can be represented



by a probability distribution over infinite strings, where µ(x1 . . . xn) is the prob-
ability that an infinite string starts with x1 . . . xn. In Hutter’s notation [Hut04],
an underlined argument xk is a probability variable and non-underlined argu-
ments xk represent the condition with µ(x<nxn) = µ(x1:n)/µ(x<n). The prob-
ability that the environment reacts with x1 . . . xn under agent output y1 . . . yn
is µ(y1x1 . . . ynxn) = µ(yxn). The environment is chronological, in that input xi
only depends on yx<iyi. The horizonm of the interaction is the number of cycles
of the interaction. The value of agent p in environment µ is the expected reward
sum V p,µ1:m =

∑
x1:m

r(x1:m)µ(yx1:m)|y1:m=p(x<m). The optimal agent that maxi-

mizes value V p,µ1:m is pµ = argmaxp V
p,µ
1:m, with value V ∗,µ

1:m = V p
µ,µ

1:m . The optimal
expected reward given a partial history yx1:k is V p,µ1:m(yx1:k).

It is possible to construct players (sets) A and B from the agent p and
environment µ where A “interacts” (intersects) with B only if agent p can achieve
a certain level of reward in µ. This construction enables us to apply the results
and proof techniques of section 5 to the cybernetic agent model. To translate
p and µ to A and B, we fix two parameters: a time horizon m and a difficulty
threshold τ . For every agent p, there is a player Apm, with Apm = {yx1:m :
y1:m = p(x<m)}. There are several possible ways to construct a set B from
an environment µ. One direct method is for every environment µ, to define a
player Bµm,τ , with Bµm,τ = {yx1:m : r(x1:m) ≥ τ, µ(yx1:m) > 0}. Player Bµm,τ
represents all possible histories of µ (however unlikely) where the reward is at
least τ . If Apm ∩Bµm,τ = ∅, then environment µ is “too difficult” for the agent p;
there is no interaction where the agent can receive a reward of at least τ . We say
the agent p interacts with the environment µ at time horizon m and difficulty τ
if Apm ∩Bµm,τ 6= ∅.

Example 2 (Peter and Magnus). We present a cybernetic agent model inter-
pretation of chess with reward based players Peter and Magnus (same rules as
example 1). Peter, the agent p, has to be deterministic whereas Magnus, the
environment µ, has uncertainty. At cycle k, each action yk is Peter’s move and
each perception xk is Magnus’ move. At ply m in the chess game, Magnus re-
turns a reward of 1 if Peter has won. In rounds where the game is unfinished or
if Peter loses or draws, the reward is 0. The player (set) Apm represents Peter’s
plays for m rounds. The player (set) for Magnus with difficulty threshold τ = 1
and m plies, Bµm,1 is the set of all games that Magnus loses in m rounds or less.
If Am ∩ Bµm,1 = ∅, then Peter cannot interact with Magnus at difficulty level 1;
Peter can never beat Magnus at chess in m rounds or less. If Am ∩ Bµm,1 6= ∅
then Peter can beat Magnus at a game of chess in m rounds or less.

Another construction of a player Dµ
m,τ with respect to environment µ, is

Dµ
m,τ = {yx1:m : ∀k V ∗,µ

1:m(yx1:k)/V
∗,µ
1:m ≥ τ}. With this interpretation, player

Dµ
m,τ represents all histories where at each time k, 1 ≤ k ≤ m, an agent can

potentially achieve an expected reward of at least τ times the optimal expected
reward. If Apm ∩ Dµ

m,τ = ∅, then environment µ is “too difficult” for the agent
p; there is no interaction where at every cycle k the agent has the potential to
receive an expected reward of at least τV ∗,µ

1:m .



3 Background in Algorithmic Information Theory

We denote finite binary strings by x ∈ {0, 1}∗ and the length of strings by l(x).
Let the pairing function 〈·, ·〉 be the standard one-to-one mapping from N ×N
toN , where: 〈x, y〉 = x′y = 1l(l(x))0l(x)xy and l(〈x, y〉) = l(y)+l(x)+2l(l(x))+1.
The Kolmogorov complexity C(x) is the length of the shortest binary program
to compute x on a universal Turing machine ψ, C(x) = min{l(d) : ψ(d) = x}.
The prefix-free Kolmogorov complexity, K(x), restricts the universal machine ψ
so no halting program is a proper prefix of another halting program. For the
rest of this paper, we use plain Kolmogorov complexity. Kolmogorov complexity
is not finitely computable. The conditional Kolmogorov complexity of x relative
to y, C(x|y), is defined as the length of a shortest program to compute x, using y
as an auxiliary input to the computation. The complexity of two strings x and y
is denoted by C(x, y) = C(〈x, y〉). The conditional complexity of two strings
is C(x|y, z) = C(x|〈y, z〉). The complexity of information in x about y is I(x :
y) = C(y)−C(y|x). The conditional mutual information is I(x : y|z) = C(y|z)−
C(y|x, z) and can be interpreted as the information z receives about y when given
x. The complexity of a function f : {0, 1}∗ → {0, 1}∗ is C(f) = min{C(p) :
∀xψ(p, x) = f(x)}. The Levin complexity is defined by Ct(x) = minp{l(p) +
log t(p, x) : ψ(p) = x}, with t(p, x) being the number of steps taken by ψ until
x is printed (without ψ necessary halting). Levin complexity is computable. The
complexity of a finite set S is C(S), the length of the shortest program f from
which the universal Turing machine ψ computes a listing of the elements of S
and then halts. If S = {x1, . . . , xn}, then ψ(f) = 〈x1, 〈x2, . . . , 〈xn−1, xn〉 . . .〉〉.
The conditional complexity C(x|S) is the length of the shortest program from
which ψ, given S literally as auxiliary information, computes x. For every set S
containing x, it must be that C(x|S) ≤ log |S|+O(1). The randomness deficiency
is the lack of typicality of x with respect to set S, with δ(x|S) = log |S|−C(x|S),
for x ∈ S and ∞ otherwise. If δ(x|S) is small enough, then x is a typical element
of S; x satisfies all simple properties that hold with high majorities of strings
in S.

Example 3 (Anatoly’s Games). Chess player Anatoly with function fA can be
represented as a set A (see example 1). Set A is simple relative to fA and the
maximum number of plies m, with C(A|fA,m) = O(1), where O(1) is the length
of code required to use fA and m to enumerate all games x ∈ A.

The following theorem, used in section 5, shows that if a string x is contained by
a large number of sets of a certain complexity, then it is contained by a simpler
set [VV04]. The enumerative complexity, CE(F), is the Kolmogorov complexity
of a non halting program that enumerates all the sets F ∈ F . This theorem also
holds for conditional complexity bounds, C(F |y).

Theorem 1 ([VV04]). Let F be a family of subsets of a set of strings G. If
x ∈ G is an member of each of 2k sets F ∈ F with C(F ) ≤ r, then x is a member
of a set F ′ in F with C(F ′) ≤ r − k +O(log k + log r + log log |G|+ CE(F)).



4 Player Strategy Learning

PlayersA and B can learn information about each other’s strategies from a single
interaction (game) x ∈ A ∩ B or from their entire interaction set (all possible
games) A∩B. The capacity of a player A is the maximum amount of information
that A can receive about another player through all possible interactions, i.e.
their interaction set. It is equal to the log of the number of possible subsets that
it can have, log 2|A| = |A|. We define the lack of typicality of a subset S with
respect to A to be δ(S|A) = |A| − C(S|A), for S ⊆ A and ∞ otherwise.

Example 4 (Capacity). Boris B uses a range of black openings whereas Bill B′

uses only the Sicilian defence. So Boris has a higher capacity, |B| ≫ |B′|, and
can potentially learn more than Bill.

Example 5 (Randomness Deficiency). Let A be the chess games played by Ana-
toly. Bob is a simple player B′, who only moves his knight back and forth. Set
S = A∩B′ represents all A’s games with B′. The randomness deficiency of these
games, δ(S|A), is high, as S is easily computable from A, with C(S|A) ≪ |A|.
Let T ⊆ A, in which T = A ∩ B are games played between Anatoly and Boris,
who uses a range of chess strategies unknown to Anatoly. Then δ(T |A) is low
and C(T |A) is high.
If A views every interaction in A∩B, the amount of information B reveals about
itself is, I(A∩B :B|A), the mutual information between B and A∩B, given A.
This term can be reduced to C(A∩B|A)−C(A∩B|A,B) = C(A∩B|A)+O(1).
We define the amount of knowledge that A received about B from the interaction
setp as:

R(B|A) = C(A ∩B|A). (1)

The higher the randomness deficiency, δ(A ∩B|A), of an interaction set, A∩B,
with respect to player A, the less information, R(B|A), player A can receive
about its opponent B, with

R(B|A) + δ(A ∩B|A) = |A|. (2)

Player A receives the most information about its opponent when the randomness
deficiency is δ(A ∩B|A) ≈ 0.

Example 6. Let Anatoly, A, and Bob, B′, be the players of example 5. Bob has
a simple strategy and has a lower capacity |B′| ≪ |A|, but he learns a lot from
Anatoly, with δ(A ∩ B′|B′) ≈ 0 and R(A|B′) ≈ |B′|. Anatoly learns very little
from Bob, with R(B′|A) ≈ 0 and δ(A ∩B′|A) ≈ |A|.

Players can reveal information about themselves through a single interaction.
The amount of information that A received about B from their interaction x is

I(x : B|A) = C(x|A) − C(x|A,B). (3)

A graphical depiction of the complexities relating to A, B, and x can be seen
in Fig. 2. We define the lack of typicality of an interaction x with respect to
both players to be

δ(x|A,B) = log |A ∩B| − C(x|A,B) (4)



A (Anatoly) B (Boris)

C(A|x,B) C(B|x,A)

C(x|A,B)

I(x:B|A)I(x:A|B)

x
C(B|A)C(A|B)

C(x|B) C(x|A)

∩

∩ ∩

∩

Fig. 2. The complexities and information of A, B, and their interaction x. The rela-
tionships hold up to logarithmic precision.

for x ∈ A∩B and ∞ otherwise. If δ(x|A,B) is small, then x represents a typical
interaction. The information passed from player B to player A through a single
interaction is represented by

I(x : B|A) + δ(x|A) = log |A|/|A ∩B|+ δ(x|A,B). (5)

The information passed between players through a single interaction with
the same capacity is

I(x :B|A) + δ(x|A) = I(x :A|B) + δ(x|B) +O(1). (6)

Example 7. Anatoly A plays a game x with Boris B who has the same capacity
with |A| = |B|. Anatoly tricks Boris with a King’s gambit and the game x
follows a series of moves extremely familiar to Anatoly. Boris reacts with the
most obvious move at every turn. In this case the game is simple to Anatoly,
with δ(x|A) being large and I(x :B|A) being small. The game is new to Boris
with δ(x|B) being small and I(x :A|B) being large. Thus Boris learns more than
Anatoly from x.

If the players have a deterministic interaction, then A ∩ B = {y} and the
information A received from B reduces to I(y :B|A) + δ(y|A) = log |A|.

5 Player Approximation and Interaction Complexity

We show that, given an interaction x between players A and B, A can “con-
struct” an approximate player B′ that has interaction x using a small number of
extra bits ǫ, where C(B′|A, x) = ǫ. We also show that the conditional complexity
C(B′|A) of the approximate player B′ is not greater than the amount of infor-
mation I(x :B|A) that A obtains about B (up to logarithmic precision). We use
the simplified notation logA = log |A|. We also use the player space notation,
B, to denote a set of sets of strings.

Theorem 2. Given are a player space B and players A and B ∈ B over strings
of size n with x ∈ A ∩ B and C(B) = O(log n). Then there is a player B′ ∈ B
with x ∈ B′, C(B′|A, x) = O(s), and C(B′|A) ≤ I(x :B|A) + O(s), with s =
logC(B|A) + logn.



Proof. Let r = C(B|A). We define G as the set of strings of size n, with
log log |G| = logn. We set F = B, and so CE(F) = O(log n). Let N be the
number of sets S ∈ B, with C(S|A) ≤ r and x ∈ S. We first show that
C(B|A, x) ≤ logN + O(log nr). There is a program, that when given x, A,
B, and r, with C(B, r) = O(log nr), can enumerate all sets in B containing x
with conditional complexity to A being less than or equal to r. Thus B can be
created using such a program and an index of size ⌈logN⌉. By the application of
Theorem 1, conditional on A, with k = ⌊logN⌋, there is a set B′ ∈ F with x ∈ B′

and C(B′|A) ≤ r − k + O(log nr) ≤ C(B|A) − C(B|A, x) + O(log nr) = I(x :
B|A)+O(log nr). To prove C(B′|A, x) = O(s), assume B′ is the set satisfying the
above properties that minimizes C(B′|A) up to precision O(s). It must be that
C(B′|A, x) = O(s). Otherwise C(B′|A, x) = ω(s) and there is a set B′′ satisfying
properties above and C(B′′|A) ≤ C(B′|A)−C(B′|A, x)+O(s) = C(B′|A)−ω(s),
causing a contradiction.

Example 8 (Opponent Reconstruction). Anatoly, A, plays a chess game x with
Boris, B, with x ∈ A∩B. The players use a random string b of size C(x|A,B) to
help decide their moves. Without using b, Anatoly can “construct” Bob, B′, an
impersonator of Boris, using information from the game x and O(logC(B|A) +
log l(x)) bits. Bob can play the same game x with Anatoly.

Given are players A and B who interact, in that A ∩ B 6= ∅. We show
that there exists an interacting player B′ that has complexity bounded by the
mutual information of A and B. If theorem 1 can be strengthened such that the
enumerative complexity term CE(F) is replaced by CEE(F), the complexity of
enumerating both the sets and the elements of the sets of F , then the precision
of theorems 3 and 4 can be strengthened with the replacement of the Levin
complexity term Ct(A) with Kolmogorov complexity C(A).

Theorem 3. Given are a player space B and players A and B ∈ B with A∩B 6=
∅. Then there exists a player B′ ∈ B with A ∩ B′ 6= ∅, and C(B′) ≤ I(A :
B) +O(s), with s = logC(B) + logCt(A) + C(B).

Proof. Let r = C(B), h = Ct(A), and q = 2C(B). We define G = {〈S〉 : Ct(S) ≤
r}, with 〈S〉 being an encoding of set S. This implies log log |G| = O(log h). We
define F with a recursive function λ : B → F , with λ(S) = {〈T 〉 | Ct(T ) ≤
h, S ∩ T 6= ∅}. It must be C(λ) = O(log h). The enumeration complexity of F
requires the encoding of B and λ, and so CE(F) = O(log hq). Thus if 〈T 〉 ∈ λ(S),
then T∩S 6= ∅. Let N be the number of sets S ∈ B, with C(S) ≤ r and S∩A 6= ∅.
Thus C(B|A) ≤ logN + O(log hqr), as there is a program, when given A, r, B,
and an index of size ⌈logN⌉, that can return any such S. By the application of
Theorem 1, with x = 〈A〉 and k = ⌊logN⌋, there is a set F ∈ F with x ∈ F and
C(F ) ≤ r−k+O(log hqr) ≤ C(B)−C(B|A)+O(log hqr) = I(A :B)+O(log hqr).
A set B′ ∈ B, with λ(B′) = F , can be easily recovered from F by enumerating
all sets in B, applying λ to each one, and selecting the first one which produces
F . So C(B′) ≤ C(F ) + O(log q) ≤ I(A :B) + O(log hqr). Since 〈A〉 ∈ λ(B′), it
must be that A ∩B′ 6= ∅.



We show that if a player A interacts with numerous players of a given com-
plexity and uncertainty, then there exists a simple player B′ who interacts with
A with the same uncertainty.

Theorem 4. Given are player space B, player A and 2k players B ∈ B where
for each B, 0 < |A ∩B| ≤ c and C(B) ≤ r. There is a player B′ ∈ B such that
0 < |A ∩B′| ≤ c and C(B′) ≤ r− k +O(s), with s = logCt(A) + log c+ log k+
log r + C(B).

Proof. Let h = Ct(A) and q = 2C(B). We can define G ⊆ {0, 1}∗ as a set of
strings, each encoding a set (player) S whose Levin complexity is less than or
equal to h. This implies log log |G| = O(log h). We represent the encoding of
S with 〈S〉. We define F with a recursive function λ : B → F , with λ(S) =
{〈T 〉 | Ct(T ) ≤ h, 0 < |S ∩ T | ≤ c}. Thus it must be C(λ) = O(log ch). The
enumeration complexity of F requires the encoding of c, h, and B, with CE(F) =
O(log chq). Thus if 〈T 〉 ∈ λ(S), then player T and player S have a non empty
intersection of size at most c. From the assumptions of this theorem, 〈A〉 is
covered by at least 2k sets λ(B) ∈ F of complexity C(λ(B)) ≤ r + O(log chq).
By the application of Theorem 1, with x = 〈A〉, there is a set F ∈ F with
x ∈ F , C(F ) ≤ r − k + O(log(chkqr)). A set B′ ∈ B, with λ(B′) = F can
be recovered from F by enumerating all sets in B, applying λ to each one, and
selecting the first one which produces F . Therefore C(B′|F ) ≤ O(log chq) and
so C(B′) ≤ C(F ) + O(log chq) ≤ r − k + O(log(chkqr)). Since 〈A〉 ∈ λ(B′), it
must be that 0 < |A ∩B′| ≤ c, thus the theorem is proven.

Example 9. An example application of theorem 4 is a game of the same form as
example 2. Magnus, represented by set B, plays 2k games of against 2k young
players A ∈ A. Furthermore the players and Magnus are deterministic with for
each A ∈ A, |A ∩ B| = 1. The difficulty threshold τ , is set to 1, so every one
of the young players beat Magnus. By theorem 4, if all players A ∈ A have
complexity at most C(A) ≤ r, then there is a simpler player A′ ∈ A that will
win against Magnus, with C(A′) ≤ r− k+ ǫ (with ǫ being of logarithmic order)
and |A′ ∩B| = 1.

6 Future Work: Universal Interaction

Since the agents and environments of the cybernetic agent model of Section 2.2
can be translated into set representations, there is potential application of the
proof techniques used in Section 5 to Artificial Universal Intelligence [Hut04], and
in particular to describe properties of the AIXI model. The universal environ-
ment, ξ, is defined using a form of the universal prior, m(x) =

∑
p:ψ(p)=x 2

−l(p),

representing a semimeasure (degenerate probability) over all infinite strings, with
ξ(yx1:k) =

∑
ρ 2

−K(ρ)ρ(yx1:n). The universal environment ξ is the weighted sum-
mation over all chronological environments ρ. The term K(ρ) represents the
prefix free Kolmogorov complexity of ρ. The AIXI model pξm is the optimal

agent for the environment ξ with horizon m, in that pξm = argmaxp V
p,ξ
1:m. The

sequence of self optimizing AIXI agents for each time horizon is {pξi }i=1,2,.... Let



M be a set of environments where a sequence of self-optimizing policies p̃m ex-
ists. The sequence converges to receive the optimal average for all environments
with ∀ν ∈ M : 1

m
V pm,ν1:m

m→∞
−→ 1

m
V ∗,ν
1:m. By theorem 5.29 from [Hut04], it must be

that the sequence of AIXI agents is optimal for M with 1
m
V
pξm,ν

1:m
m→∞
−→ 1

m
V ∗,ν
1:m.

We use the conversion of agents p and environments µ to sets Apm and Dµ
m,τ as

introduced at the end Section 2.2. The sequence of self optimizing AIXI agents,
{pξi }i=1,2,..., is universal with regard to interaction with respect to M. It is easy
to see that for all τ and all environments ν ∈ M, there is a number mντ where

for all m > mν,τ , A
pξm
m ∩ Dµ

m,τ 6= ∅. This implies a set representation of agent
dynamics can be used to describe further properties of the AIXI model. There
is potential for a deep connection, roughly analogously to how prefix-free Kol-
mogorov complexity and the universal prior are related with the Coding Theorem
K(x) = − logm(x) +O(1) [LV08].

7 Conclusions

We used Algorithmic Information Theory to quantify the information exchanged
between agents that interact in non-cooperative games (Sec. 4). We have shown
that an agent A can construct an approximation of his opponent B using infor-
mation from a single interaction (game) with B (Th. 2). We have shown that
if an agent B with superfluous information interacts with an environment A
and achieves a certain reward, then there exists another agent B′ without this
information that can achieve the same reward (Th. 3). We have also shown that
if multiple agents interact with an environment to achieve a certain reward,
then there exists a simple agent who can achieve the same reward (Th. 4). Our
constructions are compatible with Universal Artificial Intelligence, in that the
AIXI model can be interpreted as universal with regard to interactions with
environments (Section 6).
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