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ABSTRACT. Spectral triples for nonunital algebras model locally compact spaces in noncommu-
tative geometry. In the present text, we prove the local index formula for spectral triples over
nonunital algebras, without the assumption of local units in our algebra. This formula provides
a practical way to calculate index pairings and this utility is one of the main justifications for
using spectral triples as geometric models.

We apply the formula in the commutative setting to prove an analogue of the Gromov-
Lawson relative index formula (for Dirac type operators) for even dimensional manifolds with
bounded geometry, without invoking compact supports. For odd dimensional manifolds our
index formula appears to be completely new. As we prove our local index formula in the
framework of semifinite noncommutative geometry we are also able to prove, for manifolds
of bounded geometry, a version of Atiyah’s L2-index Theorem for covering spaces. We also
demonstrate the effectiveness of our methods in two noncommutative examples.

In the course of proving the local index formula we clarify some aspects of index theory
for nonunital algebras, and develop a suitable integration theory which is compatible with a
refinement of the existing pseudodifferential calculus for spectral triples.
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1. INTRODUCTION

Our motivation for this article is index theory on noncompact manifolds. In this situation
the Dirac operator, for example, typically has noncompact resolvent, is not Fredholm, and so
does not have a well-defined index. In initiating this study we were interested to understand
previous approaches to this problem such as those of Gromov-Lawson [28] and Roe [51] from a
new viewpoint: that of noncommutative geometry.

The main result of this article is a residue formula of Connes-Moscovici type for calculating
the index pairing between the K-homology of nonunital algebras and their K-theory. This
latter view of index theory is central to our approach and we follow the general philosophy
enunciated by Higson and Roe, [32]. One of the main advances obtained here is to avoid ad
hoc assumptions on our algebras (such as the existence of local units).

We then apply our residue formula to manifolds of bounded geometry, obtaining a cohomological
formula of Atiyah-Singer type for the index pairing. We also prove an L%-index theorem for
coverings of such manifolds, and treat some noncommutative examples.

We now explain these and our other results.
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The results for manifolds. In the case of closed manifolds, the local index formula in noncom-
mutative geometry (due to Connes-Moscovici [23]) implies the Atiyah-Singer index Theorem
for Dirac type operators. This proceeds by a Getzler type argument enunciated in this setting
by Ponge, [46]. While there is already a version of this Connes-Moscovici formula that applies
in the noncompact case [50], it relies heavily on the use of compact support assumptions.

For the application to noncompact manifolds M, we find that our noncommutative index The-
orem dictates that the appropriate algebra A consists of smooth functions which, together with
all their derivatives, lie in L*(M). We show how to construct K-homology classes for this
algebra from the Dirac operator on the spinor bundle over M. This K-homology viewpoint is
related to Roe’s approach [52] and to the relative index theory of [28§].

Then the results, for Dirac operators coupled to connections on sections of bundles over noncom-
pact manifolds of bounded geometry, essentially follow as corollaries of the work of Ponge [46].
The theorems we obtain for even dimensional manifolds are not comparable with those in [51],
but are closely related to the viewpoint of Gromov-Lawson [28]. For odd dimensional manifolds
we obtain an index theorem for generalised Toeplitz operators that appears to be new, although
one can see an analogy with the results of Hérmander [33] section 19.3].

We now digress to give more detail on how, for noncompact even dimensional spin manifolds
M, our local index formula implies a result analogous to the Gromov-Lawson relative index
Theorem [2§]. What we compute is an index pairing of K-homology classes for the algebra A4
of smooth functions which, along with their derivatives, all lie in L*(M)), with differences of
classes [E] — [E'] in the K-theory of A. We verify that the Dirac operator on a spin manifold
of bounded geometry satisfies the hypotheses needed to use our residue cocycle formula so that
we obtain a local index formula of the form

(1.1) ([E] = [E'],[D]) = (const) /ﬁ(M)(Ch(E) — Ch(E")).

where Ch(F) and Ch(E’) are the Chern classes of vector bundles E and E’ over M. We
emphasise that in our approach, the connections that lead to the curvature terms in Ch(FE)
and Ch(E’), do not have to coincide outside a compact set as in [28]. Instead they satisfy
constraints that make the curvature terms integrable over M.

We reiterate that, for our notion of spectral triple, the operator D need not be Fredholm and
that the choice of the algebra A is dictated by the noncommutative theory developed in Section
3. In that section we explain the minimal assumptions on the pair (D, .A) such that we can define
a Kasparov module and so a K K-class. The further assumptions required for the local index
formula are specified, almost uniquely, by the noncommutative integration theory developed in
Section 2. We verify (in Section 5) what these assumptions mean for the commutative algebra
A of functions on a manifold and Dirac-type operator D, in the case of a noncompact manifold
of bounded geometry, and prove that in this case we do indeed obtain a spectral triple in the
sense of our general definition.
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In the odd dimensional case, for manifolds of bounded geometry, we obtain an index formula
that is apparently new, although it is of APS-type. The residues in the noncommutative formula
are again calculable by the techniques employed by [46] in the compact case. This results in
a formula for the pairing of the Chern character of a unitary u in a matrix algebra over A,
representing an odd K-theory class, with the K-homology class of a Dirac-type operator D of
the form

(1.2) ([u], [D]) = (const) / A(M)Ch(u).

The assumptions on the algebra A of functions on M are such that this integral exists but they
do not require compact support conditions.

We were also motivated to consider Atiyah’s L?-index Theorem in this setting. Because we prove
our index formula in the general framework of operators affiliated to semifinite von Neumann
algebras we are able, with some additional effort, to obtain at the same time a version of the
L2-index Theorem of Atiyah for Dirac type operators on the universal cover of M (whether M
is closed or not). We are able to reduce our proof in this L2-setting to known results about the
local asymptotics at small time of heat kernels on covering spaces. The key point here is that
our residue cocycle formula gives a uniform approach to all of these ‘classical’ index theorems.

The noncommutative results. The index theorems we prove for manifolds rely on a general
nonunital noncommutative index theory developed in detail in Sections 2 and 3.

Section 2 presents an integration theory for weights which is compatible with Connes and
Moscovici’s approach to pseudodifferential calculus for spectral triples. This integration theory
is the key technical innovation, and allows us to treat the unital and nonunital cases on the
same footing.

A key feature of our approach is that we can eliminate the need to assume the existence of
‘local units” which mimic the notion of compact support, [26,49,[50]. The difficulty with the
local unit approach is that there are no general results guaranteeing their existence. Instead we
identify algebras of integrable and square integrable elements of our algebra, without the need
to control supports.

In Section 3 we introduce a triple (A, H,D) where H is a Hilbert space, A is a (nonunital)
x-algebra of operators represented in a semifinite von Neumann subalgebra of B(H), and D is
a self adjoint unbounded operator on ‘H whose resolvent need not be compact, not even in the
sense of semifinite von Neumann algebras.

We remark that there are good cohomological reasons for taking the effort to prove our results
in the setting of semifinite noncommutative geometry, and that these arguments are explained
in [22]. Essentially, the point is that if one wants to be able to ‘see’ all cyclic cocycles for a
given algebra using Chern characters, then one must consider semifinite Fredholm modules.

We refer to the case when D does not have compact resolvent as the ‘nonunital case’, and
justify this terminology in Lemma B2l Instead of requiring that D be Fredholm we show that
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a spectral triple (A, H, D), in the sense of Section 3, defines an associated semifinite Fredholm
module and a K K-class for A.

This is an important point. It is essential in the nonunital version of the theory to have
an appropriate definition of the index which we are computing. Since the operator D of a
general spectral triple need not be Fredholm, this is accomplished by following [34] to produce
a K K-class. Then the index pairing can be defined via the Kasparov product. The role of the
additional smoothness and summability assumptions on the spectral triple is to produce the
local index formula for computing the index pairing.

Having identified workable definitions of smoothness and summability, the main technical ob-
stacle we have to overcome in Section 3 is to find a suitable Fréchet completion of A stable
under the holomorphic functional calculus. The integration theory of Section 2 provides such
an algebra, and in the unital case it reduces to previous solutions of this problem, [49].

In Section 4 we establish a local index formula in the sense of Connes-Moscovici. The underlying
idea here is that Connes’ Chern character, which defines an element of the cyclic cohomology
of A, computes the index pairing defined by a Fredholm module. Any cocycle in the same
cohomology class as the Chern character will therefore also compute the index pairing. In this
paper we define several cocycles that represent the Chern character and which are expressed in
terms of the unbounded operator D. These cocycles generalise those found in [I5HI7] (where
semifinite versions of the local index formula were first proved) to the nonunital case. We have
to prove that these additional cocycles, including the residue cocycle, are in the class of the
Chern character in the (b, B)-complex.

Our main result in this paper (stated in Theorem of Section 4) is then an expression for
the index pairing using a nonunital version of the semifinite local index formula of [15][16],
which is in turn a generalisation to the setting of semifinite von Neumann algebras of the
original Connes-Moscovici [23] formula. Our noncommutative index formula is given by a sum
of residues of zeta functions and is easily recognisable as a direct generalisation of the unital
formulas of [I5,[16L23]. We emphasise that even for the standard B(H) case our local index
formula is new.

One of the main difficulties that we have to overcome is that while there is a well understood
theory of Fredholm (or Kasparov) modules for nonunital algebras, the ‘right framework’ for
working with unbounded representatives of these K-homology classes has proved elusive. We
believe that we have found the appropriate formalism and the resulting residue index formula
provides evidence that the approach to spectral triples over nonunital algebras initiated in [9]
is fundamentally sound and leads to interesting applications. Related ideas on the K-homology
point of view for relative index theorems are to be found in [52], [8] and [I§], and further
references in these texts.

We also discuss some fully noncommutative applications in Section 6, including the Moyal plane

and spectral triples arising from torus actions on C*-algebras, but leave other applications, such
as those to the results in [45], [59] and [43], to elsewhere.
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To explain how we arrived at the technical framework described here, consider the classical
case, where H = L*(R), D = % and A is a certain *x-subalgebra of the algebra of smooth
functions on R. Let P = x[0,00)(D) be the projection defined using the functional calculus and
the characteristic function of the half-line and let v be a unitary in A such that u — 1 converges
to zero at oo ‘sufficiently rapidly’. Then the classical Gohberg-Krein theory gives a formula
for the index of the Fredholm operator PM, P where M, is the operator of multiplication by u
on L?(R). In proving this theorem for general symbols u, one confronts the classical question
(studied in depth in [55]) of when an operator of the form (M, —1)(1+D?)~*/2 s > 0, is trace
class. In the general noncommutative setting of this article, this question and generalisations
must still be confronted and this is done in Section 2.

Summary of the exposition. Section 2 begins by introducing the integration theory we employ,
which is a refinement of the ideas introduced in [9]. Then we examine the interaction of
our integration theory with various notions of smoothness for spectral triples. In particular,
we follow Higson [31] and [15] in extending the Connes-Moscovici pseudo-differential calculus
to the nonunital setting. Finally we prove some trace estimates that play a key role in the
subsequent technical parts of the discussion. All these generalisations are required for the proof
of our main result in Section 4.

Section 3 explains how our definition of semifinite spectral triple results in an index pairing from
Kasparov’s point of view. In other words, while our spectral triple does not a priori involve
unbounded Fredholm operators, there is an associated index problem for bounded operators in
the setting of Kasparov’s K K-theory. We then show that by modifying our original spectral
triple we may obtain an index problem for unbounded Fredholm operators without changing
the Kasparov class in the bounded picture. This modification of our unbounded spectral triple
proves to be essential, in two ways, for us to obtain our residue formula in Section 4.

The method we use in Section 4 to prove the existence of a formula of Connes-Moscovici type
for the index pairing of our K-homology class with the K-theory of the nonunital algebra A is
a modification of the argument in [I7]. This argument is in turn closely related to the approach
of Higson [31] to the Connes-Moscovici formula.

The idea is to start with the resolvent cocycle of [I5HI7] and show that it is well defined in the
nonunital setting. We then show that there is an extension of the results in [I7] that gives a
homotopy of the resolvent cocycle to the Chern character for the Fredholm module associated
to the spectral triple. The residue cocycle can then be derived from the resolvent cocycle in
the nonunital case by much the same argument as in [I5[16].

In order to avoid cluttering our exposition with proofs of nonunital modifications of the esti-
mates of these earlier papers, we relegate much detail to the Appendix. Modulo these techni-
calities we are able to show, essentially as in [I7], that the residue cocycle and the resolvent
cocycle are index cocycles in the class of the Chern character. Then Theorem in Section
4 is the main result of this paper. It gives a residue formula for the numerical index defined in
Section 3 for spectral triples.
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We conclude Section 4 with a nonunital McKean-Singer formula and an example showing that
the integrability hypotheses can be weakened still further, though we do not pursue the issue
of finding the weakest conditions for our local index formula to hold in this text.

The applications to the index theory for Dirac-type operators on manifolds of bounded geometry
are contained in Section 5. Also in Section 5 is a version of the Atiyah L?-index Theorem that
applies to covering spaces of noncompact manifolds of bounded geometry. In Section 6 we
make a start on noncommutative examples, looking at torus actions on C*-algebras and the
Moyal plane. Any further treatment of noncommutative examples would add considerably to
the length of this article, and is best left for another place.

Acknowledgements. This research was supported by the Australian Research Council, the
Max Planck Institute for Mathematics (Bonn) and the Banff International Research Station.
A. Carey also thanks the Alexander von Humboldt Stiftung and colleagues in the University of
Miinster and V. Gayral also thanks the CNRS and the University of Metz. We would like to
thank our colleagues John Phillips and Magda Georgescu for discussions on nonunital spectral
flow. Special thanks are given to Dima Zanin and Roger Senior for careful readings of this
manuscript at various stages. We also thank Emmanuel Pedon for discussions on the Kato
inequality, Raimar Wulkenhaar for discussions on index computations for the Moyal plane, and
Gilles Carron, Thierry Coulhon, Batu Giineysu and Yuri Korduykov for discussions related to
heat-kernels on noncompact manifolds.

2. PSEUDODIFFERENTIAL CALCULUS AND SUMMABILITY

In this section we introduce our chief technical innovation on which most of our results rely. It
consists essentially of an L!-type summability theory for weights adapted to both the nonunital
and noncommutative settings.

It has become apparent to us while writing, that the integration theory presented here is closely
related to Haagerup’s noncommutative LP-spaces for weights, at least for p = 1, 2. Despite this,
it is sufficiently different to require a self-contained discussion.

It is an essential and important feature in all that follows that our approach comes essentially
from an L2-theory. This is because we are forced to employ weights, and a direct L'-approach
is technically unsatisfactory for weights. This is because given a weight ¢ on a von Neumann
algebra, the map T — ©(|7T'|) is not a norm in general.

Throughout this section, H denotes a separable Hilbert space, N' C B(H) is a semifinite von
Neumann algebra, D : dom D — H is a self-adjoint operator affiliated to A/, and 7 is a faithful,
normal, semifinite trace on N. We will also require a real number p > 1 which will play the
role of a dimension.

The pseudodifferential calculus can be formulated for any such operator D. This point of view
is implicit in Higson’s abstract differential algebras, [31], and was made more explicit in [15].
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The definition of summability we employ depends on all the data above, namely D, the pair
(N, 7) and p > 1. We show in subsection 2] how the pseudodifferential calculus is compatible
with our definition of summability for spectral triples, and this will dictate our generalisation
of finitely summable spectral triple to the nonunital case in Section Bl

The proof of the local index formula that we use in the nonunital setting requires some estimates
on trace norms that are different from those used in the unital case. These are found in subsec-
tion 2.3l To prepare for these estimates, we also need some refinements of the pseudodifferential
calculus introduced by Connes and Moscovici for unital spectral triples in [21123].

2.1. Square-summability from weight domains. In this subsection we show how an un-
bounded self-adjoint operator affiliated to a semifinite von Neumann algebra provides the foun-
dation of an integration theory suitable for discussing finite summability for spectral triples.

Definition 2.1. Let D be a self-adjoint operator affiliated to a semifinite von Neumann algebra
N with faithful normal semifinite trace 7. For any positive number s > 0, we define the weight
vs on N by

T € Ni = oi(T) = 7((1 + D*)~**T (1 + D*)~/*) € [0, +00].
As usual, we set
dom(ip,) := span{dom(y;)+} = span{ (dom(gos)l/2)*dom(gos)1/2} C N,
where

dom(p,)y == {T € Ny : ps(T) < o0} and dom(yp,)"?:={T € N : T*T € dom(y,)}.

In the following, dom(ip,), is called the positive domain and dom(p,)'/? the half domain.

Lemma 2.2. Let D be a self-adjoint operator affiliated to a semifinite von Neumann algebra
N with faithful normal semifinite trace 7. The weights p,, s > 0, are faithful normal and
semifinite, with modular group given by

N 3T (14 D?)7"2T(1 + D?)/2,

Proof. Normality of ¢, follows directly from the normality of 7. To prove faithfulness of ¢,
using faithfulness of 7, we also need the fact that the bounded operator (14 D?)~/* is injective.
Indeed, let S € dom(p,)"/? and T := S*S € dom(yp,), with ¢,(T) = 0. From the trace
property, we obtain (1) = 7(S(1 + D?)=%/25*), so by the faithfulness of 7, we obtain 0 =
S(1+D*)~%/25* = |(1+D?)~*/48*|2, so (1+D?)~*/4S* = 0, which by injectivity implies S* = 0
and thus 7" = 0. Regarding semifiniteness of (,, one uses semifiniteness of 7 to obtain that
for any T' € N, there exists S € N, of finite trace, with S < (1 + D?)=/4T(1 + D?)=%/4.
Thus S := (14 D?)¥/*S(1+ D?)*/* < T is non-negative, bounded and belongs to dom (), as
needed. The form of the modular group follows from the definition of the modular group of a
weight. U
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Domains of weights, and, a fortiori, intersections of domains of weights, are sub-x-algebras
of N. However, dom(y,)"/? is not a *-algebra but only a left ideal in A/. To obtain a *-
algebra structure from the latter, we need to force the x-invariance. Since ¢, is faithful for each
s > 0, the inclusion of dom(y,)? [ (dom(s)*/2)* in its Hilbert space completion (for the inner
product coming from ¢,) is injective. Hence by [56, Theorem 2.6], dom(ip,)*/? (N (dom(ip,)/?)*
is a full left Hilbert algebra. Thus we may define a *-subalgebra of A for each p > 1.

Definition 2.3. Let D be a self-adjoint operator affiliated to a semifinite von Neumann algebra
N with faithful normal semifinite trace 7. Then for each p > 1 we define

Bo(D.p) = [ (dom(,) 2 (Y(dom(,)"12)").

s>p

The norms

w121 1/2
(21) BoD,p) 3 T+ Qu(T) == (IT1P + @prrsn(|IT) + @pryn(IT*H)*. n=1,2.3...,
take finite values on By(D,p) and provide a topology on By(D, p) stronger than the norm topol-
ogy. Unless mentioned otherwise we will always suppose that Bo(D,p) has the topology defined
by these norms.

Notation. Given a semifinite von Neumann algebra N with faithful normal semifinite trace
7, we let LP(N,7), 1 < p < oo, denote the set of T-measurable operators T affiliated to N with
7(|T|?) < co. We do not often use this notion of p-integrable elements, preferring to use the

bounded analogue, £P(N, 7) := LP(N,7) O N.

Remarks. (i) If (1 +D?)~%/2 € LY(N,7) for all R(s) > p > 1, then By(D,p) = N, since then
the weights ¢, s > p, are all finite and the norms ©Q,, are all equivalent to the operator norm.

(ii) The triangle inequality for Q,, follows from the Cauchy-Schwarz inequality applied to the
inner product (T, S), = @pi1/n(T*S), and Q,(T)* = |T||* + (T, T), + (T*,T*),. In concrete
terms, an element 7" € N belongs to By (D, p) if and only if for all s > p, both T'(1 + D?)~*/4
and T*(1 + D?)~%/* belong to LN, 7).

(iii) The norms Q,, are increasing, in the sense that for n < m we have Q, < Q,,. We leave
this as an exercise, but observe that this requires the cyclicity of the trace. The following result
of Brown and Kosaki gives the strongest statement on this cyclicity. By the preceding Remark
(ii), we do not need the full power of this result here, but record it for future use.

Proposition 2.4. (see [7, Theorem 17]) Let T be a faithful normal semifinite trace on a von
Neumann algebra N, and let A, B be T-measurable operators affiliated to N'. If AB, BA €
LY N, 7) then T(AB) = 7(BA).

Another important result that we will frequently use comes from Bikchentaev.

Proposition 2.5. [0, Theorem 3] Let N be a semifinite von Neumann algebra with faithful
normal semfinite trace. If A, B € N satisfy A > 0, B > 0, and are such that AB is trace
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class, then BY2ABY? and AV?BAY? are also trace class, with T7(AB) = 7(BY?AB'Y?) =
T(AYV2BAY?).

Next we show that the space By(D, p) is a Fréchet algebra, the completeness relying essentially
on the Fatou property for the trace 7, [24].

Proposition 2.6. Let D be a self-adjoint operator affiliated to a semifinite von Neumann
algebra N with faithful normal semifinite trace 7 and p > 1. The *-algebra Bo(D,p) C N is a
Fréchet algebra.

Proof. Showing that By(D, p) is a x-algebra is routine with the aid of the following argument.
For T, S € By(D, p), the operator inequality S*T*T'S < || T*T|| S*S shows that

Ppr1/m(|TS1?) = @pi1m(S T TS) < T *@pram(|SI?)-
and, therefore, Q,,(T'S) < Q,(T") Q,(S5).
For the completeness, let (T})g>1 be a Cauchy sequence in By(D,p). Then (T})r>1 converges
in norm, and so there exists 7' € A such that 7, — T in N. For each norm Q, we have

| Q0 (Tk) — Qn(T1) | < Qn(Tk — 1)), so we see that the numerical sequence (Q,,(T%))r>1 possesses
a limit. Now since

(1 _'_rD2)—p/4—1/4nTl;ka<1 +D2)—p/4—1/4n N (1 +D2)_p/4_1/4nT*T(1 _'_rD2>—p/4—1/4n’

in norm, it also converges in measure, and so we may apply the Fatou Lemma, [24] Theorem
3.5 (i)], to deduce that

,7_((1+D2)—p/4—1/4nT*T(1+D2)—p/4—1/4n) S h]?linf’T((]_+D2)_p/4_1/4nT]:Tk(1+D2)_p/4_1/4n).
—00

Since the same conclusion holds for TT* in place of T*T', we see that
Q,(T) <liminf Q,(7}) = lim 9, (T}) < oo,
k—o0 k—00

and so T' € By(D,p). Finally, fix ¢ > 0 and n > 1. Now choose N large enough so that
Q,.(Ty —T)) < eforall k, I > N. Applying the Fatou Lemma to the sequence (7})x>1, we have
Qn(T —T;) <liminfy_, Q,(Tx — T;) < . Hence T}, — T in the topology of By (D, p). O

We now give some easy but useful stability properties of the algebras By (D, p).

Lemma 2.7. Let D be a self-adjoint operator affiliated to a semifinite von Neumann algebra N
with faithful normal semifinite trace T andp > 1. Let T € By(D,p), S € N and let f € L>(R).

(1) The operators T f(D), f(D)T are in By(D,p). If T* =T, then Tf(T) € By(D,p). In
all these cases, Qu(T'f(D)), Qu(f(D)T), u(Tf(T)) < || f o0 Ln(T).

(2) If §*S < T*T and SS* < TT*, then S € Bo(D, p) with Qu(S) < Qu(T).

(3) We have S € By(D,p) if and only if |S|,|S*| € Ba(D, p).

(4) The real and imaginary parts (T + T*)/2, (T — T*)/2i belong to By(D, p).

(5) If T =T, let T =T, —T_ be the Jordan decomposition of T into positive and negative
parts. Then Ty, T_ € By(D,p). Consequently Bo(D, p) = span{Bz(D, p). }.
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Proof. (1) Since T(1 4 D?)=%/4 T*(1 + D?)~*/* € L2(N, 1), we immediately see that
Tf(D)(1+D*)** =T(1+D*)**f(D), f(D)T*(1+D*)*/* € L2N,7),
and when T is self-adjoint, we also have
Tf(T)(1+D*)* = f(T)T(1+ D), f(T)T(1+D*)* € L2N, 7).
To prove the inequality we use the trace property to see that
T((L+ D) (D) Tf(D)(1 +D?)~") = 7(T(1 + D*)~*/*| fA(D)(1 + D*)~*/'T")
< I f5r (L + D*) =TT (1 + D*) /1),

and similarly for 7'f(D) and T f(T") when T* = T.

(2) Clearly, @4(S*S) < ps(T*T) and ps(SS*) < @4(TT™*). The assertion follows immediately.
(3) This follows from Q,(T) = (Q.(|T]) + Qn(|T*]))/2. Item (4) follows since By(D,p) is a
x-algebra, and then item (5) follows from (2), since for a self-adjoint element 7" € By(D, p):

T"T =T =Ty +T- =T +T> > T7, T
This completes the proof. O

The algebras By (D, p) are stable under the holomorphic functional calculus. We remind the
reader that when B is a nonunital algebra, this means that for all 7" € B and functions f
holomorphic in a neighbourhood of the spectrum of 7" with f(0) = 0 we have f(T') € B.

Lemma 2.8. Let D be a self-adjoint operator affiliated to a semifinite von Neumann algebra
N with faithful normal semifinite trace T and p > 1. The *-algebra By(D, p) is stable under the
holomorphic functional calculus in its C*-completion.

Proof. If T € By(D, p) is such that 1+ T is invertible in A/, then by Lemma[2Z7] (1), we see that
(2.2) (1+T)"'—1=-TA+T)" €By(D,p).
Equation (2.2)) and Lemma 2.7 part (1) gives, for z not in the spectrum of 7T,
1
AU((z=T)" =27 = Q=TT =T)) < 1+ 1)z = 1) Qu(TA+T) 7).

Set C. = ||[(1+ T)(z — T)7!|]. Now let I" be a positively oriented contour surrounding the
spectrum of T"with 0 ¢ I', and f holomorphic in a neighborhood of the spectrum of 7' containing
I'. Then

1 -1 -1 1 -1 /
— — — < —
Qn <2m,/rf(z) [(z=T) z7!] dz) < 027r Qu.(T(1+T)™h :
where C' = sup, . C,. Thus we have (when By (D, p) C N is nonunital)

/Ff(z)(z —T)'dz € By(D,p) @ Cldy,

f2)dz|

z

Y

with the scalar component equal to f(0)Idy. O
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The same proof applies to all matrix algebras over By(D, p). For an algebra A we let M, (A) =
M, (C) ® A where M, (C) is the algebra of n x n matrices over C.

Corollary 2.9. Let D be a self-adjoint operator affiliated to a semifinite von Neumann algebra
N with faithful normal semifinite trace T and p > 1. For any n € N the *-algebra M, (B2(D, p))
1s stable under the holomorphic functional calculus in its C*-completion.

Proof. The general case follows from the n = 1 case by replacing D, N, 7 and ¢, by D ® Id,,
M,(N), T ® tr, and ¢, ® tr,. O

2.2. Summability from weight domains. In the previous subsection, we have seen that the
algebra By (D, p) plays the role of a *-invariant L?-space in the setting of weights. To construct a
s-invariant L'-type space associated with the data (N, 7, D, p), there are two obvious strategies.

One strategy is to define seminorms on By (D, p)? (the finite span of products) and to then
complete this space. The other approach is to take the projective tensor product completion
of By(D, p) ® Ba(D, p) and then consider its image in N under the multiplication map. In fact
both approaches yield the same answer, and complementary benefits.

We begin by recalling the projective tensor product topology in our setting. It is defined to be
the strongest topology on the algebraic tensor product such that the natural bilinear map

82(D>p) X 82(Dap) = 82(Dap) & 82(D7p)a

is continuous, [57, Definition 43.2]. The projective tensor product topology can be described in
terms of seminorms P, defined by

Pu(T) i=inf { 37 Qu(in) Qu(Tia) : T=Y_ Tra @ Tiaf.

finite finite

(In fact, since the Q,, are norms, so too are the 75n) Then we let By (D, p) @, B2(D, p) denote
the completion of By (D, p) ® Bo(D, p) in the projective tensor product topology. The projective
tensor product topology is the unique topology on By (D, p) @By (D, p) such that, [57, Proposition
43.4], for any locally convex topological vector space G, the canonical isomorphism

(bilinear maps By (D, p) x By(D,p) — G) > (linear maps By (D, p) ® By(D, p) — G),
gives an (algebraic) isomorphism
(continuous bilinear maps By (D, p) x By(D, p) — G)

— (continuous linear maps B2 (D, p) ® By(D, p) — G).

Since the multiplication map is a continuous bilinear map m : By(D, p) x By(D, p) — B2(D, p),
we obtain a continuous (with respect to the projective tensor product topology) linear map
m : By(D,p) @ By(D, p) — Ba(D, p). We extend m to the completion By (D, p) @, B2(D, p) and

denote by By(D,p) C By(D,p) the image of m. Since m is continuous, m has closed kernel,
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and there is an isomorphism of topological vector spaces between B (D, p) with the quotient
topology (defined below) and By (D, p) &, Bo(D, p)/ ker m.

Now by [57, Theorem 45.1], any © € By(D,p) @, B2(D,p) admits a representation as an
absolutely convergent sum (i.e. convergent for all P,)

0= Z)\iRi ® S;, Ry, Si € By(D,p),

1=0

(2.3) such that Z)‘i < oo and Q,(R;), Qu(S;) =0 foralln=1,23.

1=0

By defining R; = )\; / 2RZ- and S; = )\; / 252-, we see that we can represent © as a sum absolutely
convergent in each of the norms P,

24 = ~7; ~7;, hh f H >]_ <n~z) >(n~i> 2 .
(2.4) ) ;R@S such that for all n > Q(R)izo Q(S)iZOEE(N)
Having considered the basic features of the projective tensor product approach, we now consider
the approach based on products of elements of By (D, p). So we let By(D, p)? be the finite span
of products from By(D, p), and define a family of norms, {P, : n=1,2,...}, on By(D, p)?, by
setting

k k
(25)  PuT) =it {3 Qu(T1) QuTss) : T =3 TiiTos, Tis, Toi € Bo(Dop) b
i=1 i=1

Here the sums are finite and the infimum runs over all possible such representations of T'. Now
By(D,p)? C Bi(D,p) and, regarding B;(D, p) as a quotient as above, we claim that the norms
P, are the natural seminorms (restricted to By(D,p)?) defining the Fréchet topology on the
quotient, [57, Proposition 7.9].

To see this, recall that the quotient seminorms P, , on By (D, P) are defined, for T € By (D, p) =
Bs(D,p) @x Ba(D, p)/ ker i, by

Pog(T) = inf_ P,(T).

T=m(T)

Then for T € B(D, p)? we have the elementary equalities

7)( Hlf{ZQn 21 Qn 12 ZTZ1T12}

finite finite

—inf{ 3 QuT:)Qu(Ti) s © =Y T @ T & (©) =T}
finite finite

= nfP,(6) =P, (D)

Thus the P, are norms on By (D, p)>.
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Definition 2.10. Let D be a self-adjoint operator affiliated to a semifinite von Neumann algebra
N with faithful normal semifinite trace T and p > 1. Let By(D, p) be the completion of Bo(D, p)?
with respect to the family of norms {P, : n=1,2,...}.

Theorem 2.11. Let D be a self-adjoint operator affiliated to a semifinite von Neumann algebra
N with Jaithful normal semifinite trace T and p > 1. We have an equality of Fréchet spaces
BI(D7P> = BI(D7P>

Proof. For T € By(D, p), there exists © = 3.7° R; ® S; € By(D,p) @, Bo(D, p) with m(0) =T
and such that the sequences (Q,,(R;))i>0, (Qn(Si))is0 are in (*(N) for each n. Now

N N N
0= lim S RS and (Y R®S) =D RS
1=0 1=0 1=0

so by the continuity of m

N—00 4

N
T =m(0)= lim > RS
=0

Here the limit defining 7" is with respect to the family of norms 75n7q = P, on By(D, p)?. Hence,
by definition, T € By (D, p), and so By (D, p) C Bi(D,p).

Now observe that we have the containments
BZ(Dap)2 - Bl(Dap) - BI(D>p)a

and as By(D, p)* is dense in By (D, p) by definition, By(D, p)* is dense in Bi(D,p). As ~75n,q =P,
on By (D, p)?, we see that By (D, p) is a dense and closed subset of By (D, p). Hence By(D,p) =
Bl (D7p> U

We will employ the notation B;(D, p) from now on.

Remark. For R, S € By(D,p) we have RS € By(D,p) with P,(RS) < Q,(R)Q,(S). By
applying m to a representation of © € By (D, p) ®, Ba2(D, p) as in Equation (Z4]), this allows us
to see that every T' € Bi(D, p) can be represented as a sum, convergent for every P,

T = i R;S;, such that for all n > 1 (QMR))

=0

(R (N).

>0’ <Q (R))izo € £(N)

We now show that B;(D, p) is a x-algebra, and that the norms P, are submultiplicative. The
first step is to show that By (D, p) is naturally included in By (D, p).

Lemma 2.12. Let D be a self-adjoint operator affiliated to a semifinite von Neumann algebra N
with faithful normal semifinite trace T and p > 1. The algebra B1(D, p) is continuously embedded
in Bo(D, p). In particular, for all T € By(D,p) and alln =1,2,3,..., Q.(T) < P,(T).
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Proof. Let T' € B1(D,p). That T belongs to By(D, p) follows from the submultiplicativity of
the norms Q,,. To see this, fix n = 1,2,.... Then, for any representation 7' =Y .~ R;S;, the
submultiplicativity of the norms Q,, gives us

)= QY RiS) < ZQnRS <Y Q.
i=0 =0
Since this is true for any representation 7' = ) 2 R;S;, this implies that Q,(T) < P,(T),

proving that B1(D, p) embeds continuously in By (D, p). O

Corollary 2.13. The Fréchet space B1(D,p) is a *-subalgebra of N'. Moreover, the norms P,,
are x-invariant, submultiplicative, and for n < m satisfy P, < Pp,.

Proof. We begin by showing that each P, is a *x-invariant norm. Using the %-invariance of
9,(+), we have for any T' € By(D, p)?

Pn(T* lIlf{ZQn Slz Qn 527, . Zsl 2527,}
<1nf{ZQn T5,) Qu(Ty,) + T = ZTMTQZ}
lnf{z Qn T2z Qn le T = ZTI ZT2Z} = n(T)

Hence P,(T*) < Pn(T), and by replacing 7" with 7" we find that P, (7*) = P,(T). It now
follows that each P, is s-invariant on all of By (D, p).

For the submultiplicativity of the norms P, on By(D, p)?, we first observe that by Lemma 212
B1(D,p) C B2(D,p), and thus

Bl(Dap) : Bl(Dap) - 82(Dap) : 82(D7p) C Bl(Dap)
Then for T, S € By(D, p)
Pu(T'S) < Qu(T)Qn(S) < Pu(T)Pu(S),

where the first inequality follows from the definition of P, and the second from the norm
estimate of Lemma To extend the submultiplicativity of P,(-) to all of By(D,p), we
observe that since By(D, p)? C By(D, p), we have for T, S € Bi(D, p)

Pu(TS) = inf { 3~ Qu(A1;) QulAs) = TS =" Ay |

<inf { 3" Qu(T1iTo) Qu(S1555s) + T= Y TiiTai & S =3 81,8}
i,7 i J
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Since Q,,(+) is a submultiplicative norm on By (D, p), this is bounded by

inf{(z O, (T1.1) Qn(Ty ) (Z 9,,(51,5) Qn(52])> T = ZTl,iTzi &S = ZSL]’SZJ}
= Pn(T) Pn(S)a | ]

and so P, is submultiplicative on all of B, (D, p).

To prove that P,(-) < P, (+) for n < m, take T € By(D,p)? and consider any representation
T = Zle T;1T;5. Then, since Q,(-) < Q,,(+) for n < m, we have

k

k
ZQn( zl Qn 2,2 Z 21 Qm 2,2 )

i=1

and thus

lem z)

||M»

Since the latter is true for any such representation, we have P,(T) < P, (T). Now let T' €
B (D, p) be the limit of the sequence (Tx)y>1 C Ba(D,p)% Then P, (T) = limy_s00 Pr(Ty) <
iy o0 P (Th) = Pon(T). 0

Next we show the compatibility of the norms P, with positivity.

Lemma 2.14. Let D be a self-adjoint operator affiliated to a semifinite von Neumann algebra
N with faithful normal semifinite trace T and p > 1. Let 0 < A € N'. Then A € By(D,p) if
and only if AY? € By(D, p) with

Po(A) = Q,(AV?)2,

Moreover if 0 < A< B €N and B € B,(D,p), then A € Bi(D,p), with P,(A) < P,.(B) for
alln=1,2,....

Proof. Given 0 < A € N with A2 € B,(D, p), it follows from the definitions that A € B, (D, p)
and P,(A) < Q,,(A?)%. So suppose 0 < A € Bi(D,p) and choose any representation

A:iRiSi, ZQ" ) < oo, forallm=1,2,3,.

Then using the self-adjointness of A, the definitions, and the Cauchy-Schwarz inequality yields
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Q,(AY?)? = Qn(( RiSi)l/Q) - HZRSH + pan( ZRS ) + @prn ZSR

=0 =0
<Y NRNISH] + |0ps1/m (RiSi) | + [@parsn (SiRs)|
1=0
< STIRISH + 9o (RiR)0piasn (SES) " + @pian (Si57) 2 ppian (RIR)
1=0
<Y Qu(R)Qu(S)
1=0

The last inequality follows from applying the Cauchy-Schwarz inequality,
(r1s1+ 1985 + 7353)° < (17 415 +73)(sT + 85 + 53),

to each term in the sum.

Thus for any representation of A we have Q,(A?)? < 3% 0, (R;)Q,(S;), which entails
Q,,(AY2)2 < P,(A) as needed. For the last statement, let 0 < B € B;(D,p) and suppose
that 0 < A € N satisfies B > A. Then B2 > A'Y? and BY? € By(D,p), so Lemma 27 (2)
completes the proof. 0

Since B1(D, p) is a x-algebra, we have T' € By (D, p) if and only if T* € By(D,p). Thus given
T =T* € By(D,p), it is natural to ask whether the positive and negative parts 7', T_ of
the Jordan decomposition of 7" are in B;(D,p). We can not answer this question, but can
nevertheless prove that B;(D, p) is the (finite) span of its positive cone.

Proposition 2.15. Let D be a self-adjoint operator affiliated to a semifinite von Neumann
algebra N with faithful normal semifinite trace 7 and p > 1. For T € By(D, p), there exist four
positive operators Ty, ..., Ty € B1(D,p) such that

T = (To —Ty) +i(Ty — T5).

Here R(T) =Ty — Ty and I(T') = Ty — T3, but this need not be the Jordan decomposition since
it may not be that TyTy = T1T3 = 0. Newvertheless, the space Bi(D,p) is the linear span of its
positive cone.

Proof. Let T' € B(D, p) have the representation T' =}, R;S;. By Equation (2.4)), this means

that for each n the sequences (Q,(R;));2, and (Qn(S;));2, belong to (*(N). Now, from the
polarization identity

AR*S = Z (S +i"R)*(S +i"R),
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3 . .
we can decompose T = >"v_ i*T},, with

o0

1 & Ty & o
Ty =3 > (Sj+i"Ry)*(S; +i*R;) > 0.
=0
Since both (Qn(R;))52, and (Q,(S;))72, belong to (*(N) and using the *-invariance of the
norms Q,,, we see that the four elements Ty, k = 0, 1,2, 3, all belong to B;(D,p). Now it is
straightforward to check that R(7T") = Ty — T3 and $(T") = T — T, however, these need not give
the canonical decomposition into positive and negative parts since we may not have TyT5 = 0

and T1T3 =0. ]

Remark. The previous proposition shows that we can represent elements of B;(D, p) as finite
sums of products of elements of By(D, p), and so have a correspondingly simpler description of
the norms. We will not pursue this further here.

The next lemma is analogous to Lemma 27 (1). It shows that B; (D, p) is a bimodule for the
natural actions of the commutative von Neumann algebra generated by the spectral family of
the operator D.

Lemma 2.16. Let D be a self-adjoint operator affiliated to a semifinite von Neumann algebra
N with faithful normal semifinite trace 7 and p > 1. Let T € By(D,p) and f € L>*(R). Then

Tf(D) and f(D)T belong to By (D, p) with P, (T f(D)), Pu(f(D)T) < |fllPu(T), n=1,2,....

Proof. Fix T' € By1(D,p), f € L*(R) and n = 1,
T =57, R;iS;. Then we claim that Y~ R; (SZ
it follows by Lemma 27 (1) that

2.... Consider an arbitrary representation
(D ) is a representation of T f(D). Indeed,

Z n(R Qn Sf < ||fHooz Q. (Ri) Qnu(Si) < o0,

showing that T'f(D) € Bi(D,p). Moreover, the preceding inequality entails that

P (Tf(D <1nf{ZQn ) Qu(Sif(D)) : T = ZRS}

< ||f||oomf{z Q.(R)Q.(S) : T=3 R, Si b = I lloe Pal).
i=0
The case of f(D)T is similar. O

Our next aim is to prove that Bi(D,p) is stable under the holomorphic functional calculus in
its C*-completion. This will be a corollary of the following two lemmas.

Lemma 2.17. Let D be a self-adjoint operator affiliated to a semifinite von Neumann algebra
N with faithful normal semifinite trace 7 and p > 1. Let T, R be elements of Bz(D,p) with
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1+ R invertible in N'. Then T(1+ R)™* € By(D,p), and for alln =1,2,... we have
Q,(T(14 R)™") < 4v2max{L, |(1+ R)™'|[} max{1, Q,(R)} Qu(T) =: Cu(R) Qu(T).
Proof. For any n =1,2,... we have
Qu(T(1+ B)™)2 = [ T(1+ B) ™2+ gpeasn((1+ B TR+ R)™) + gpiyn(TI1 + RI2T)
<N@+R)THPATI? + @pa1/n(TT) + @prayn((L+ B)THTPAL+ R)T)
(2.6) <@+ R) TP Qu(D) + @prim((L+ BT+ R) 7,

where the first inequality follows by an application of the operator inequality A*B*BA <
| B||*A* A, while the second follows from the definition of the norm Q,,. Writing

1+ R NTPA+R)™!
= TP - R (1+R) NP = |TPR(1+ R + R*(1+ R*)'|T]PR(1+ R) ™,
the Cauchy-Schwarz inequality for the weight ¢,11/, gives
Ppr1m((L+ R)TNTP(L+ R < 0piim(ITF) + @pran(R'(L+ R)TTPR(L+ R) ™)
+ @pi1/n(I TN (prim(IRPIL+ RV 4+ g (| REPIL+ RY72)12)
Using the operator inequality A*B*BA < ||B||?A*A as above, we deduce that
Pprin((L+ R)TNTPL+ R < @priyn(ITP) +ITI I+ B) TP @prasn(| BI?)
HTIIQ A+ R epsasn(I T2 (pri/m(IBIDY? + oprim(IR)?)
Simplifying this last expression, using |||, ¢(|T|?)/? < Q,(T) and similarly for R, we find
prn((L+ BT+ R)™) < Qu(T) (1+ L+ R)™ Qu(R)*
This yields
Qu(T(1+R)™) < VII(L+ R)72+ (1 + [[(1+ R)~Y| Qu(R))? Qu(T).
Finally we employ, for a,b > 0, the numerical inequalities
Va2 + (1 +ab)? < /(ac)2+ (1 +ac)?, c¢:=max{l,b}
<V2(1+ac) <vV2(1+a)(l+c)
< 4v2max{1,a} max{1, ¢} < 4v2max{1,a} max{1,b},

to arrive at the inequality of the statement of the Lemma. O

Lemma 2.18. Let D be a self-adjoint operator affiliated to a semifinite von Neumann algebra
N with faithful normal semifinite trace 7 and p > 1. Let T € By(D,p) and R € By(D, p), with
1+ R invertible in N'. Then the operator T(1+ R)™! belongs to Bi(D,p), with

Po(T(1+R)™) <C(R)P(T), ¥Yn=1,2,...,
for the finite constant Cy(R) of Lemma[2.17.
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Proof. To see this, fix n =1,2,... and consider any representation of T’

T = E Tl,iTQ’i with Tl,iu TQ,i € Bg('D,p) and E Qn(Tl,z)Qn(T2,z) < o0
=0 i=0
Then

P (T(l + R < Z Qn Tl K Qn(T2 2(1 + R) ) n(R) i Qn(Tl,i) Qn(Tl,i)a

=0

where we used Lemma 217 to obtain the second estimate. Since the constant does not depend
on the representation chosen, we have the inequality

Pu(T(1+ B)™) < CalR) Po(T),
which completes the proof. O

Proposition 2.19. Let D be a self-adjoint operator affiliated to a semifinite von Neumann
algebra N with faithful normal semifinite trace 7 and p > 1. The Fréchet x-algebra By(D, p) is
stable under the holomorphic functional calculus in its C*-completion.

Proof. Let T' € B1(D, p) and let f be a function holomorphic in a neighborhood of the spectrum
of T. Let I' be a positively oriented contour surrounding the spectrum of 7', taking care that
0 does not lie on I'. We want to show that (when By (D, p) C N is nonunital)

/f (z = T) 'dz € Bi(D,p) @ Cldy,

with the scalar component equal to f(0)Idy. Since

/F F(2)(z = T)Vdz — £(0)Tdy = / F()T2 (2 = T) e,

and approximating this Riemann integral by Riemann sums, it suffices to show that the inte-
grand belongs to By (D, p) (since the later is a Fréchet space) More precisely we have

([ semie-me) 15

22
where C,, is the constant from Lemmas 2.17 and 2.I8, and we have used Lemma 2.12] to see
that T'/z € By(D, p). Then the inequality

Cu(=T/2) < 4V2max{1, |[(1 = T/2)7!||} max{1, Qu(T)/|2[},

allows us to conclude. O

Po(T)C(=T/z) dz,

The same proof applies to all matrix algebras over By (D, p).

Corollary 2.20. For any n € N and p > 1, the x-algebra M, (B,(D,p)) is stable under the
holomorphic functional calculus.
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Proof. Again, the general case follows from the n = 1 case, by replacing D, N, 7 and ¢, by
D ®1d,, M,(N),7 ® tr, and ¢, & tr,. d

We conclude this section by showing that when the weights ¢, s > 0, are tracial, then our space
of integrable element B; (D, p), coincides with an intersection of trace-ideals. This fact will be of
relevance in two of our applications (Section [l and subsection [6.2]), where the restriction of the
faithful normal semifinite weights ¢, to an appropriate sub-von Neumann algebra are faithful
normal semifinite traces.

Proposition 2.21. Let D be a self-adjoint operator affiliated to a semifinite von Neumann
algebra N* with faithful normal semifinite trace T and p > 1. Assume that there exists a von
Neumann sub-algebra M C N such that for all n = 1,2,..., the faithful normal semifinite
weight T, := Qpi1/m|m is a faithful normal semifinite trace. Then

BN, 1) (M= )L M.T).

n>1

Here LY(M, 1,,) denotes the trace ideal of M associated with the faithful normal semifinite trace
Ty. Moreover, for anyn =1,2,..., P,(-) = || - || + 2| - ||., where || - ||, is the trace-norm on

LM, 7).

Proof. Note first that the tracial property of the faithful normal semifinite trace 7,, := ¢p41 /n| Mo
immediately implies that

BN, m) (M = [ L2(M, 7),

that is, the half-domain of 7,, on M is already #-invariant. Now, take T € By (D, p) (M, and
any representation 7' = Y R;S;. Observe then that the Holder inequality gives

1T + 20T |-, <Y Qu(Ri) Qu(S))-

i=1

Since this inequality is valid for any such representation, it gives ||T'|| + 2||7||,, < Pn(T") and

hence By(N, 7)Y M C 1,5 LY (M, T1,).

Conversely, if T € (), L(M,7,), for each n we may write T as a linear combination of four
positive elements of £!(M,7,). Thus it suffices to consider T positive. Then T = VT VT and
VT € By(D,p) N M by the first part of the proof and the fact that T € (), £2(M,7,). Thus
T € By(D,p) N M, and Po(T) = Qu(VT)? = | T + 2T, < Py(T). O

2.3. Smoothness and summability. Anticipating the pseudodifferential calculus, we intro-
duce subalgebras of B, (D, p) which ‘see’ smoothness as well as summability. There are several
operators naturally associated to our notions of smoothness.
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Definition 2.22. Let D be a self-adjoint operator affiliated to a semifinite von Neumann algebra
N C B(H), where H is a Hilbert space. Set Hoo = (5o dom D*. For an operator T € N such
that T : Heo — Hoo we set B

§(T):=[|D|,T), &(T):=[1+DHY:T], TeN.
In addition, we recursively set
7™ =D 17" Y], n=1,2,... and TY =T
Finally, let
(2.7) L(T) := (1+D*7'2[D%T), R(T):=[D*T|(1+D* 2.
It follows from the proof of [15], Proposition 6.5] and R(T)* = —L(T™*) that
(2.8) (domL" = ((domR" = (] domL"o R'.
n>0 n>0 k,1>0

Similarly, using the fact that |z| — (1 + 2)"/2 is a bounded function, it is proved after [I5],
Definition 2.2] that

(2.9) ﬂ dom¢" = ﬂ dom §".

neN neN
Finally, it is proven in [21123] and [I5, Proposition 6.5] that we have equalities of all the smooth
domains in Equations (Z8]), (Z9).

Definition 2.23. Let D be a self-adjoint operator affiliated to a semifinite von Neumann algebra
N with faithful normal semifinite trace 7, and p > 1. Then define for k =0,1,2,...

Bi(D,p)={T €N :Vl=0,....k §(T) € Bi(D,p)},
where § = [|D|,-]. Also set
BY(D,p) == () Bi(D.p).
k=0

We equip BY(D,p), k = 0,1,2,...,00, with the topology determined by the seminorms P,
defined by

l
N3T = Po(T) =Y Pu(d(T), n=12,..., =0,k
=0

The triangle inequality for the seminorms P,,; follows from the linearity of ' and the triangle
inequality for the norm P,. Submultiplicativity then follows from the Leibniz rule as well as
the triangle inequality and submultiplicativity for P,.

Remarks. (i) Defining BS(D,p) ;== {T' € N : VI =0,...,k, 6'(T) € Bo(D,p)}, an application
of the Leibniz rule shows that BE(D,p)? c BF(D, p).
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It is important to observe that B3°(D,p) is non-empty, and so B°(D, p) is non-empty. Note
first that By(D, p) is non empty as it contains L2(N, 7). Then, for T' € By(D, p), and f € C.(R)
and k,1 = 0,1,2,..., arbitrary, |D|*f(D)T f(D)|D|" is well defined and is in By(D, p) by Lemma
27 This immediately implies that 6% (f(D)Tf(D)) is in Bo(D, p) for any k = 0,1,... and thus
F(D)T (D) is in BX(D,p).

(ii) Using Lemma 216, we see that the topology on the algebras Bf(D,p) could have been
equivalently defined with ¢ = [(1+D?)/2,.] instead of §. This follows since f(D) = |D| — (1 +
D?)'/2 is a bounded function of D. Indeed, Lemma shows that

Pu(0(T) = Pu(6(T) + [f(D), T]) < Puld"(T)) + 2[| flloc Pu(T)

and similarly that P, (6'(T)) < Pn(6(T)) + 2/ f]leo Pn(T). Hence convergence in the topology
defined using ¢ implies convergence in the topology defined by ¢’, and conversely. Similar
comments apply for B5(D, p).

(iii) In Lemma 232 we will show that we could also use the seminorms P, (L*(+)) (and similarly
for R* and L* o R7) to define the topologies of BY°(D,p) and B3 (D, p).

We begin by proving that the algebra BY¥(D, p) is a Fréchet *-subalgebra of A/.
Proposition 2.24. Let D be a self-adjoint operator affiliated to a semifinite von Neumann

algebra N with faithful normal semifinite trace 7, and p > 1. For each | = 0,1,2,...,00, the
algebra BY(D, p) is a Fréchet x-subalgebra of N

Proof. We treat the case [ = 1 only, since the general case is similar.

Let (Ty)r>0 be a Cauchy sequence in B} (D, p). Since
Pur(T = Th) = Pu(Tie = Th) + P (0(Tk) — 0(T1)) = Pu(8(Th) — 6(T1)) , Pu(Ti — T),

we see that both (Sk)r>0 := (0(T%))k>0 and (Tk)r>o are Cauchy sequences in Bi(D,p). Since
B (D, p) is complete, both (Sk)r>0 and (7} )r>0 converge, say to S € Bi(D,p) and T' € B;(D, p)
respectively.

Next observe that ¢ : domd C N — N is bounded, where we give dom ¢ the topology deter-
mined by the norm ||-||4||6(-)||. Hence ¢ has closed graph, and since T}, — 7" in norm and §(7%)

converges in norm also, we have S = §(7"). Finally, since (6(7}%))r>0 is Cauchy in Bi(D, p), we
have S = §(T") € B1(D, p). O

It is known (see [49, Lemma 16]) that the algebra M, ([, dom 0*) is stable under the holo-
morphic functional calculus. The same holds in the context of the algebra Bf (D, p).
Corollary 2.25. For anyn =1,2,..., k=0,1,...,00 and p > 1, the x-algebra M, (B¥(D,p))

is Fréchet and stable under the holomorphic functional calculus.

Proof. As in Corollaries 229, 2220, the proof for M, (B (D, p)), will follow from the proof for
B (D, p). By completeness of BY(D, p), it is enough to show that for T € BF(D,p), T(1+T)~ ' €
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B (D, p) (see the proof of PropositionZI9). But this follows from an iterative use of the relation
5(T(1 n T)—l) = 5(T)(1+T) = T(1+ T)"(T)(1 + ),
together with Lemma and the fact that By(D,p) is an algebra. O

2.4. The pseudodifferential calculus. The pseudodifferential calculus of Connes-Moscovici,
[2123], depends only on an unbounded self-adjoint operator D. In its original form, this calculus
characterises those operators which are smooth ‘as far as D is concerned’. In subsection we
saw that we could also talk about operators which are ‘integrable as far as D is concerned’. This
latter notion also requires the trace 7 and the dimension p. We combine all these ideas in the
following definition, to obtain a notion of pseudodifferential operator adapted to the nonunital
setting.

Definition 2.26. Let D be a self-adjoint operator affiliated to a semifinite von Neumann algebra
N with faithful normal semifinite trace T and p > 1. The set of order-r tame pseudodiffer-
ential operators associated with (H,D), (N, 7) and p > 1 is given by

OP) = (1+D*)"’B¥*(D,p), reR,  OPj:=|JOP.

reR
We topologise OP( with the family of norms
" (T) =Py ((1+D*)?T), n,leN.

n,l
Remark. To lighten the notation, we do not make explicit the important dependence on the
real number p > 1 and the operator D in the definition of the tame pseudodifferential operators.

With this definition, OP}, is a Fréchet space and OPj is a Fréchet #-algebra. In Corollary 233
we will see that |J,._, OPg C L1(N,7), which is the basic justification for the introduction of
tame pseudodifferential operators.

However, since B°(D, p) is a priori a nonunital algebra, functions of D alone do not belong to
OPy. In particular, not all ‘differential operators’, such as powers of D, are tame pseudodiffer-
ential operators.

Definition 2.27. Let D be a self-adjoint operator affiliated to a semifinite von Neumann algebra
N with faithful normal semifinite trace 7 and p > 1. The set of regular order-r pseudodif-
ferential operators is

OP” := (1 + 192)7”/2( N domd”), reR, 0P :=|]oOP".
neN reR

The natural topology of OP" is associated with the family of norms

l
> llsf((1+ D) PT)|, TeN.
k=0
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By a slight adaptation of Lemma [2.12] we see that B°(D,p) C By°(D, p) with Q,, x(-) < Ppi(+)
for all n > 1 and k > 0. Moreover, we have from the definition that B3°(D,p) C [, ey dom 0™,
with [|[6%(-)|| < Quux(-). Thus B (D, p) C (),ey dom 6™, with |[6*(:)|| < Ppnk(:). Hence, we have
a continuous inclusion OPj € OP". For » > 0, OP" contains all polynomials in D of order
smaller than r. In particular, Idy € OPY.

To prove that our definition of tame pseudodifferential operators is symmetric, namely that

(2.10) OP; = (1+D*"*7BX(D,p)(1+ D??, Vo€ 0,r/2],

we introduce the complex one-parameter group o of automorphisms of OP* defined by

(2.11) o*(T):= 1+ D???T(1+D**? 2eC, TecOP.

It is then clear that if we know that o preserves each OPy, then Equation (ZI0) will follow
immediately. The next few results show that o restricts to a group of automorphisms of each
OP" and each OPy,.

Lemma 2.28. Let D be a self-adjoint operator affiliated to a semifinite von Neumann algebra
N with faithful normal semifinite trace T and p > 1. There exists C > 0 such that for every
T € B{*(D,p) and £ € [0,1/3], we have P,([(1 + D?)*/2,T]) < CP,(6(T)).

Proof. Let g be a function on R such that the Fourier transform of ¢’ is integrable. The
elementary equality

1
9(ID]), T) = —2ir / de)e / ¢ 2! (| D], 7] ¢2mE0-9IP g,
R 0
implies by Lemma that
P.(l9(IP]), T1) < 19/l Pu (8(T)).

By [A7, Lemma 7], we know that [lg'i < v2(llg'lla + [|g”]|2). Setting g.(t) = (1 + ¢*)7% an

explicit computation of the associated 2-norms proves that for € € [0, %) we have

~ [(L—¢e)l/? 6(2 —e)['(2 —¢)l/?
(2.12) il < em/i(Ra =S YER NG -2y
(2 —e¢)l/? 2I'(4 — )1/2
Since this estimate is uniform in € on compact subintervals of [0,1), in particular on [0, §] and
is independent of T" € B°(D, p), the assertion follows immediately. O

Lemma 2.29. Let D be a self-adjoint operator affiliated to a semifinite von Neumann algebra
N with faithful normal semifinite trace T and p > 1. Then there is a constant C' > 1 such that
for all T € B (D, p) and z € C

|3R(2) | +1+1

Pat(0*(1)) < Y C*Pai(D).

k=l
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Thus o, preserves B (D, p).

Proof. 1t is clear that

(2.13) o*(T) =T+ [(1+ D)2, T)(1 + D*) /2 = T + (1 + D*)*?[(1 + D*) /%, T).

It follows from Lemma and Lemma that for z € [—1/3,1/3] we have
Pu(0*(T)) < Pu(T) + CP,(3(T)) < CP,a(T),

with the same constant as in Lemma 228 (which is thus independent of T' € B{°(D, p) and
z € C). Since o° is a group, we have

for z € R, and as 0* commutes with , we have P, ;(0*(T)) < ZIE?’E(Z)JHH C*P,, 1(T) for every
z € R. Finally, as 0% = 0¢"3®) ") and ¢'3() is isometric for each P, (by Lemma [2.16] again),
the assertion follows. O

Proposition 2.30. Let D be a self-adjoint operator affiliated to a semifinite von Neumann alge-
bra N with faithful normal semifinite trace T and p > 1. The maps o* : B°(D, p) — B(D, p),
z € C, form a strongly continuous group of automorphisms which is uniformly continuous on
vertical strips.

Proof. Fix T € B{°(D,p). We need to prove that the map z — o*(T) is continuous from C to
B°(D, p), for the topology determined by the norms P, ;. By Lemma we know that o*
preserves B°(D, p) and since {0*},¢c is a group of automorphisms, continuity everywhere will
follow from continuity at z = 0. So, let z € C with |z| < 5. From Equation (2I3), it is enough
to treat the case R(z) > 0. Moreover, Lemma 216 gives us

Pua(0*(T) = T) < Pog(I(1+ D)2, 7)),
and from the same reasoning as that leading to the estimate (Z12), we obtain
P ([(1 + D)2, T])

<4 7T1/4(F(% — [R(=)])" N V6(2 — [R(2) DTS — [R(2)])"/
- L2 —[R(z))"? 20(4 — [R(2)])/?

Since C(z) is uniformly bounded on the vertical strip 0 < R(z) < 3, we obtain the result. [

) Pusnal®) = |2 C(2)

Remark. Using Lemma 27 in place of Lemma [ZT6 we see that Lemmas 228 and
Proposition hold also with B3°(D, p) instead of B (D, p).

We now deduce that these continuity results also hold for both tame and regular pseudodiffer-
ential operators.
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Proposition 2.31. Let D be a self-adjoint operator affiliated to a semifinite von Neumann
algebra N with faithful normal semifinite trace T and p > 1. The group o is strongly continuous
on OP{ for its natural topology, and similarly for OP".

Proof. Since T € OP} if and only if (1 4+ D?)™"/2T € B°(D,p) and since ¢* commutes with
the left multiplication by (1 + D?)~"/2, the proof is a direct corollary of Proposition 230, The
proof for OP" is simpler since it uses only the operator norm and not the norms PJ; we refer

to [I521,23] for a proof. O

We can now show that B°(D, p) has an equivalent definition in terms of the L and/or R oper-
ators. Unlike the equivalent definition in terms of ¢’ mentioned in the remark after Definition
2.23 this does not work for By (D, p), k # oo.

Lemma 2.32. Let D be a self-adjoint operator affiliated to a semifinite von Neumann algebra
N with faithful normal semifinite trace T, and p > 1. Then

BX(D,p)={TeN :VI=0,1,2,..., L(T) € Bi(D,p)},

where L(-) = (1 + D*)~Y2[D? ] is as in Definition 224 The analogous statement with R
replacing L is also true.

Proof. We have the simple identity L = (1 + 0~') 0§, which with Proposition 230 yields one
of the inclusions.

For the other direction, it suffices to show that for every m,n € N we have

Pu(@"(4)) < max P(LH(4)).

Using the integral formula for fractional powers we have

1 [ee]
§(T) = [(14+ DY)(1+ D)2, 1] = L / A 2[(1 4 D?)(1 4+ A+ D), T)d.
T Jo
However, a little algebra gives
1+D? 1+ D?)Y/2 1+ D?)%? 1+ D? 1
————ﬁﬂ:(( ) ) )()+k—————ﬁ@%———f
1+ A+ D? 1+A+D%2  (1+X+D?)? (1+ X+ D2?)2 1+ A+ D2

The following formula can be proved in the scalar case, and by an appeal to the spectral
representation proved in general:

0o 2\1/2 2\3/2
/ )\_1/2((1+D) (1+D?) )d)\—ﬂ
0

1+A+D2  (1+ A+ D2y

=3
Therefore,

1 [ 1+ D? 1
(T =iL(T —/ P ——— Y ) ———— )
(1) =L+ 0 a+A+D%2(>1+A+D2

™
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An induction now shows that
n k

Eodr A1+ D?) )
m —-nrn —n n+k l
§™(T) = 27"L™(T) + 2 <)( )/ 1”1 oot (T)l||171 o pr

k=1

The functional calculus then gives
(T+A+DH) <1+ N AN2A+DHA+A+D?) 2 < A2 )4,
and so by Lemma we have

P (6™(T)) <277 (1 + kz: (D (%)klli/:o %) ng{@}gan(Lk(T)).

The assertion now follows by the second remark following Definition that we may equiva-
lently use ¢’ to define BF(D, p) for k =1,2,...,00. O

We now begin to prove the important properties of this pseudodifferential calculus, such as
trace-class properties and the pseudodifferential expansion. First, by combining Proposition
2317 with the Definition 2226, we obtain our first trace class property.

Corollary 2.33. Let D be a self-adjoint operator affiliated to a semifinite von Neumann algebra
N with faithful normal semifinite trace T and p > 1. For r > p, we have OP;" C LY(N, 7).

Proof. Let T, € OP;". By Definition 2.2 and Proposition 23], we see that the symmetric
definition of OP{ in Equation (ZI0) is equivalent to the original definition. Thus, there exists
A € B¥(D,p) C Bi(D,p) such that

T, = (1+D?)7"/*A(1 + D?) /4,

Define n := | (r—p)~!| and write A = 3, _, i* Ay, with A;, € B1(D, p) positive, as in Proposition
2,15l The Holder inequality then entails that

ITll = (1 + D) A0 + D)7y

< ||(1 —I—D2)_p/4_1/4nA(1 +D2)—p/4—1/4n||1
3

ZH(l_I_Dz —p/4— 1/4n\/*H H\/ﬁ 14 D)/ 1/4n

3

< 2_: Q. (V) @ (VA:) = an(Ak) < oo

which is enough to conclude. O

As expected, the product of a tame pseudodifferential operator by a regular pseudodifferential
operator is a tame pseudodifferential operator.
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Lemma 2.34. Let D be a self-adjoint operator affiliated to a semifinite von Neumann algebra N
with faithful normal semifinite trace T and p > 1. For allr, t € R we have OP; OP', OP' OP C
opP;*.

Proof. Since o preserves both OP(j and OP", it suffices to prove the claim for r =t = 0. Indeed,

for T, € OP}, and T, € OP®, there exist A € OP) and B € OP? such that 7, = (1 4+ D?)"/2A
and T, = (14 D?)*/2B. Thus, the general case will follow from the case ¢t = s = 0 by writing

T.T, = (1 + D*)"*+9)/25=5(A)B.

So let T € OPj and S € OP". We need to show that 7'S € OP) = B{°(D,p). For this, let
T = 2210 T, ;T,; any representation. We will prove that

> T (15:5)
=0

is a representation of the product T'S. Indeed, we have

Qu(T3:5)* = | ToiS|* + || T2uS(1 + D) P/ 474 3 4 ||[S* T3, (1 + D) ~P/4 -1/
< ISIPNT2ll + o A (S) P Toa(1 + D) P/ 3 4 |[S]2| Ty (1 + D2) 2443
< (ISI+ llo? /1" (8) ) Qu( T2

which is finite because OP’ = (0, dom " is invariant under o by Proposition ZZ31l This
immediately shows that T'S € B1(D, p) since

< D QulT1) QulT2iS) < (1SN + o™ (S)I1) D Qu(Ths) Qu(T2s) < 00
=0 =0

In particular, one finds P,(T'S) < (||S|| + [|o?/*+1/4(S)||) P, (T). Now the formula §*(T'S) =
Z?:o (';) §7(T)6'*=9(S) and the last estimate shows that P, ,(T'S) = P,(6 *(T'S)) is finite and
so T'S € BX(D,p). That OP* OP;, C OP;** can be proven in the same way. O

Remark. Lemma 234 shows that B°(D, p) is a two-sided ideal in () dom §*.

The following is a Taylor-expansion type theorem for OP{ just as in [21,23], and adapted to
our setting.

Proposition 2.35. Let D be a self-adjoint operator affiliated to a semifinite von Neumann
algebra N with faithful normal semifinite trace 7 and p > 1. Let T € OP[ and z =n+1— «
with n € N and R(«) € (0,1). Then we have

z(z—l)---(z—k‘—l—l)'

— Y Cilz) (0 —1)¥(T) € OPF™ " with  Ci(2) = -
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Proof. The proof is exactly the same as that in [2I,23] once we realise that if 7" € OP[ then
(o —1d)*(T) € OP;~*. This follows from

(02 —1)M(T) = (1 + D) 2% (5™(T)),

and the invariance of each OPj, under ¢’ = [(1 + D?)Y/2,.] and o. For ¢’ this follows from the
second remark following Definition 2.23] O

Lemma 2.36. Let D be a self-adjoint operator affiliated to a semifinite von Neumann algebra
N with faithful normal semifinite trace T and p > 1. If A € OPy and n = 1,2,3,..., then
A™ € OP™, where A™ is as in Definition [2.22.

Proof. For n = 1, by assumption there is an operator 7 € OP} such that A = (1 + D?)"/2T.
Then AY = (1 4+ D»)2TW = (1 + D?)+V/2L(T). So the proof follows from the relation
L = (14+0"') 04 and the fact that both 0~! and ¢’ preserve OP, by Lemma 229 The general
case follows by induction. O

Proposition 2.37. Let D be a self-adjoint operator affiliated to a semifinite von Neumann
algebra N with faithful normal semifinite trace T and p > 1. The derivation LD defined by
LD(T) := [log(1 + D?),T], preserves OPy, for all r € R.

Proof. Set g(t) = log(1 + #2). We have ||¢/[; < oo and

1
LD(T) = [¢(|D]),T) = —2in / glee / e~ 2msIPl 5 () e 219Dl g5 g
R 0
The assertion follows as in Lemma O

We next improve Proposition 2311

Proposition 2.38. Let D be a self-adjoint operator affiliated to a semifinite von Neumann
algebra N C B(H) with faithful normal semifinite trace T and p > 1. The map o : C x OPj —
OPy, is strongly holomorphic (entire), with

d

—0° = %az oLD.

dz

Proof. If z — zg = u, then we have

ﬂ—lUZOOLD — 0% o Uu_l_lLD
z— 2 2 U 2 )

Since 0*° is strongly continuous, it is sufficient to prove holomorphy at zy = 0. Then for 7' € OP]
we see that
o (T)-T

@11 TS S LD(T) = [0.(D), T) + 2 (1 + DA TY(1 4 D) - 1),



Index theory for locally compact noncommutative geometries 31

with g.(s) = 271 ((1 + s%)*/2 = 1) — $1og(1 + s?). An explicit computation shows that ||g.||> +

lg”|l2 = O(2]). Since V2(||gillz + l971l2) = l|gL]l1, we see that [|gZ]ly — 0 as z — 0. Tt follows,
as in Lemma .28 that the first term tends to 0 in the P; -norms, as z — 0.

It remains to treat the second commutator in Equation (2I4]). We let z € C with 0 < R(z) < 1.
Employing the integral formula for complex powers of a positive operator A € N/

(2.15) A* = W_lsin(ﬁz)/ ATFA(L+AA) NN, 0 < R(2) < 1,
0
gives

(1+ D% = (1 +D*'?)" = 7 'sin(r2) / A1+ D) V2(1 + A1+ D)7V tan
0

= 1 'sin(72) / A2 ((1+DHY2 4 N)ta.
0
We apply this formula by choosing 0 < ¢ < (1 — R(z)) and writing
1
~[(L+D**2,T)((1 + D*) /2 - 1)

<

:—1(1—I—D2)Z/2[(1—I-D2)_Z/2,T](1—I—D2)Z/2((1—|-D2)_Z/2—1)
<

_ Sln(TFZ)/ )\_Z(l—I—D2)2/2((1—|—D2)1/2—l—)\)_l(S/(T)((l—|—D2)1/2+)\)_1(1+D2)(z+8)/2x
T2 0

x (1+D*) (1 +D?*)*? - 1)d\.
Using the elementary estimate
(L + D)2+ 0) 1+ D)o < (14N

we have
L (Gl DT Dy o)

- | sin(72)|

< T () | L+ D2y (e D) )|

/OO )\—?R(z)(l + A)2%(z)—2+ad)\.
o Jo

This concludes the proof since, as 0 < R(z) < 1—¢, the last norm is bounded in a neighborhood
of z = 0, while the integral over A is bounded (provided ¢ is small enough) and |sin(7z)| goes
to zero with z. U

Last, we prove that the derivation LD(-) = [log(1 + D?), -] ‘almost’ lowers the order of a tame
pseudodifferential operator by one.

Proposition 2.39. Let D be a self-adjoint operator affiliated to a semifinite von Neumann
algebra N with faithful normal semifinite trace T and p > 1. Then for all v € R and for any
e € (0,1), LD maps continuously OP}, to OP} "=,
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Proof. Since the proof for a generic » € R will follows from those of a fixed ry € R, we may
assume that 7 = 0. Let 7' € OP). We need to show that LD(T) € OP; " for any ¢ > 0, or
equivalently, that LD(T)(1 + D?)Y/27¢/2 € OP} for any & > 0.
We use the integral representation

1

log(1+D2):D2/ (1+wD?) ™ dw,
0

which follows from log(1 + z) = fom 1%\ d\ via the change of variables A = xw. Then

1 1+D2)1—5/2
1 1 D2 TI(1 D2 1/2—e/2 _ D2 T(1 D2 —1/2/ (
log(1+ D7), 7)1+ DY/ = (o T + 07y [ AP
(1+D2>1_€/2

dw.
1+ wD? v

1

Now elementary calculus shows that for 1 > a >0 and 1 > x > 0 we have

Qi@i§<gy<1—af” md [ -t =1 - ) @)

(1+2w) w 1—w

and so we obtain the integral estimate

1 (1 —l—l’)a a 11—«
/0 mdw <a(l—a) T - a)l'(a).

Then using R(T) = [D?, T)|(1 + D?)~/2 and elementary spectral theory gives
Poi ([log(1 + D), T)(1 + D2)1/2_€/2) < 2P, i(R(T)) (1 —¢/2)' /% (/2)*T(/2) T((1 —€)/2),
which gives the bound for all 0 < e < 1. O

2.5. Schatten norm estimates for tame pseudodifferential operators. In this subsection
we prove the Schatten norm estimates we will require in our proof of the local index formula.

Lemma 2.40. Let D be a self-adjoint operator affiliated to a semifinite von Neumann algebra
N with faithful normal semifinite trace T and p > 1. Let A € OP) and o, B > 0 with a+ 3 > 0.
Then (1 4+ D?*) P2 A(1 4+ D?)=%/2 belongs to LI(N,T) for all ¢ > p/(a + B3), provided q > 1.

Proof. Since (1+D?)~P2A(1+D?)~*/2 = ¢7#(A)(1+D?)~*/278/2 and because ¢ is continuous,
Proposition 230, on OP) = B°(D, p) we can assume 3 = 0.

So let A € OP)). Note first that for y € R we have A(1 4 D?)%/2 ¢ A" and by Corollary
A(l + D?)~a/2*w/2 ¢ LY(N,7), since ag > p. Consider then, on the strip 0 < R(z) < 1
the holomorphic operator-valued function given by F(z) := A(1l + D?)~*%*/2, The previous
observation gives F(iy) € N and F(1+iy) € LY(N, 7). Then, a standard complex interpolation
argument gives F'(1/q +iy) € LYN, 1), for ¢ > 1, which was all we needed. O
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Lemma 2.41. Let D be a self-adjoint operator affiliated to a semifinite von Neumann algebra
N with faithful normal semifinite trace T and p > 1. For a € [0,1], 8,7 € R with a+ 8+~ >0
and A € OP) we let

Bagn = (1+D*)P2[(14D*)=72 Al(1+D*)/2,
Capry = (L+D?)P2[(1+ D)= A](1+ D*)?log(1 + D?),
Dog = (1+D?)P2[(1 4 D*) =92 10g(1 4+ D?), A| (1 + D?) /2,

Then Bo g, Copry Dapr € LYN,T) for all g > p/(a+ B+ ), provided ¢ > 1. Moreover, the
same conclusion holds with |D| instead of (1 + D*)Y/2 in the commutator.

)"
)"
)"
(

Proof. There exists ¢ > 0 such o+ 3+~ — & > 0. Since moreover (1 + D?)~*/21og(1 + D?) is
bounded for all € > 0, we see that the assertion for B, 5.,_./» implies the assertion for C, g3 ,.
Note also that the Leibniz rule implies

Doy = Capyy + (14 D) 27D LD(A)(1 + D)7,
so the third case follows from the second case using Proposition 2.39] and Lemma [2.400

Thus it suffices to treat the case of B, g.. Moreover, we can further assume that o € (0, 1) (for
a = 1 there is nothing to prove and for a = 0, the statement follows from Lemma 2.40) and,
as in the proof of the preceding lemma, we can assume = 0. Using the integral formula for
fractional powers, Equation (2.I5), for 0 < o < 1, we see that

Ba,O,fy: _(1+D2>(1—a)/2[(1+1D2>(a—1)/27A]<1+D2)(1—a)/2(1_'_rD2>—fy/2

=7 'sinm(1 — a)/2/ AI=0/2(1 p p2HI=e)/2(] L p2 4 )7t
0

x [D?, A](1 +D? + \) 71 (1 + DH)A-2=/2 g\

=7 tsin7(1l — a)/2/ AI=)/2(]  pA)l=/2(1 4 D2 4 \) !
0

X L(A)(l _I_D2)(a—a—v)/2(1 + D%+ )\)—1(1 +D2)(1_5)/2d)\‘
By Lemma 240 we see that for ¢ > 0 sufficiently small, L(A)(1 4 D?)E=2=7/2 ¢ LI(N| 1) for
all ¢ > p/(a+ v —¢) provided ¢ > 1. So estimating in the ¢ norm with ¢ := p/(a+ v — 2¢) >
p/(a+ vy —¢) gives

1Baoslly < IL(A) L +D?)E272, /0 ATEROR (L4 072 (1 A) TR A,

which is finite. Finally, the same conclusion holds with |D| instead of (1 + D?)/2 in the
commutator, and this follows from the same estimates and the fact that |D|'~ — (1 +D?)(1-2)/2
extends to a bounded operator for a € [0, 1]. O

In the course of our proof of the local index formula, we will require additional parameters. In
the following lemma we use the same notation as later in the paper for ease of reference.
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Lemma 2.42. Let D be a self-adjoint operator affiliated to a semifinite von Neumann algebra
N with faithful normal semifinite trace 7 and p > 1. Assume that there exists p > 0 such that
D2 >p? Let A€OP), A=a+iv,0<a<pu?/2,vER, sc R andt € [0,1], and set

Rye(N) = (A= (t +* + D).

Let also q € [1,00) and Ny, N, € sNU{0}, with Ny + Ny > p/2q. Then for each ¢ > 0, there
exists a finite constant C' such that

|Rs s (NN AR, (V™2 |, < C((t 4 p2/2 + 8% — a)? 4 v?)~MiFN2)/24p/Aate,

(For half integers, we use the principal branch of the square root function).

Remark. Here is the point where we require 0 < a < p?/2 in the definition of our contour of
integration /. It is clear from the proof below, where this condition is used, that there is some
flexibility to reformulate this condition.

Proof. By the functional calculus (see the proof of [15, Lemmas 5.2 & 5.3] for more details) and
the fact that a < ;?/2, we have the operator inequalities for any N € tNU {0} and Q < N

[Ros(MY] < (D = ?/2)7C ((t + 12 /2 + 8% — a)? + 0?) TN/,

which gives the following estimate

R e (N AR (X))l

<R (NM(D? = 12 /2)2 || Rs (M) (D? = p/2) %2 | [(D? = 12 /2)" % A(D? — 1 /2)~ |

< (44 724 5 — a)f 4 02) ENDRHQUERR (D2 22 A(D? — 22 %,
One concludes the proof using Lemma 2401 by choosing Q1 < Ny, Q2 < N, such that Q1+ Q2 =
p/2q + €. O
Remark. For A = 0 and with the same constraints on ¢ and N as above, the same operator
inequalities as those of [I7, Lemma 5.10], gives
(2.16) JA(t + 8> + D*)V|ly < [A(D? = u?/2) Pl (2 )2 + 57) - V2072,

3. INDEX PAIRINGS FOR SEMIFINITE SPECTRAL TRIPLES

In this section we define the notion of a smoothly summable semifinite spectral triple (A, H, D)
relative to a semifinite von Neumann algebra with faithful normal semifinite trace (N, 7), and

show that such a spectral triple produces, via Kasparov theory, a well-defined numerical index
pairing with K,(A), the K-theory of A.

The ‘standard case’ of spectral triples with (N, 7) = (B(H), Tr) for some separable Hilbert
space H, is presented in [19]. In this case there is an associated Fredholm module, and hence

K-homology class. Then there is a pairing between K-theory and K-homology, integer valued
in this case, that is well-defined and explained in detail in [32]. The discussion in [32] applies
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to both the unital and nonunital situations, although one of our principal aims is to make the
details of the nonunital case explicit. The extension of [32] to deal with both the semifinite
situation and nonunitality require some refinements that are not difficult, but are worth making
explicit to the reader for the purpose of explaining the basis of our approach.

Recall that when the spectral triple is semifinite and has (1 + D?)~%/2 € LYN, 1) for all
s > p > 1, for some p, then there is an analytic formula for the index pairing, given in terms of
the R-valued index of suitable 7-Fredholm operators, [4,[12,[13,16].

However, for a semifinite spectral triple with (1 4+ D?)~'/2 not 7-compact, we need a different

approach, and so we follow the route indicated in [34]. There it is shown that we can associate
a Kasparov module, and so a K K-class, to a semifinite spectral triple. This gives us a well-
defined pairing with K,(.A) via the Kasparov product, with values in Ky(Kys), the K-theory of
the 7-compact operators K in A. Composing this pairing with the map on Ky(Kyr) induced
by the trace 7 gives us a numerical index which computes the usual index when the triple is
‘unital’. When we specialise to particular representatives of our Kasparov class, we will see
that we are also computing the R-valued indices of suitable 7-Fredholm operators.

3.1. Basic definitions for spectral triples. In this subsection, we give the minimal definition
for a semifinite spectral triple, in order to have a Kasparov (and also Fredholm) module. Recall
that we denote by IC(N, 7), or Ky when 7 is understood, the ideal of 7-compact operators in
N. This is the norm closed ideal in N generated by projections with finite 7-trace.

Definition 3.1. A semifinite spectral triple (A, H, D), relative to (N, T), is given by a Hilbert
space H, a x-subalgebra A C N acting on H, and a densely defined unbounded self-adjoint
operator D affiliated to N such that:

1. da := [D, a] is densely defined and extends to a bounded operator in N for all a € A,
2. a(1+ D)2 e K(N,7) for alla € A.

We say that (A, H, D) is even if in addition there is a Zy-grading such that A is even and D
is odd. This means there is an operator v such that v = ~*, v* = Idy, ya = a7y for alla € A
and Dy + D = 0. Otherwise we say that (A, H, D) is odd.

Remark. 1) We will write 7 in all our formulae, with the understanding that, if (A, H, D) is
odd, v = Idy and of course, we drop the assumption that D~y + yD = 0.

2) By density, we immediately see that the second condition in the definition of a semifinite
spectral triple, also holds for all a in A, the C*-completion of A.

Our first task is to justify the terminology ‘nonunital’ for the situation where D does not have
T-compact resolvent. What we show is that if A is unital, then we obtain a spectral triple on
the Hilbert space 14H for which the operator has compact resolvent. On the other hand, one
can have a spectral triple with nonunital algebra whose ‘Dirac’ operator has compact resolvent,

as in [27,28/60].
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Lemma 3.2. Let (A, H, D) be a semifinite spectral triple relative to (N, T), and suppose that A
possesses a unit P # Idy. Then (P + (PDP)*)~Y2 € K(PNP,7|pxp). Hence, (A, PH, PDP)
is a unital spectral triple relative to (PN P,T|pap).

Proof. Tt is a short exercise to show that 7|pap is a faithful normal semifinite trace on PN P,
and that (PN P, 7|pyp) C K(N, 7). Note first that (P + (PDP)?)~Y2 is 7|pp-p-compact if
and only if (P + (PDP)?)~!is. For p > 0, we have

(pP + (PDP)*)"' = (pP + P[D, P]DP + PD*P)"!
= (pP + P[D, P|[D, P|P + PD*P)~* = P(p + D* + [D, P|[D, P]
where we have used P[D, P|DP = P[D, P|[D, P|P + P[D,P|PDP = P[D, P|[D, P|P, since
PO(P)P = 0 for any derivation d with P € domd. Now fix p = 1+ ||[D, P]||>. Since
—|[D, P)||* < [D, P|[D, P] <0, we have the operator inequality
0< P(p+D*+[D,P|[D,P))"'P < P(p+D*— ||[D, P]|>)"'P = |(1 + D*)~V2P|".

The right hand-side is 7|pyp-compact since (A, H, D) is a spectral triple. This operator in-
equality then implies that the left hand-side is also 7|parp-compact. This is enough to conclude
since, by the first resolvent equation, one then deduces that P(p + D? + [D, P][D, P])"'P is
7| parp-compact for all complex p in the resolvent set of D? 4 [D, P|[D, P], thus in particular
for p=1. 0

)~

Thus, we may without loss of generality assume that a spectral triple (A, H, D) whose operator
D does not have compact resolvent has A a nonunital algebra. Adapting this proof shows
that similar results hold for spectral triples with additional hypotheses such as summability or
smoothness, introduced below.

3.2. The Kasparov class and Fredholm module of a spectral triple. In this subsection,
we use Kasparov modules for trivially graded C*-algebras, [35]. Nonunital algebras are assumed
to be separable, with the exception of K(N,7) which typically is not separable nor even o-
unital. Information about C*-modules and their endomorphisms can be found in [4§]. Given
a C*-algebra B and a right B-C*-module X, we let Endg(X) denote the C*-algebra of B-
linear adjointable endomorphisms of X, and let End%(X) be the ideal of compact adjointable
endomorphisms.

We briefly recall the definition of Kasparov modules, and the equivalence relation on them used
to construct the K K-groups.

Definition 3.3. Let A and B be C*-algebras, with A separable. An odd Kasparov A-B-module
consists of a countably generated ungraded right B-C*-module X, with m : A — Endg(X) a
x-homomorphism, together with F' € Endg(X) such that w(a)(F — F*), w(a)(F?*—1), [F,7(a)]
are compact adjointable endomorphisms for each a € A.

An even Kasparov A-B-module is an odd Kasparov A-B-module, together with a grading by a
self-adjoint adjointable endomorphism v with v? =1 and ©(a)y = yn(a), Fy +~F = 0.
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We will use the notation (F, 4 Xp) or (F, 4 Xp,~) for Kasparov modules, generally omitting the
representation . A Kasparov module (F, 4 Xg) with 7(a)(F —F*) = n(a)(F?—1) = [F,w(a)] =
0, Va € A, is called degenerate.

We now describe the equivalence relation on Kasparov A- B-modules which defines classes in the
abelian group KK (A, B) = KK"(A, B) (even case) or KK'(A, B) (odd case). The relation
consists of three separate equivalence relations: unitary equivalence, stable equivalence and
operator homotopy. More details can be found in [35].

Two Kasparov A-B-modules (Fi, 4(X1)p) and (Fy, a(X2)p) are unitarily equivalent if there is
an adjointable unitary B-module map U : X; — X5 such that m(a) = Umy(a)U*, Va € A and
FE=URU"

Two Kasparov A-B-modules (Fi, 4(X1)g) and (Fy, 4(X2)p) are stably equivalent if there is a
degenerate Kasparov A-B-module (F3, 4(X3)p) with (F1, a(X1)g) = (Fo @ F3, 4(Xo @ X3)B)
and m = my D 3.

Two Kasparov A-B-modules (G, 4(X)p) and (H, 4(X)p) (with the same representation 7 of
A) are called operator homotopic if there is a norm continuous family (F})cjo1) C Endg(X)
such that for each t € [0,1] (F}, 4(X1)p) is a Kasparov module and Iy = G, F; = H.

Two Kasparov modules (G, 4(X)p) and (H, 4(X)p) are equivalent if after the addition of
degenerate modules, they are operator homotopic to unitarily equivalent Kasparov modules.
The equivalence classes of even (odd) Kasparov A-B modules form an abelian group denoted
KK° A, B) (KK'(A, B)). The zero element is represented by any degenerate Kasparov module,
and the inverse of a class [(F, 4(X)p)] is the class of (—F, 4(X)g), with grading —v in the even
case.

This equivalence relation, in conjunction with the Kasparov product, implies further equiv-
alences between Kasparov modules, such as Morita equivalence. This is discussed in [5,35],
where more information on the Kasparov product can also be found. With these definitions in
hand, we can quote our first result linking semifinite spectral triples and Kasparov theory.

Lemma 3.4 (see [34]). Let (A, H, D) be a semifinite spectral triple relative to (N, 7). Fore >0
(resp € > 0 when D is invertible), set F. := D(c 4+ D?)"/2 and let A be the C*-completion of
A. Then, [F.,a| € Ky for all a € A. In particular, letting X = ICxn as a right Ky -C*-module,
the data (4Xx,, F:) defines a Kasparov module with class [(4 Xk, Fr)] € KK*(A,Ky), and
o = 0 if the spectral triple (A, H,D) is Zy-graded and e = 1 otherwise. The class [(a Xk, Fz)]
is independent of € > 0 (or even € > 0 if D is invertible).

Proof. Regarding X = KCn as a right Ky~-C*-module via (71|13) := 17715, we see immediately
that left multiplication by F. on ICy gives F. € Endg,, (Ky), the adjointable endomorphisms,
see [48], and left multiplication by a € A, the C*-completion of A, gives a representation of A
as adjointable endomorphisms of X also. That [ = F. as an endomorphism follows from the
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functional calculus. Now let a,b € A. The integral formula for fractional powers gives
(E +D2)—1/2 _ 7_(.—1/ )\_1/2(5 + )\ +D2)_1d)\,
0
and with a nod to [I2, Lemma 3.3] we obtain

D[(5+D2)_1/2,a]b:7r_1/ A‘1/2<D2(5+>\+D2)‘1[D,a](5+)\+2)2)‘1b
0

+D(e + A+ D) YD, a]D(e + A + 192)—15) d.

By the definition of a spectral triple, the integrand is 7-compact, and so is in the compact
endomorphisms of our module. The functional calculus yields the norm estimates

ID*(e + A +D*) 7D, a](e + A +D*) 7'l < [|[D, af|[[[bfl (s +X) 7,
and
ID(e + X +DH 7D, a]D(e + A+ D?) 71| < |I[D, a]|||[b]|(e + X)L
Therefore, the integral above is norm-convergent. Thus, D[(c 4+ D?)~'/2 a]b is T-compact and
[F-, alb = D[(e + D*)~Y2, a]b+ [D, a] (s + D*)~/?b,

is T-compact too. Similarly, a[F.,b] is T-compact. Finally, [F,ab] = a[F.,b] + [F.,a]b is 7-
compact, and so a compact endomorphism. Taking norm limits now shows that [FL,ab] is
T-compact for all a,b € A. By the norm density of products in A, one concludes that [FL, a]
is compact for all a € A. Finally for a € A we have a(1 — F?) = ae(e + D?)~!, and this is
T-compact since (A, H, D) is a spectral triple.

To show that the class is independent of ¢, it suffices to show that € — F. is continuous in
operator norm, [35]. This follows from the integral formula for fractional powers which shows
that

F, - F,="2 ; o / A2D(e) + A+ D) ey + A+ D),
0
since the integral converges in norm independent of €1, 5 > 0. If D is invertible we can also
take €; = 0. This completes the proof. O

Using the Kasparov product we now have a well-defined map
(3.1) - @aA[(Kpr, FL)] ¢ Ko(A) = KK*(C, A) — Ko(Ky).

For this pairing to make sense it is required that A be separable, [5, Theorem 18.4.4], and we
remind the reader that we always suppose this to be the case. We refer to the map given in
Equation B.1] as the K -theoretical index pairing.

Definition 3.5. Let A be a *-algebra (continuously) represented in N, a semifinite von Neu-
mann algebra with faithful semifinite normal trace 7. A semifinite pre-Fredholm module for A
relative to (N, 7), is a pair (H,F), where H is a separable Hilbert space carrying a faithful
representation of N and F is an operator in N satisfying:
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1.a(l1 = F?), a(F — F*) € Ky, and
2.[F,a) € Ky fora e A.

If 1= F? =0 = F — F* we drop the prefit “pre-". If our (pre-)Fredholm module satisfies
[Fa] € LPYYN,7) and a(l — F?) € LOH2(N | 7) for all a € A, we say that (H,F) is
p + 1-summable.

We say that (H, F') is even if in addition there is a Zs-grading such that A is even and F is
odd. This means there is an operator vy such that v = v*, v* = Idy, ya = a7y for alla € A and
Fy+~F =0. Otherwise we say that (H, F') is odd.

A semifinite pre-Fredholm module for a x-algebra A extends to a semifinite pre-Fredholm
module for the norm completion of A in N, by essentially the same proof as Lemma [3.41
For completeness we state this as a lemma.

Lemma 3.6. Let (A, H,D) be a semifinite spectral triple relative to (N, 7). Let A be the C*-
completion of A. If F. = D(e +D?)"Y2 ¢ > 0, then the operators [F.,a] and a(1 — F?) are
T-compact for every a € A. Hence (H, F.) is a pre-Fredholm module for A.

3.3. The numerical index pairing. We will now make particular Kasparov products explicit
by choosing specific representatives of the classes. We will focus on the condition F? = 1 for
Kasparov modules. Imposing the condition F? = 1 simplifies the description of the Kasparov
product with K-theory. In the context of Lemma [3.4] this will be the case if and only if ¢ = 0,
that is, if and only if D is invertible. We will shortly show how to modify the pair (H,D) in
the data given by a semifinite spectral triple (A, #H, D), in order that D is always invertible.
Before doing that, we need some more Kasparov theory for nonunital C*-algebras.

Suppose that we have two C*-algebras A, B and a graded Kasparov module (X =,X5, F, 7).
Assume also that A is nonunital. Let e and f be projections in a (matrix algebra over a)
unitization of A, which we can take to be the minimal unitization A~ = A & C (see [48]),
by excision in K-theory, and suppose also that we have a class [e] — [f] € Ky(A). That is,
le] — [f] € ker(m, : Ko(A~) — Ko(C)) where 7 : A~ — C is the quotient map. Then the
Kasparov product over A of [(X, F,v)] with [e] — [f] gives us a class in Ky(B). We now show
that if 2 = Idy, we can represent this Kasparov product as a difference of projections over B
(in the unital case) or B~ (in the nonunital case).

Here and in the following, we always represent elements a + Alds~ € A~ on X as a + Aldy,
A e C. Set Xy = HETVX and, ignoring the matrices to simplify the discussion, let e € A™.
To show that eFlye : eX; — eX< is Fredholm (which in this context means invertible modulo
End% (X, X+)), we must display a parametrix. Taking eFe yields

el reF e =elyle, File +e(FpFy —Idx, e+ Idex, .

We are left with showing that e(FyFy — Idx, e and ef[e, Fiy]e are (B-linear) compact endo-
morphisms of the C*-module X ;. The compactness of eFx[e, F |e follows since e is represented
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as a+ Aldy for some a € A and A € C, and thus [e, Fiy] = [a, Fi] which is compact by definition
of a Kasparov module. In the context of Lemma B4 this follows because Endy (KCy) = K.

However e(FLFy — Idy, )e is generally not compact, because we are only guaranteed that
a(F+Fy —ldx, ) is compact for a € A, not a € A~! Nevertheless, if the Kasparov module is
normalized, i.e. if F? = Idy, we have F-Fy —Idy, = 0, and so we have a parametrix, showing
that eF e is Fredholm. In this case, the Kasparov product ([e] —[f]) @4 [(X, F')] is given by [35]

[Index(eFre)] — [ Index(fFy f)]:=[ker eFye]—[coker eFye] — [ker fFy f]+[coker fFy f]€ Ko(DB),

and the projections onto the individual modules, ker eF e etc, are finite rank over B, or B™ if
B is nonunital. The differences [ker e Flye] — [coker eFe] and [ker fFL f] — [coker fFy f] both lie
in Ko(B) by [29, Proposition 4.11].

Similarly, in the odd case we would like to have (see [34, Appendix] and [41, Appendix]),
[u] @4 [(X, F)] = [Index (3(1 + F)u(1+ F) — 1(1 = F))] € Ko(B),

where [u] € K;(A). As in the even case above, to show that the operator $(1 + F)u(1l + F) —
1(1—F) is Fredholm in the nonunital case, it is easier to assume that F* = 1, and in this case,
writing (1 + F")/2 = P for the positive spectral projection of F', we have

[u] @4 [(X, F)] = [Index(PuP)] = [ker PuP] — [coker PuP] € Ko(B),

there being no contribution to the index from P+ = (1 — F')/2. The projections onto ker PuP
and coker PuP are finite rank over B or B™, since PuP is Fredholm with parametrix Pu*P.
We show in subsection B.7 an alternative method to avoid the simplifying assumption F? = 1
in the odd case.

Given a pre-Fredholm module (H, F) relative to (N, 7) we obtain a Kasparov module (K, F),
just as we did for a spectral triple, as described in subsection Also, given (A, H, D) relative
to (N, 1), the following diagram commutes

(A>HaD)—>(KNaFe) .

|

(F2, H)

Thus we have a single well-defined Kasparov class arising from either the spectral triple or the
associated pre-Fredholm module. Now we show how to obtain a representative of this class
with F'? = 1, so simplifying the index pairing. This reduces to showing that if our spectral
triple (A, H, D) is such that D is not invertible, we can replace it by a new spectral triple for
which the unbounded operator is invertible and has the same K K-class. We learned this trick

from [19, page 68].

Definition 3.7. Let (A, H,D) be a semifinite spectral triple relative to (N, 7). For any ju >
0, define the ‘double’ of (A, H,D) to be the semifinite spectral triple (A, H?, D,) relative to
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(My(N), T ® tre), with H? := H & H and the action of A and D, given by

_ (D n - _ (a0
DW_(M —D)’ aHa.—(O 0), Va € A.

If (A, H,D) is even and graded by ~y then the double is even and graded by v = v S —~.

Remark. Whether D is invertible or not, D, always is invertible, and F,, = D,|D,| ' has
square 1. This is the chief reason for introducing this construction.

We also need to extend the action of M,,(A~) on (H & H) ® C", in a compatible way with the
extended action of A4 on H @ H. So, for a generic element b € M, (A™~), we let

~ b 0
(3.2) b:= ( 01 ) € My, (N),
b
with 1, := 7"(b) Id s, vy, where 7 : M, (A~) — M, (C) is the quotient map.

It is known (see for instance [19, Proposition 12, p. 443]), that up to an addition of a degenerate
module, any Kasparov module is operator homotopic to a normalised Kasparov module, i.e.
one with 2 = 1. The following makes it explicit.

Lemma 3.8. (See [I]]]). The K K-classes associated with (A, H,D) and (A, H?,D,) coincide.
A representative of this class is (Ky @ Ky, F,,) with F, = D,|D,|™".

Proof. The K K-class of (A, H,D) is represented by (KCyr, F.) with F, = D(s +D?)7Y/2 ¢ > 0,

while the class of (A, H? D,,) is represented by the Kasparov module (4Ma(Kn)ancy)s Fiue)

with operator defined by F),. = D, (e + Di)_l/ 2. By Morita equivalence, this module has the

same class as the module (4(Kn)%c,, Fle). The one-parameter family (K3, Frnc)o<m<y 1S a

continuous operator homotopy, [35], from (K3, F),.) to the direct sum of two Kasparov modules
(’CNa Fe) @ (IC./\/'> _Fe)'

In the odd case the second Kasparov module is operator homotopic to (Kxr, Idys) by the straight
line path since A is represented by zero on this module. In the even case we find the second

Kasparov module is homotopic to
01
(e (V)

the matrix decomposition being with respect to the Zs-grading of H which provides a Z,-grading
of K. Thus in both the even and odd cases the second module is degenerate, i.e. F? = 1,
F = F*and [F,a] =0 for all a € A, and so the K K-class of (K3, F}, ), written [(K3,, F..)], is
the K K-class of (K, F:). In addition, the Kasparov module (K3, F},) with F,, = D,|D,|™" is
operator homotopic to (K3, F,.) via

tDy(te+D2)" V2, 0<t<L

This provides the desired representative. O
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The next result records what is effectively a tautology, given our definitions. Namely we de-
fine the Ky(Cyr)-valued pairing of (A, H, D) with K,(A) in terms of the associated Kasparov
module. Similarly, the associated pre-Fredholm module has pairing defined in terms of the
associated Kasparov module.

Corollary 3.9. Let (A, H,D) be a spectral triple relative to (N, 7). Let (A, H? D,) relative
to (My(N), T ® try) be the double and (K3r, F,) the associated Fredholm module. Then the
Ko(KCnr)-valued index pairings defined by the two spectral triples and the semifinite Fredholm
module all agree: for x € K,(A) of the appropriate parity and p > 0

2 @4 [(AHD)] =204 [(Kn, F.)] =2 @4 [(AH,D,)] =2 @4 [(Ki, FL)] € Ko(Ky).

By [34, Lemma 6.3], the 7-finite operators Fn C Ky, are stable under the holomorphic func-
tional calculus, and so Ko(KCx) = Ko(Fu). Thus we can always represent elements of Ko(KCyr)
by classes [e] — [f] with e, f € Fy := F @ C. Thus the trace 7 induces a homomorphism
Ty - K()(ICN’) — R.

An important feature of the double construction is that it allows us to make pairings in the
nonunital case explicit. To be precise, if e € M,,(A™) is a projection and 7" : M,,(A~) — M, (C)
is the quotient map (by M, (A)), we set as in (B.2)

(3.3) 1. :=7"(e) € M,(C).

Then in the double e is represented on H ® C" @ H @ C™ (this is the spectral triple picture, but
similar comments hold for Kasparov modules) via

e (€ 0
ere=\g 1 )

Thus é(D, ® Id,)é is T ® try,-Fredholm in My, (N'), with the understanding that the matrix
units e;; € Mo, (C) sit in My, (N) as e;; Idy.

Example. Let pg € My(Cy(C)™) be the Bott projector, given explicitly by [29, pp 76-77]

1 1 =z 0 0
(34) pB(Z) = T|Z|2 (Z |Z|2> y then 1PB = <0 1) .

We are now ready to give the definition of the numerical index paring for semifinite spectral
triples.

Definition 3.10. Let (A, H,D) be a semifinite spectral triple relative to (N, 7) of parity e €
{0,1}, e =0 for an even triple, @ = 1 for an odd triple. We define the numerical index pairing
of (A, H,D) with K(A) as follows:

1. Take the Kasparov product with the KK -class defined by the doubled up spectral triple
@ (K, F)] ¢ Ko(A) = Ko(Kw),

2. Apply the homomorphism 7, : Ko(Kpr) = R to the resulting class.
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We will denote this pairing by
(le] = 1], (A, H,D)) € R, even case, {([u], (A, H,D)) € R, odd case.
If, in the even case, [e] — [f] € Ko(A) then [1.] = [1f] € Ko(C) and we may define
([e] = [f], (A, H, D)) = ([e] = [1e], (A, H, D)) — ([f] = [14], (A, H, D)) € R.

From Corollary we may deduce the following important result, which justifies the name
‘numerical index pairing’ for the map given in the previous Definition, as well as our notation.

Proposition 3.11. Let (A, H,D) be a semifinite spectral triple relative to (N, 7), of parity
e € {0,1}. Let e be a projector in M, (A~) which represents [e] € Ko(A), for @ =0 (resp. u a
unitary in M, (A~) which represents [u] € K,(A), for ¢ =1). Then with F,, := D,/|D,| and
P,:=(1+4+F,)/2, we have

(le] = [1e], (A, 7, D)) = Index, gy, (E(F,, ®1d,)e), even case,
([u], (A, 1, D)) = Index, g, (P, ®1d,)a(P, ®1d,)), odd case.

3.4. Smoothness and summability for spectral triples. In this subsection we discuss the
notions of finitely summable spectral triple, QC spectral triple and most importantly smoothly
summable spectral triples for nonunital x-algebras. We then examine how these notions fit with
our discussion of summability and the pseudodifferential calculus introduced in the previous
section. One of the main technical difficulties that we have to overcome in the nonunital case is
the issue of finding the appropriate definition of a smooth algebra stable under the holomorphic
functional calculus.

We begin by considering possible notions of summability for spectral triples. There are two
basic tasks that we need some summability for:

1) To obtain a well-defined Chern character for the associated Fredholm module, and
2) To obtain a local index formula.

Even in the case where A is unital, point 2) requires extra smoothness assumptions, discussed
below, in addition to the necessary summability. Thus we expect point 2) to require more
assumptions on the spectral triple than point 1). For point 1) we have the following answer.

Proposition 3.12. Let (A, H,D) be a semifinite spectral triple relative to (N, 7). Suppose
further that there exists p > 1 such that a(1+ D?*)=%/2 € LYN, ) for all s > p and all a € A.
Then (M, F. = D(c + D?)~Y2) defines a [p| + 1-summable pre-Fredholm module for A% whose
K K-class is independent of € > 0 (or even € > 0 if D is invertible). If in addition we have
[D,a)(1+D?*) %% € LYN,7) for all s > p and all a € A, then (H, F. = D(e +D?)~Y2) defines
a [p] + 1-summable pre-Fredholm module for A whose KK -class is independent of € > 0 (or
even € > 0 if D is invertible).

Remark. Here A? means the algebra given by the finite linear span of products ab, a, b € A.
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Proof. First we employ Lemma to deduce that for all 6 > 0 we have
a(l — F%) =ca(e + D*)~' € LPVPH(N, 7).
The same lemma tells us that for all a € A and 0>0
a(e +D?)” D e LPFYN 7).

We again use the integral formula for fractional powers and [12] Lemma 3.3] to obtain

[F.,a] = - / AV2D(e 4+ A4+ D?) 7D, a]D(e + X + D)~ LdA
T Jo
1 / A2+ A+ D) 7YD, a]D e + A+ D) 1A\ + (¢ + D) V3D, a).
T Jo

Now we multiply on the left by b € A, and estimate the [p] + 1-norm. Since
(1-8)
(e+D*+N) ' =(c+D*+ A iy (6 + D2+ \) "2 2,

and 5)
ID(e +D* + \)~ -3 +1)|| <(e+ M)

by spectral theory, we find that for 1 > ¢ > 0
°° (1)
IBLF% e < 200, all o+ D2) D s [~ A2 ) 7Ae D ah < oc,
0

Hence b[F.,a] € LPHY(N,7), and taking adjoints shows that [F.,alb € LPFYN, 7) for all
a, b € A also. Now we observe that [F.,ab] = a[F.,b] + [F.,alb, and so [F.,ab] € LPFY(N 7T)
for all ab € A%. This completes the proof of the first part. The second claim follows from a

similar estimate without the need to multiply by b € A. The independence of the class on e > 0
is as in Lemma 341 O

The previous proposition shows that we have sufficient conditions on a spectral triple in order
to obtain a finitely summable pre-Fredholm module for A? or A. These two conditions are not
equivalent. Here is a counterexample for p = 1.

Consider the function f : z + sin(z®)/(1+ z?) on the real line, and the operator D = —i(d/dx)
on L*(R). Then the operator f(1 + D?)~/2 is trace class for R(s) > 1, by [55, Theorem 4.5],
while [D, f](1 4 D?)~*/? is not trace class for any R(s ) > 1, by [55, Proposition 4.7]. To see the
latter, it suffices to show that with g(x) = 22/(1 + 22), we have g(1 + D?)~%/2 not trace class.
However this follows from g(1+ D?)"%/2 = (1+D?)*/? — h(1 4+ D?)~*/? with h = -~5. The

—5/2 is well-known to be non-compact, and so

second operator is trace class, however (1 + D?)
not trace class.

We investigate the weaker of these two conditions first, relating it to our integration theory from
Section 2l Indeed the following two propositions show that finite summability, in the sense of
the next definition, almost uniquely determines where A must sit inside A/, and justifies the
introduction of the algebras B¥(D, p).
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Definition 3.13. A semifinite spectral triple (A, H, D), is said to be finitely summable if there
exists s > 0 such that for alla € A, a(1+D?) =%/ € LYN, 7). In such a case, we let

p=inf{s>0:Vaec A 7(la|(1+ Dz)—s/z) < oo},
and call p the spectral dimension of (A, H,D).

Remark. For the definition of the spectral dimension above to be meaningful, one needs two
facts. First, if A is the algebra of a finitely summable spectral triple, we have |a|(1 4 D?)™%/% €
LY N, 7) for all a € A, which follows by using the polar decomposition a = v|a| and writing

la|(1 4+ 172)_3/2 =v*a(l+ 732)_3/2.

Observe that we are not asserting that |a| € A, which is typically not true in examples.

The second fact we require is that 7‘(&(1+D2)_S/ 2) > 0 for a > 0, which follows from [6, Theorem
3], quoted here as Proposition 2.5

In contrast to the unital case, checking the finite summability condition for a nonunital spectral
triple can be difficult. This is because our definition relies on control of the trace norm of
the non-self-adjoint operators a(l + D?)~*/2, a € A. The next two results show that for a
spectral triple (A, H, D) to be finitely summable with spectral dimension p, it is necessary that
A C By(D,p) and this condition is almost sufficient as well.

Proposition 3.14. Let (A, H,D) be a semifinite spectral triple. If for some p > 1 we have
A C B (D, p), then (A, H, D) is finitely summable with spectral dimension given by the infimum

of such p’s. More generally, if for some p > 1 we have A C BQ(D,p)BQLpJH(D,p) C Bi(D,p),
then (A, H, D) is finitely summable with spectral dimension given by the infimum of such p’s.

Proof. The first statement is an immediate consequence of Corollary 2331 For the second
statement, let a € A. We need to prove that a(l + D?)7%/2 is trace class for a = bc with

be By(D,p) and ¢ € BQLPJH(D,p). Thus, for all £ < |p| +1 and all s > p we have
b(1+ D)~/ (1+ D%k (c) € LXN, 7).

We start from the identity

['(s+ k)

D D = o A =1 D)) Hax,

27 Jpy=1)2
and then by induction we have

Lp)
(A=1=1D) 7" d =D (=)' (A =1 - [D) 6% (c)
+ (DI = 1= D)) (A - 1 D))
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It follows that

= g [ e = -3 L gy
’ 27T’l §R>\:l/2 ’ 1 F(S)F(k + 1)
—1)lr]
(=1 / A= 1 — D))"+ () () — 1 — |D))~ld.
21 Jrny=1/2
Since |A — 1 —|D|| > |A| and since the || - o—norms of the operators

b\ —1— D)~ WPIHD2 - (\ — 1 — |D|)~(PIHD2slPI+L (),
are bounded uniformly over A\, we obtain
—1)lp]
p 1)
211

|dA|
< C(b,c / < 00
1 b.0) ma=1/2 [AITTS

/ AN =1 — |D|) PP () (A — 1 — |D])~tdA
RA=1/2

Hence we have b[(1 + |D|)~%,¢] € LY(N, 7) and since
b(1+[D[)"*c = (b(1+|D)™2) - (1 +|D))"*2c) € LYN,7),

we conclude that a(1+ |D|)~* € LY (N, 1), and so a(1 + D?)~*/2 € LY(N, 7). The claim about
the spectral dimension follows immediately. O

Proposition 3.15. Let (A, H,D) be a finitely summable semifinite spectral triple of spectral
dimension p. Then A is a subalgebra of By (D, p).

Proof. Since A is a *-algebra, it suffices to consider self-adjoint elements. For a = a* € A, we
have by assumption that a(1 + D?)~*/2 € LY(N,7), for all s > p. Now let a = v|a| = |a|v* be
the polar decomposition. Observe that neither v nor |a| need be in A. However

la|(1+D?) ™2 = v*a(1 +D*)~** € LYN,7) forall s> p.
Now [6, Theorem 3], quoted here as Proposition 2.5 implies that |a|'/2(1+D?)~%/* € L2(N, T),
for all s > p, and so |a|'/? € By (D, p). In addition v|a|'/? € By(D, p), since v|a|'/? = |a|'/?v* by
the functional calculus, and
(1—|—D2)_S/4’U|a|’l}*(1—|—D2)_8/4:(1—|—D2)_8/4|CL|1/2U*U|a|1/2(1—|—p2)_8/4:(1—|—D2)_S/4|a|(1+p2)_8/4,

and (1 + D?)~*/|a|'?v*v|a|'?(1 + D?)~%/* = (1 + D?)~*/4a|(1 + D?)~*/%. From this we can
conclude that a = v|a|*/? - |a|*/? € (B2(D, p))? C Bi(D, p). O

Remark. The previous two results tell us that a finitely summable spectral triple must have
A C Bi(D,p). However the last result does not imply that for a finitely summable spectral
triple (A, H,D) and a = a* € A we have a, a_, |a] in A. On the other hand, the previous
proof shows that |a| does belong to B;1(D, p), and so for a finitely summable spectral triple, we
can improve on the result of Proposition 217 at least for elements of A.

In addition to the summability of a spectral triple (A, H, D) relative to (N, 7), we need to
consider smoothness, and the two notions are much more tightly related in the nonunital case.
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One reason for smoothness is that we need to be able to control commutators with D? to obtain
the local index formula. Another reason is that we need to be able to show that we have a
spectral triple for a (possibly) larger algebra B O A where B is Fréchet and stable under the
holomorphic functional calculus, and has the same norm closure as A: A = A = B.

The next definition recalls how the problem of finding suitable B O A is solved in the unital
case.

Definition 3.16. Let (A, H,D) be a semifinite spectral triple, relative to (N, 7). With § =
[|D|,-] as before, we say that (A, H,D) is QC* if for all b € AU[D, A] we have §7(b) € N for
all 0 < j < k. We say that (A, H,D) is QC*> if it is QC* for all k € N.

Remark. For a QC* spectral triple (A, H,D) with Ty,...,T,, € AU [D,A], we see by
iteration of the relation 7™M = §2(T") + 26(T)|D|, that TO(kO) » -T,Efm)(l +D?)~IM/2 ¢ N where
k| == ko + -+ Kk, and T™ is given in Definition 222

For (A, H,D) a QC* spectral triple, unital or not, we may endow the algebra A with the
topology determined by the family of norms

(3.5) A3 as ||65a)] + |105(D, a])|l, ke€N.

We call this topology the d-topology and observe that by [49, Lemma 16|, (As, H, D) is also a
QQC™ spectral triple, where Ay is the completion of A in the d-topology. Thus we may, without
loss of generality, suppose that A is complete in the J-topology by completing if necessary. This

completion is Fréchet and stable under the holomorphic functional calculus. So, with A the
C*-completion of A, K, (A) ~ K,.(A) via inclusion.

However, and this is crucial in the remaining text, in the nonunital case the completion A5 may
not satisfy the same summability conditions as A (as classical examples show). Thus we will

define and use a finer topology which takes into account the summability of the spectral triple,
to which we now return.

Keeping in mind Propositions B.12], B. 14 B.15], and incorporating smoothness in the picture, we
see that the natural condition for a smooth and finitely summable spectral triple is to require
that AU [D, A] C B{°(D,p). The extra benefit is that our algebra A sits inside a Fréchet
algebra which is stable under the holomorphic functional calculus.

Definition 3.17. Let (A, H, D) be a semifinite spectral triple relative to (N, 7). Then we say
that (A, H,D) is QC* summable if (A, H,D) is finitely summable with spectral dimension p
and

AU D, Al C BE(D,p).
We say that (A, H,D) is smoothly summable if it is QC* summable for all k € N or, equiva-
lently, iof

AU D, A] € BE(D, p).
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If (A, H,D) is smoothly summable with spectral dimension p, the d-p-topology on A is deter-
mained by the family of norms

A>a— Purla)+Pur([D,a]), n=1,2,..., k=0,1,2,...,
where the norms P, i are those of Definition 223,
k

NST — Pop(T) = an@j(T))-

=0

Remarks. 1) The J-p-topology generalises the d-topology. Indeed, if (1 4+ D?)~%/2 € LY (N, 7)
for s > p, then the norm P, is equivalent to the norm defined in Equation (3.3)).

2) A smoothly summable spectral triple is a finitely summable QC® spectral triple, but the
converse need not be true.

The following result shows that given a smoothly summable spectral triple (A, H, D), we may
without loss of generality assume that the algebra A is complete with respect to the d-¢p-
topology, by completing if necessary. Moreover the completion of A in the d-p-topology is
stable under the holomorphic functional calculus.

Proposition 3.18. Let (A, H, D) be a smoothly summable semifinite spectral triple with spectral
dimension p, and let A;,, denote the completion of A for the §-p topology. Then (As,, H,D)
1s also a smoothly summable semifinite spectral triple with spectral dimension p, and moreover
As , 1s stable under the holomorphic functional calculus.

Proof. First observe that a sequence (a;);>1 C A converges in the §-¢ topology if and only if
both (a;);>1 and ([D, a;])i>1 converge in By°(D,p). As By*(D,p) is a Fréchet space, both A,
and [D, As ] are contained in B*(D, p).

Next, let us show that (As,, H, D) is finitely summable with spectral dimension still given by
p. Let a € A5, and s > p. By definition of tame pseudodifferential operators and Corollary
2.33] we have

a(l+D* %2 € OP;* C LYW, 1),
as needed. Since A C As,,, p is the smallest number for which this property holds.

Last, it remains to show that As, is stable under the holomorphic functional calculus inside
its (operator) norm completion. We complete A in the norm || - |xz == S0, Z?:o Pri(-) +
Poi([D,-]) to obtain a Banach algebra Ay j.

Then we claim that As, = (Vy>1 450 Ank The inclusion As, C (\ysg 50 Ani is straightfor-
ward. For the inclusion As, D () N>1k>0 An i, suppose that a is an element of the intersection.

Then for each N, k there is a sequence (a]-V’k)izl contained in A which converges to a in the

KA
norm || - || v -

Now we make the observation that if N’ < N and k' < k then (a)");>1 converges in Ay

to the same limit. Thus, in this situation, for all € > 0 there is [ € N such that ¢ > [ implies
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that ||la;"* — a|y+p < e. Thus for such an € > 0 and | we have |[aN" — a||y/p < & whenever
N > max{N’, k', 1}. Hence the sequence (aX"™)y>1 converges in all of the norms || - ||y and
hence the limit a lies in As . Hence an element of Aj, is an element of A which lies in each

AN .
Moreover the norm completions of A, As, and Ay, for each N, k, are all the same since the
d-p and || - || vk topologies are finer than the norm topology. We denote the latter by A.

Now let a € As, and A € C be such that a+ \ is invertible in A~. Then with b = (a+ )1 —=A"!
we have

(3.6) (a+Nb+N)"'=1=1+ab+ X+ A2 = b=-A"'ab— )\

Rearranging Equation ([B.6]) shows that b = —A"'(\ + a)'a. Now as B{°(D, p) is stable under
the holomorphic functional calculus, b € B°(D,p) @ C, but this formula shows that in fact
b€ B (D, p).

Now we would like to apply [D, -] to Equation (8.6). Since b € B¥*(D, p), b preserves dom D =
dom |D| C H, and so it makes sense to apply [D, -] to b. Then

[D,b] = _)‘_1[2)7 alb — A_la[,D> b] — )‘_2[1)’ a = [Db]=-(A+ a)_l[D> al(A + a)_l'

Thus we see that [D,b] € B*(D,p) since (A +a)™' € B¥(D,p) @ C and [D,a] € B(D,p).
Hence b € Ay forall N > 1 and £ > 0 and so b € Ay . O

We close this section by giving a sufficient condition for a finitely summable spectral triple to
be smoothly summable. We stress that this condition is easy to check, as shown in all of our
examples.

Proposition 3.19. Let (A, H,D) be a finitely summable spectral triple of spectral dimension p
relative to (N, 7). If for all T € AU[D, A], k=0,1,... and all s > p we have

(14+ DY) ALHT)(1 + D) € LN, 7),
then (A, H, D) is smoothly summable.

Proof. We need to prove that the displayed condition guarantees that AU [D, A] C B°(D,p),
that is, for all a € A, the operators 6*(a) and §%([D,a]), k = 0,1, ..., all belong to B;(D,p).
From 6 (a)* = (—1)*6*(a*) (vesp. 6*([D,a])* = (—1)*"16*(|D,a*])) and since the norms P,,,
m = 1,2,..., are xinvariant, we see that 6*(a) € B;(D,p) (resp. 6*([D,a]) € B,(D,p)) if and
only if 6*(R(a)) and 6*(S(a)) (resp. 6*([D,R(a)]) and §%([D,I(a)]) belong to By (D, p). Thus,

we may assume that a = a*.

Let us treat first the case of 6*(a) and for @ = a*. Consider the polar decomposition *(a) =
uy|6%(a)|. Depending on the parity of k, the partial isometry wy, is self-adjoint or skew-adjoint,
and in both cases it commutes with |§*(a)|. This implies that

0"(a) = 18" ()| ur|0" (a)] /2.
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Thus, the condition
6 (a) € By(D,p), forallk=0,1,...,
will follow if
16%(a) Y2, ug|6F(a)|V? € By(D, p), for all k=0,1,....

1/2

Since 1y, commutes with [6%(a)['/2, and using the definition of the space By (D, p), the latter

condition is equivalent to
6% (a)[2(1 + D)™/ g |6F(a)| 2 (1 4+ D)~ € L2(N,7), forall k =0,1,..., for all s > p.
The latter is equivalent to a single condition
16%(a)|Y2(1 +D?)~*/* € L2(N,7), forall k=0,1,..., for all s > p.
Again, this is equivalent to
(1+D*)~*/46%(a)|(1 + D*)~¥* € LYN,7), for all k=0,1,..., for all s > p.

Now, by [6l Theorem 3|, see Proposition [2.5], this condition is satisfied if

|6%(a)|(1 + D)~ € LYWV, 7), forall k=0,1,..., for all s > p,
and again, this is equivalent to

6F(a)(1+D*)~? € LYN,7), forall k =0,1,..., for all s > p.

Next, since
0*(a)(1+D?) % = (1+ D*) /6" (0*/*(a)) (1 + D*) /%,

by an application of the same ideas leading to Lemmas and [2.29, we see then that the last
condition is equivalent to

(1+D*)~*/46"(a)(1 4+ D*)~** € LYN,7), for all k=0,1,..., for all s > p.
Finally, using L = (1 +071) 0§, given in Lemma 2.32) we see that this is equivalent to
(1+ D>~/ LF(a)(1 +D*) " € LYN,7), forall k=0,1,..., for all s > p.
In an entirely similar way, we see that 6*([D, a]) € By(D, p) if
(1+D*)=/LK(D,a))(1 +D*)~*/* € LYN,7), forall k =0,1,..., for all s > p.

This completes the proof. O
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3.5. Some cyclic theory. In the following discussion we recall sufficient cyclic theory for the
purposes of this paper. More information about the complexes and bicomplexes underlying our
definitions is contained in [I5L[17], and much more can be found in [20,39]. When we discuss
tensor products of algebras we always use the projective tensor product.

Let A be a unital Fréchet algebra. A cyclic m-cochain on A is a multilinear functional v such
that

U(ag, ..., anm) = (=1)"(am,ag, ..., an_1)-
The set of all cyclic cochains is denoted C{'. We say that 1) is a cyclic cocycle if for all
ag, ..., amr1 € A we have (bi))(ag,...,ams1) = 0 where b is the Hochschild coboundary de-
scribed below. The cyclic cochain is normalised if ¥(ag,ay,...,a,;,) = 0 whenever any of
ai,...,Qa, is the unit of A.

A (b, B)-cochain ¢ for A is a finite collection of multilinear functionals,

¢ = (¢m)m:0,1,...,M~

An odd cochain has ¢,, = 0 for even m, while an even cochain has ¢,, = 0 for odd m. Thought
of as functionals on the projective tensor product A®™*! a normalised cochain will satisfy
¢(ag, ay, ..., a,) =0 whenever for k > 1, any ax, = 14. A normalised cochain is a (b, B)-cocycle
if, for all m, bg,, + Bppio = 0 where b is the Hochschild coboundary operator given by

m

(bqu)(a,o, ag, ... ,am+1) = Z(—l)k¢m(a0, Aty ...y QpQpt1,y - - - ,am+1)
k=0
+ (_1)m+1¢m(am+1a07 A1, ., am)7
and B is Connes’ coboundary operator
m—1
(B¢m)(a07 ai,..., am—l) = Z(_l)(m_l)j¢m(1Aa Afy Q415+ + oy Am—1, A0,y - - -, ak—l)-
k=0

We write (b + B)¢ = 0 for brevity, and observe that this formula for B is only valid on the
normalised complex, [39]. As we will only consider normalised cochains, this will be sufficient
for our purposes.

For a nonunital Fréchet algebra A, a reduced (b, B)-cochain (¢y,)n—ee+2,. m for A~ and of parity
e € {0, 1}, is a normalised (b, B)-cochain such that if ¢ = 0 we have ¢o(14~) = 0. The formulae
for b, B are the same. By [39, Proposition 2.2.16], the reduced cochains come from a suitable
bicomplex called the reduced (b, B)-bicomplex, and gives a cohomology theory for A.

Thus far, our discussion has been algebraic. We now remind the reader that when working with
a Fréchet algebra, we complete the algebraic tensor product in the projective tensor product
topology. Given a spectral triple (A, H, D), we may without loss of generality complete A in the
d-¢-topology using Proposition B.I8 Then the algebraic discussion above carries through. This
follows because the operators b and B are defined using multiplication, which is continuous, and
insertion of 14~ in the first slot. This latter is also continuous, and one just needs to check that
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B : CYA) — C°A) maps normalised cochains to cochains vanishing on the unit 14~ € A™.
This follows from the definitions.

Finally, an n + 1-linear functional on an algebra A is cyclic if and only if it is the character
of a cycle, [20, Chapter II1], [29, Proposition 8.12], and so the Chern character of a Fredholm
module over A, defined in the next section, will always define a reduced cyclic cocyle for A™.

3.6. Compatibility of the Kasparov product, numerical index and Chern character.
First we discuss the Chern character of semifinite Fredholm modules and then relate the Chern
character to our analytic index pairing and the Kasparov product.

Definition 3.20. Let (H, F) be a Fredholm module relative to (N, 7). We define the ‘condi-
tional trace’ " by

7(T) = i7(F(FT + TF)),
provided FT + TF € LYN) (as it will be in our case, see [20, p. 293] and [B1) below). Note
that if T € LY(N), using the trace property and F* =1, we find 7'(T) = 7(T).

The Chern character, [Chp|, of a p+ l-summable (p > 1) semifinite Fredholm module (#, F')
relative to (N, 7) is the class in periodic cyclic cohomology of the single normalized and reduced
cyclic cocycle
)\mT/(’)/CLQ[F, ap] - [F, am]), ag, ...,ay, €A, m>|p|, meven if and only if (H, F') is even.
Here )\, are constants ensuring that this collection of cocycles yields a well-defined periodic
class, and they are given by

- (=1)mm=D/27 (2 4 1) m  even

T V2i(=1)mmeDRR(2 + 1) m odd

For p =n € N, the Chern character of an n 4+ 1-summable Fredholm module is represented by
the cyclic cocycle in dimension n, Chr € C}(A), given by

Chr(ag,...,an) = M7 (yao[F,aq] -+ - [F,a,]),  ao,...,a, € A.
The latter makes good sense since
(37) F’}/ao[F, al] s [F, CLn] + ’}/CL(][F, al] e [F, an]F = (-1)””}/[F, CL(]] [F, CLl] s [F, CLn],

belongs to L'(N,7) by the p + l-summability assumption. We will always take the cyclic
cochain Chy (or its (b, B) analogue; see below) as representative of [Chp|, and will often refer
to Chr as the Chern character.

Since the Chern character is a cyclic cochain, it lies in the image of the operator B, [20, Corollary
20, I11.1.4], and as B? = 0 we have BChp = 0. Since b Chy = 0, we may regard the Chern
character as a one term element of the (b, B)-bicomplex. However, the correct normalisation is
(taking the Chern character to be in degree n)

(—1)ln/2]
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Thus instead of A\, defined above, we use u, = #)\n. The difference in normalisation
between periodic and (b, B) is due to the way the index pairing is defined in the two cases,
[20], and compatibility with the periodicity operator. From now on we will use the (b, B)-

normalisation, and so make the following definition.

Definition 3.21. Let (H, F') be a semifinite n+1-summable, n = 1,2, ..., Fredholm module for
a nonunital algebra A, relative to (N, 7), and suppose the parity of the Fredholm module is the
same as the parity of n. Then we define the Chern character [Chp] to be the cyclic cohomology
class of the single term (b, B)-cocycle defined by
F(%;:l)r’(fyao [F,aq] - [F,a,)), n even
Chz(ag, a1, ..., ay,) := . dag,...,a, € A.
V2iRT (o[ ] - [Fra,]), n odd

If e € A~ is a projection we define Chy(e) = e € A~ and for k > 1

Ch2k(€) = (—l)k%(e — 1/2) ReR---Rec (A~)®2k+1.

If u € A~ is a unitary then we define for k >0
Chop1(u) = (1) Kl @u® - @u* @u e (A™)2H 2

In order to prove the equality of our numerical index with the Chern character pairing, we need
the cyclicity of the trace on a semifinite von Neumann algebra from [7, Theorem 17], quoted
here as Proposition 2.41

Proposition 3.22. Let (A, H,D) be a semifinite spectral triple which is smoothly summable
with spectral dimension p > 1, and such that |p| has the same parity as the spectral triple.
Then for [e] € Ko(A), with e a projection in M, (A™) (resp. for [u] € Ki(A), with u a unitary
in M,(A™)) we have for any p >0

<[6] - [1e]a (Aa H> D)> = Ch\f{}@ldn (Chm (é)), even case
([u], (A, H, D)) = —(2im) > Chly (Chyyy (@),  odd case.

Proof. The first thing to prove is that [F,,a] € LPHY(N,7) for all a € A. This will follow if
we have [F.,a] € LIPIHI(N, 7) for all a € A. By the smooth summability assumption, we have
a, [D,a] € B¥(D,p) = Opy for all @ € A. Thus the Schatten class property we need follows
from Proposition B.12

For the even case the remainder of the proof is just as in [20, Proposition 4, IV.1.y]. The
strategy in the odd case is the same. However, we present the proof in the odd case in order
to clarify some sign conventions. To simplify the notation, we let u be a unitary in A~ and
suppress the matrices M, (A™).
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In this case the operator P,uP, : P,(H®H) — P,(H®H), is T@try-Fredholm with parametrix
P,u*P,, where u € A~ unitary and P, = (F, + 1)/2 € My(N). To obtain our result, we
need 44, Lemma 3.5] which shows that with @, := 4P,4* we have

(1 - QM)PM|2n = [P(1=Qu( —Qu)P" =[Py — P.QuP]" = (P, — PyaP, " F,)".
One ingredient in the proof that connects this to odd summability is the identity
(Qu - Pu)2n+1 = |(1 - PM)QMPH - |(1 - QM)PM|2N>
proved by induction in [44] Lemma 3.4]. It is then shown in [I3] Theorem 3.1] that if f is any
odd function with f(1) # 0 and f(Q, — F,) trace-class, we have

Index, g, (P.Q)) = %7‘ @ tra(f(Qu — Pu)).

Putting these ingredients together we have
Index; g, (P,4P,) = Index g, (P, 4P, 0") = Index gy, (P,Q))
=7 Qtro((P, — P,u*P,aP,)") — 7 @ tro((P, — P,uP,a*P,)"),

where n = (|p] + 1)/2 is an integer, since |p| is assumed odd. First we observe that P, —
P,a*P,uP, = —P,[u*, P,JuP,, and by replacing P, by (1 + F})/2 we have

Pulat, Plab, = [F,, 4] [F,, a](1+ F,)/8.

Since F,[F),,a] = —[F},,a]F, for all a € A, cycling a single [F),, u*| around using Proposition

2.4 yields
Index; g, (P, aP,) = T ® tro ((Pu — Puﬁ*PuﬁPM)") — T ® try ((Pu - PMﬁPMﬂ*PM)")

—r o (( - LR Bl L)) S r e (( - SR A L))

4 2
1 1+ F - o
= (1) @ ey (5 ([, @] s )
. X a1+ F R .. 1+F 1-F
S R R s R R B Ry
Thus
. 1 1+ F 1-F o \T
Indesrou, (Fuily) = (<1)" 27 @ o ( (52 = =52 ) (1B @[ Fn ) ")
nl A AT\ T
=(-1) 4_n7'®tr2(Fu([Fm ][qu]) )

= (1) sy (7 8 ) (i [Fp ] - [y 7))

where in the last line there are 2n — 1 = |p| commutators. Comparing the normalisation of
the formulae above with the Chern characters using the duplication formula for the Gamma
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function, we find
-1

21

Index g, (P iP,) = Chy) (Chy,y ().

O

Remark. When the parity of |p| does not agree with the parity of the spectral triple, we apply

the same proof to |p| + 1, and so use Ch}f:glldn to represent the class of the Chern character.

Remark. An independent check of the sign can be made on the circle, using the unitary u = e

and the Dirac operator %d%. In this case Index(PuP) = —1. To arrive at this sign we have
retained the usual definition of the Chern character and introduced an additional minus sign
in the normalisation. In [I5] the signs used are all correct, however in [I7] we introduced an
additional minus sign (in error) in the formula for spectral flow. This disguised the fact that we
were not taking a homotopy to the Chern character (as defined above) but rather to minus the
Chern character. This is of some relevance, as our strategy for proving the local index formula

in the nonunital case is based on the homotopy arguments of [17].

3.7. Digression on the odd index pairing for nonunital algebras. To emphasise that the
introduction of the double is only a technical device to enable us to work with unbounded rep-
resentatives of Kasparov classes and reduced cyclic cohomology, we explain a different approach
to handling the problem of constructing an involutive Fredholm module in the odd case.

Assume that we have an odd Fredholm module (H, F') over a nonunital C*-algebra A, with
F? = 1. Then, as mentioned previously, it is straightforward to check that with P = (1+ F)/2
and u € A™ a unitary, the operator PuP is Fredholm with parametrix Pu*P (as operators on
PH).

Now we have constructed a doubled up version of a spectral triple (A, H?,D,,), and so obtained
a Fredholm module (H? F,,) with F| 5 = 1. By Lemma B8] this Fredholm module represents
the class of our spectral triple. In this brief digression we show that the odd index pairing can
be defined in terms of the original data with no doubling.

So assume that we have a spectral triple (A, H, D). First we can decompose P := X[0,00)(D)
as the kernel projection P, plus the positive spectral projection P,. We will use P_ for the
negative spectral projection so that P_ + Py + P, is the identity of N'. We let F' = 2P — 1 and
we want to prove that F' can be used to construct a Fredholm module for A that is in the same
Kasparov class as that given by F. := D(e + D?)~1/2,

If we can show that [F,a] is compact for all @ € A then we are done because the straight-line
path F; = tF + (1 — t)F. provides a homotopy of Kasparov modules. To prove compactness of
the commutators we use the method of [10].

Proposition 3.23. Let (A, H,D) be a semifinite spectral triple relative to (N, 7). With F =
2X[0,00)(D) — 1, the pair (H, F) is a Fredholm module for A and (F,IKC(N, 1)) provides a bounded
representative for the Kasparov class of the spectral triple (A, H, D).
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Proof. Our proof uses the doubled spectral triple (A, H? D,). Let P, = (14 F},)/2 and use the
notation () for the operator obtained by taking the strong limit lim, .o P, as  — 0. We note
that

([ Pr+ iR 1Py B A AV2(1 — A)L/2
©= < ip Pl ) B g a0 1o g ’

where A = 1((u? + D?)'? 4+ D) (u* + D*)~'/2. Next a short calculation shows that

([ F 0 -P, P
2@—1—(0 _F)+( " _PO).

Recall that in the double spectral triple

. (a0
aHa-(O O)’ Ya € A.

Thus to show that [F,a] is compact for all a € A, it suffices to show that [Q,a] is compact,
since for any s > 0 we have Pya = Py(1 + D?)"*a and so both Pya and aP, are compact for all
a € A. This follows since a(1 + D?)~/2 is compact. Consider

[P,Lud] - [Q?d] = [PH - de]
and the individual matrix elements in (P, — Q)a for example. We have two terms to deal with:
the diagonal one

(WP + D)2+ D = 2Py + 3 R) (17 + D)) (1 + D) g
and the off-diagonal one
u(p® + D*)%a — 1P
We have already observed that since we have a spectral triple, the off-diagonal terms are
compact. For the diagonal terms, we first observe that

(W2 +D)2 4+ D —2(Py + 3P)(u* + D)2 =D — (2P — 1)(p* + D)2 — Pop,

is a bounded operator. This follows from the functional calculus applied to the function f(x) =
x — sign(z)(p? + 2%)Y/2, where sign(0) is defined to be 1. This can be checked for all y in [0, 1].
This boundedness, together with the compactness of (u? + D?)~!/2a, shows that

%((M2 + D2)1/2 +D— 2(P+ + %Po)(,uz + 92)1/2)(M2 + Dz)_l/za,
is compact for all p € [0, 1]. This establishes that [Q, a] is compact for all a € A.

The second statement now follows immediately. O

Combining this with Proposition BTl proves the following result.

Corollary 3.24. Let (A, H,D) be an odd semifinite smoothly summable spectral triple relative
to (N, ) with spectral dimension p > 1. Let u be a unitary in M,(A™) representing a class [u]
in K1 (A) and P = Xj0,00)(D). Then

([u], (A, H, D)) = Index, g, ((P@1d,)u(P ®1d,)).



Index theory for locally compact noncommutative geometries 57

4. THE LOCAL INDEX FORMULA FOR SEMIFINITE SPECTRAL TRIPLES

We have now come to the proof of the local index formula in noncommutative geometry for
semifinite spectral triples. This proof is modelled on that in [I7] in the unital case, which in
turn was inspired by Higson’s proof in [31].

We have opted to present the proof ‘almost in full’, though sometimes just sketching the al-
gebraic parts of the argument, referring to [17] for more details. This means we have some
repetition of material from [I7] in order that the proof be comprehensible. Due to the nonuni-
tal subtleties, we include detailed proofs of the analytic statements, deferring the lengthier
proofs to the Appendix so as not to distract from the main argument.

In the unital case we constructed two (b, B)-cocycles, the resolvent and residue cocycles. The
proof in [I7] shows that the residue cocycle is cohomologous to the Chern character, while the
resolvent cocycle is ‘almost’ cohomologous to the Chern character, in a sense we make precise
later. The aim now is to show that for smoothly summable semifinite spectral triples:

1) the resolvent and residue cocycles are still defined as elements of the reduced (b, B)-complex
in the nonunital setting;

2) the homotopies from the Chern character to the resolvent and residue cocycles are still well-
defined and continuous in the nonunital setting. In particular, various intermediate cocycles
must be shown to be well-defined and continuous.

4.1. The resolvent and residue cocycles and other cochains. In order to deal with the
even and odd cases simultaneously, we need to introduce some further notation to handle the
differences in the formulae between the two cases.

In the following, we fix (A, H, D), a semifinite, smoothly summable, spectral triple, with spectral
dimension p > 1 and parity e € {0,1} (e = 0 for an even spectral triple and e = 1 for odd
triples). We also denote by |[e—1| € {0, 1} the anti-parity. We will use the notation da := [D, a]
for commutators in order to save space. We further require that A, the norm closure of A,
be separable in order that we can apply the Kasparov product to define the numerical index
pairings given in Definition .10l Finally, we have seen in Proposition B.I18 that we may assume,
without loss of generality, that A is complete in the d-¢-topology.

We define a (partial) Zs-grading on OP”*, by declaring that |D| and the elements of A have
degree zero, while D has degree one. When the triple is even, this coincides with the degree
defined by the grading 7. When defined, we denote the grading degree of an element T" € OP*
by deg(T"). We also let N := |(p+e+1)/2| and M := 2N — e, the greatest integer of parity e
in [0, p+ 1]. In particular, M = p when p is an integer of parity e. The grading degree allows
us to define the graded commutator of S, T" € OP* of definite grading degree, by
[9,T)x := ST — (1)t deeMTg,

We will begin by defining the various cocycles and cochains we need on A®(™+1 for appropriate
m. In order to work in the reduced (b, B)-bicomplex for A~, we will need to extend the
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definitions of all these cochains to A~ ® A®™. We will carry out this extension in the next
subsection.

4.1.1. The residue cocycle. In order to define the residue cocycle, we need a condition on the
singularities of certain zeta functions constructed from D and A.

Definition 4.1. Let (A, H, D) be a smoothly summable spectral triple of spectral dimension p.
We say that the spectral dimension is isolated, if for any element b € N, of the form

b= ag dagkl) oedalt) (14 D2)REm2 gy an, € A,

the zeta function G(z) := 7(b(1 4+ D?)™2), has an analytic continuation to a deleted neighbour-
hood of z = 0. In this case, we define the numbers

n(b) ==res,—g 2'G(2), 1=-1,0,1,2,....

Remark. The isolated spectral dimension condition is implied by the much stronger notion of
discrete dimension spectrum, [23]. We say that a smoothly summable spectral triple (A, H, D),
has discrete dimension spectrum Sd C C, if Sd is a discrete set and for all b in the polynomial
algebra generated by §%(a) and §*(da), with a € A and k € N, the function (,(2) is defined and
holomorphic for £(z) large, and analytically continues to C\ Sd.

For a multi-index k& € N, we define
alk) ™ =k k(B 4 D) (ky 4 kg 4+ 2) - (|k| +m),

and we let 0, ; be the non-negative rational numbers defined by the identities

n—1 n n—1 n
H(z+l+%) :Zzl Oni, when e =1, H(z+l) :Zzlan,l, when e = 0.
1=0 1=0 1=0 =1

Definition 4.2. Assume that (A, H, D) is a semifinite smoothly summable spectral triple with
isolated spectral dimension p > 1. Form = e, e +2 ... M, with 7, defined in Definition [{.1,
and for a multi-index k setting h = |k|4+(m—e)/2, the m-th component of the residue cocycle
Om : AR AP™ — C is defined by

¢0(CL0>:T_1(CL0), andform:L...,M,

M—-m h
Om(ag, ..., ay) = (V2ir)* Z(—l)‘“a(k‘) Z Ohi Ti—|e—1] <7a0 dagkl) coda*m) (1 + Dz)_w_mﬂ).
|k|=0 I=|o—1]

4.1.2. The resolvent cocycle and variations. In this subsection, we do not assume that our
spectral triple (A, H, D) has isolated spectral dimension, however several of the cochains defined
here require invertibility of D. The issue of invertibility will be discussed in the next subsection,
and we will show in subsection [£7] how this assumption is removed.
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For the invertibility we assume that there exists > 0 such that D? > p?. For such an invertible
D, we may define

D, :=D|D|™ for uwe|[0,1], and for a € A, d,(a) := [Dy,al.

Thus Dy = D and D; = F. Note that d, maps A to OPY. This follows from the second part
of Lemma [2Z41] Note also that the family of derivations {d,, v € [0, 1]}, interpolates between

the two natural notions of differential in quantised calculus, that is dy(a) = da = [D,a] and
di(a) = [F,a]. We also set

D, = —D, log|D|,

the formal derivative of D,, with respect to the parameter u € [0, 1]. We define the shorthand
notations

(4.1) Rogu(A) = (A= (t+ " +D5)) 7",
Rot(N) = Ryio(N),  Reu(N) = Repu()),  Ry(\) = Re1o(N).

The range of the parameters is A € C, with 0 < R(\) < p/2, s € [0,00), and ¢, u € [0,1]. Recall
that for a multi-index k € N™, we set |k| := k1 + -+ + kp,.

The parameters s, X constitute an essential part of the definition of our cocycles, while the
parameters t, u will be the parameters of homotopies which will eventually take us from the
resolvent cocycle to the Chern character.

Next we have the analogue of [I5, Lemma 7.2]. This is the lemma which will permit us to
demonstrate that the resolvent cococyle introduced below is well defined. We refer to the
Appendix, subsection [A.2.T] for the proof of this important but technical result.

Lemma 4.3. Let { be the vertical line {a+iv : v € R} for some a with 0 < a < u*/2. Also let
A€ OP" 1=1,....m and Ay € OP[°. For s >0 andt € [0,1], the operator-valued function

1
Bya(s) = o / AP Ag Ry y(A) Ay Ry () -+ Ryy(A) Ay Roy(N) dA,
™ Jy
is trace class valued for R(r) > —m + |k|/2 > 0. Moreover, the function [s — s*||B,+(s)|1],
a > 0, is integrable on [0,00) when R(r) > —m + (|k| + a +1)/2.

Remark. In Corollary .11l we will generalize this result to the case where any one of the
A;’s belongs to OP]SZ. From Lemma and Corollary .11l it follows that the expectations
and cochains introduced below are well-defined, for $(r) sufficiently large, whenever one of the
entries, A;, belongs to OPS’.

Definition 4.4. For a € (0,u/4), let £ be the vertical line { = {a+iv : v € R}. Given m € N,
s € RY, r € C and operators Ay, ..., Ay € OPY and Ay € OPE, such that |k| — 2m < 2R(r),
we define

1

2mi

(42) <A07 cee 7Am>m,7‘,87t = T<7 /)\—p/2—7"A0 Rs,t()‘> e Am Rs,t(A) d)‘)v
4
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Here v is the Zs-grading in the even case and the identity operator in the odd case. When
k| —2m — 1 < 2R(r), we use the fact that D € OP* to allow us to define

m

(4.3) (Ao, A s o= D (D)™ EAN Ay AL D Ay, At s

1=0
We now state the definition of the resolvent cocycle in terms of the expectations (-, ..., )prst-

Definition 4.5. Form = e e+ 2 ... M, we introduce the constants n,, by
2\ I'(m/2+1)
m = (—v2i) 2t R
1 ( v2i T(m+1)
Then for t € [0,1] and R(r) > (1 —m)/2, the m-th component of the resolvent cocycles
> Omi - A® AP — C are defined by ¢, := ¢}, | and

m? ¥'m, m
o0
T P m
(@0, oy Q) = nm/ s™(ag, day, ..., dam)mrs ds,
0

Remark. It is important to note that the resolvent cocycle ¢ is well defined even when D is
not invertible.

Our proof of the local index formula involves constructing cohomologies and homotopies in the
reduced (b, B) bicomplex. This involves the use of ‘transgression’ cochains, as well as some
other auxiliary cochains.

The transgression cochains @], and auxiliary cochains B®},,, .,, ¥}, (see below) are defined
similarly to the resolvent cochains. However, the cochains @7 , are of the opposite parity to ¢y,
Thus, if we have an even spectral triple, we will only have @7 , with m odd.

Definition 4.6. Fort € [0,1], r € C with R(r) > (1 —m)/2 and with D invertible, the m-th
component, m = |e—1[, |[@—=1|+2,..., M +1, of the transgression cochains @}, , : AQA®™ —
C are defined by

O (a0, ) = T / S (g, d(@), ., (@)D .
0
By specialising the parameter t tot =1, we define @7, := @] .

Finally we need to consider B®},, ,, and another auxiliary cochain ¥},  for u # 0. We define
. below, and the definition of B®,,,,, is the same as B®),,, , with every appearance of
D replaced by D, := D|D|™", including in the resolvents.

To show that these cochains are well-defined when u # 0 requires additional argument beyond
power counting and Lemma 3]

We outline the argument briefly, beginning with the case p > 2. We start from the identity,
4,(a) = [Dua] = [F|D'",a] = F[|D|""*,a] + (da — F5(a))[D] ™,
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and we note that da — F'§(a) € OP). Applying Lemma B4 to [|D|'~%,a] now shows that
dy(a) = b|D|™" for some b € OP}. Next, we find that

Rou(N) = (A= s> = D))~ = D[ 2WIDE (N — &* = DI) ' = |D| Y B(u),

where B(u) is uniformly bounded. Then Lemma[Z A0 shows that d,(a;)Rs.(A\) € LYN, T) for all
qwith (2—u)g >p>2andi=0,...,1,1+2,..., M, while R, ,(\)"2d,(a;41)Rs.u(\) € LIN, T)
for all ¢ with (3 —2u)g > p > 2. An application of the Holder inequality now shows that
B®y, 4, and Wy, are well-defined. More details can be found in the proof of Lemma in
subsection [A.2.4l For 2 > p > 1 the algebra is a little more complicated, and we again refer to
the proof of Lemma in subsection [A.2.4] for more details.

Definition 4.7. Fort € [0,1], r € C with R(r) > (1 — M)/2 and D invertible, the auxiliary
cochain U}, : A® A*M — C is defined by

o0

Uy, (a0, - an) == —%M sM((ayDy, dular), - . ., du(ans))) arrso ds,
0

where the expectation uses the resolvent Rg ., (\) for D,.

To see that WY, is well-defined requires the arguments above, as well as Lemma R.41] to deal
with the extra log(|D|) factor appearing in D,,.

These are all the cochains that will appear in our homotopy arguments connecting the resolvent
and residue cocycles to the Chern character. However, we still need to ensure that we can extend
all these cochains to A~ ® A%®™, in such a way that we obtain reduced cochains. This extension
must also allow us to remove the invertibility assumption on D when we reach the end of the
argument. We deal with these two related issues next.

4.2. The double construction, invertibility and reduced cochains. The cochains ¢j, ,,
B®7, .., and W, require the invertibility of D for u # 0 and ¢ = 0. Thus we will need to
assume the invertibility of D for the main part of our proof, and show how to remove the

assumption at the end.

More importantly, we need to know that all our cochains and cocycles lie in the reduced (b, B)-
bicomplex. The good news is that the same mechanism we employ to deal with invertibility also
ensures that our homotopy to the Chern character takes place within the reduced bicomplex.

The mechanism we employ is the double spectral triple (A, H?,D,,,7), with invertible operator
D,,. We know that this spectral triple defines the same index pairing with K, (A) as (A, H, D, ),
and has D invertible. Now we show how the various cochains associated to the double spectral
triple extend naturally to A~ ® A®™. Recall that this is really only an issue when m = 0, and
in particular does not affect any odd cochains.

To distinguish the residue and resolvent cocycles associated with the double spectral triple

(A, H?,D,,%), we use for them the notations ¢, m, ¢/,,,, and similarly for the other cochains.
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Let OPY be the C*-closure of OPY (defined using the operator D,!), and let {1y }ren C OPY be
an approximate unit for O—Pg. Such an approximate unit always exists by the density of OP).
In terms of the two-by-two matrix picture of our doubled spectral triple, we can suppose that
there is an approximate unit {1, } ea for the OPY algebra defined by D (rather than D,,) such

that N
Py 0
Uy = ~ |.
0 ¥
Then we define for m > 0 and ¢, ¢1,...,¢, € C
(44) ¢M7m(&0 + coldyg~, a1 + c1ldy~, ..., a,, + CmIdA~) = ¢M7m(a0 +co, a1, ..., am).

This makes sense as the residue cocycle is already normalised.

For m > 0 this is well-defined since [D,,,a1]*") - - - [Dy, a,,] ) (1 4+ D2)~*/2 € OP{. Then by
definition of isolated spectral dimension, we see that for m > 0 the components of the residue
cocycle take finite values on A~ ® A%™.

For m = e = 0, we define
yox(l+p?+D)F 0 0
0 —ya(1 4 p* +D?)~* '

Thus, this extension of the residue cocycle for D,, defines a reduced cochain for A.

1
¢M70(1A~) = lim res,—o — 7 & tro (
A—00 z

The resolvent cochains ¢, ., m = e, e+2, ... are normalised cochains by definition. We extend

all of these cochains to A~ ® (A)®™ just as we did for the residue cocycle in Equation (4.
The resulting cochains are then reduced cochains. For W7 ,, and B®] , , ,, there is no issue
since M > 1 in all cases.

For @7 ., the situation is different as we will employ an even version of ® when e =1, and so
there is no grading. However, when m = 0 we can perform the Cauchy integral in the definition

of @] ,,, and so we obtain for R(r) > 1/2 a constant C' such that

r 1 > 1;/\ 0 D u 2 2 2\—p/2—r _
®)04(1a~) = lim C© ; 57®t1"2<<0 o) \u -p (t+p°+s°+D7) ds = 0.

These arguments prove the following:

Lemma 4.8. Let t € [0,1]. Provided R(r) > (1 —m)/2, the components of the residue
(Gpm)m=e,et2,.. M, the resolvent ( L,m,t)m=°7-+2,---,M; the transgression ((I)L,m,t)m=\-—1|,|o—1\+2,...,M+1
and the auxiliary W}, 5., B®], 3111 ,, cochains are finite on A~ @ A®™, and moreover define

cochains in the reduced (b, B)-bicomplex for A™.

Thus all the relevant cochains defined using the double live in the reduced bicomplex for A™,
and D, is invertible. For the central part of our proof, from subsection until the beginning
of subsection [.17 we shall simply assume that our smoothly summable spectral triple (A, H, D)
has D invertible with D? > 2 > 0. In subsection 7] we will complete the proof by relating
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cocycles for the double, for which our arguments are valid, to cocycles for our original spectral
triple.

4.3. Algebraic properties of the expectations. Here we develop some of the properties of
the expectations given in Definition .4l These properties are the same as those stated in [17],
but some of the proofs require extra care in the nonunital setting.

We refer to the following two lemmas as the s-trick and the A-trick, respectively. Their proofs
are given in the Appendix, subsections [A.2.2] and [A.2.3] respectively.

Formally, the s-trick follows by integrating % (s*(-,. .., )murse) and using the fundamental
Theorem of calculus.

Lemma 4.9. Letm € N, a > 0, t € [0,1] and r € C such that 2R(r) > 1+ a+ |k| —2m. Also
let A€ OP", 1 =1,....m and A, € OPISO. Then

Oé/ Sa_1<A07 BRI Am)m,r,s,t ds = —2 Z/ Sa+1 <A07 sy Al7 17 Al—l—h cee 7Am>m+1,r,s,t dSv
0 =0 /0
and if 2R(r) > a+ |k| — 2m then

Oé/ Sa_l<<A0> cee aAm>>m,r,s,t ds=—2 Z / Sa+1<<A0a ) Ala 1> Al+1> cee aAm>>m+1,r,s,t ds.
0 =0 70

Differentiating the A-parameter under the Cauchy integral, we obtain in a similar manner:

Lemma 4.10. Let alsom € N, a >0, t € [0,1], s > 0 and r € C such that 2R(r) > |k| — 2m.
Also let Ay e OP* 1 =1,....,m and Ay € OP’SO. Then

_(p/2 + T)<A0> s aAm>m,r+l,s,t - Z(AOa sy Ala ]-7 Al+1> s aAm>m+l,r,s,ta
=0
and if 2R(r) > |k| —2m — 1 then
_(p/2 + T)<<A0, SR Am>>m,r+1,s,t = Z<<AO> o aAla ]-7 Al-l—la SR Am>>m+l,r,s,t-
=0

Corollary 4.11. Let A, € OP" have definite grading degree, and suppose that there exists

lo € {0,...,m} with A, € OP]SLO. Then, for R(r) sufficiently large and with |e—1| the anti-
parity, the signed expectations

(—l)l._l‘ k= deg(Ak)(Al, Al+1, ceey Ao, R ,Am, R aAl—1>m,r,s,t> [ = 0, cee,m,

are all finite and coincide, and similarly for the expectations [A3). In particular, Lemmas[{.3,
[£-9 and[{.10 remain valid if one assumes instead that A, € OPISIO, for any lo € {0,...,m}.
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Proof. We assume first Ay € OPISO. From the same reasoning as at the beginning of the proof
of Lemma A3] one can further assume that A,, € OP°, at the price that A,,_; will be in
OP*#m-1TFm  Then, we repeat the M-trick (Lemma EI0) until the integrand of

(Ao, 1, ... 1AL o LA L o D st

is trace class. We then move the bounded (by [I5] Lemma 6.10], see the Appendix Lemma [A.2))
operator R™*A,, R* (k is the number of resolvents on the right of A,,) to the front, using the
trace property. This gives after recombination

<AO> cee aAm>m,7’,s,t - (_1)‘._1|deg(Am)<Am> A0> cee aAm—1>m,r,s,t-

The sign comes from the relation A,y = (—1)l*=1ldes(dm)y A~ One concludes iteratively. The

proof for the expectations (4.3)) is entirely similar. O

We quote several results from [I7] which carry over to our setting with no substantial change
in their proofs.

Lemma 4.12. Let m > 0, Ay, ..., An, A € OP* with |k| — 2m — 1 < 2R(r), and suppose
there exists ly € {0,...,m} with A, € OPISZO. Then for 1 < j < m we have
- <A07 BRI [D2a Aj]a SRR Am)m,r,s,t
=(Ao,.. A A A metrst — (Aos - AjA A et st
while for j = m we have
- <AO> cee aAm—la [D2> Am])m,r,s,t
= <A07 cee 7Am—1Am>m—1,r,s,t - (_1>|._1‘ dog(Am)<AmA07 ) Am—1>m—1,r,s,t-
For k> 1 we have

(4.5) / s" (DA, A, ..., Ap)mrsads = (—1)1*7 1 / s"(Ao, Ar, ... A D)rsads.
0 0

If furthermore " deg(A;) = |e—1] (mod 2), we define
deg_; =0 and deg;, = deg(Ay) + deg(A;) + - - - + deg(Ay)
then

m

(4.6) (—1)de8i / s"(Ag, .. [Dy Ajls, o Am)mrsids = 0.

§=0 0

Lemma 4.13. Let m > 0, Ag, ..., An, A € OPY with |k| — 2m — 2 < 2R(r), and suppose

there exists ly € {0,...,m} with A, € OP]SLO. Then for 1 < j < m we have the identity
—{{Ag, .., [DE A o A s — (=1)%8-1(Ag, o Dy Ajla, - A st

(47) — <<AO> s aAj—lAj> cee aAm>>m—l,r,s,t - <<A0, ey AjAj—i-la IO Am>>m—1,r,s,ta



Index theory for locally compact noncommutative geometries 65

where we have graded commutators. For 7 =m we also have
- <<A07 I Am—h [D27 Am]>>m,r,s,t - (_1)dogm,1 <A07 ey [Dv Am]:l:)m,r,s,t
- <<A0, ey Am—lAm>>m—l,r,s,t - (_1).deg(AM)<<AmAO> cee aAm—1>>m—1,r,s,t-

If ZZO deg(4;)

e (mod 2) and a > 1, then we also have

> (- degm/ s ((Agy .., [D, Aplsy oy A ymrs.1ds
0

k=0
(4.8) Z / Aoy, A D At rsads.

On the other hand, if Y .-, deg(A;) = |e—1|(mod 2) and o > 1 then ((---)) satisfies the cyclic
property

/ S (Ao A Ymrssdls — (—1)des(An) / (A Ay, A Yo sads.
0 0

From these various algebraic identities and D*Rg,(\) = —1 + (A — (t + s?))Rs+(\) we deduce
the following important relationship between powers of D and the values of our parameters.

Lemma 4.14. Let m,a > 0, A; € OP* r € C be such that 2R(r) > 1+ a — 2m + |k|, and
suppose there exists ly € {0,...,m} with A, € OPISIO. Then

Z/ A07 .- Ajv D27 Aj+17 e 7Am>m+1,7“,s,tds

—(m+1) / (Ao, ..., Ap)mrseds + (1 —p/2 —1) / s*(Ao, s Am)mrs1ds
0 0

1 o0
+(0H2r )/ Sa(AO,...,Ammmtds—tZ/ Agy o A 1 A, A 1 rsids.
0

4.4. Continuity of the resolvent, transgression and auxiliary cochains. In this subsec-
tion, we demonstrate the continuity, differentiability and holomorphy properties, allowing us to
prove that the resolvent cocycle represents the Chern character.

Definition 4.15. We let O,, be the set of holomorphic functions on the open half-plane {z €
C:R(2) > (1 —m)/2}. We endow O,, with the topology of uniform convergence on compacta.

Lemma 4.16. Let m = o, 0+ 2 ..., M and t € [0,1]. For Ay,...,A,, € OP® such that there
exists i € {0,...,m} with A; € OP}, we have

|:T = / Sm<AO> cee aAm>m,r,s,t d$:| ) |:T = / m+1<<A0a cee Am>>m,r,s,t ds S Om
0 0
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Proof. We prove a stronger result, namely that the operator-valued function

1
Br,t(sv 5) = - /)\—p/Q—T (5_1()\_5 - 1) + log )\) Ag Rs,t(k) Ay Rs,t()\) e 'Rs,t()‘) A, Rs,t()\) dA,
¢

i
satisfies lim._q [~ s™(|By4(s,€)[1ds = 0, whenever R(r) > (1 —m)/2. (Here { is the vertical
line £ = {a +iv:v € R} with 0 < a < p?/2.)

By Corollary ATl we can assume that Ay € OPJ. The proof then follows by a minor modifi-
cation of the arguments of the proof of Lemma (see the Appendix Section [A.2.1]), so that
we only outline it. (We use the shorthand notation R := Ry ;()\).)

We start by writing for any L € N, using Lemma [A.3] (see [I5, Lemma 6.11])

L
AgRA R RA,R=" C(n)Ag A" .- Alr) Rt 4 Ao Py,

[n|=0
with Pr,,,, € OP~2m=L=3_ The conclusion for the remainder term follows then from the estimate

AP = 1) +log(V) ) | < Clel [ P2R)

together with the same techniques as those used in the proof of Lemma A more detailed
account can be found in [I5] Lemma 7.4].

For the non-remainder terms, we perform the Cauchy integrals

1
o ATP/2r (5‘1(>\‘€ —1) +log )\) A A L A () prtLtinl g\
T Jy
_ (_1)m+|n\r(p/2 +r+m-+ |n|)A0A§"1) . Agm)(t + 52 + D2)—p/2—r—m—\n|

C(p/2+7)
x (e (t+s"+D*) " —1)+log (t+5° +D?)

m+|n|—1
m+|n| +| ‘F(p/Q—l—T—l—k‘) (n) ( ) 2 2N\ — [
—1)mtln 1) ... Alnm p/2—r—m—|n|
+ E ( i )( ) T2+ 7) Ao Ay Apm(t + 57 4+ D7)

(F(a +m+|n| —k)
I'e+1)

Let p > 0 such that R(z) > (1 —m)/2 + p. Call Tj(s) the terms with no logarithm. Using the
estimates of Lemma and

(t+s+D)*((t+s*+D*) —1) =0 as e—0,

(t+s*+D)—T(m+|n| - k)) :

in norm, we see that lim._ f;~ s™||Tk(s)|[1 ds = 0. For the first term (with a logarithm), one
concludes using the fact that for any p > 0

t+s*+D?*)< -1
£

(t+52+D2)"’<( +log(t+82+D2))H§C&?,
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where the constant C' is independent of s (and of t). O

We finally arrive at the main result of this subsection.

Proposition 4.17. Let m = e, + 2 ... M for the resolvent cocycle, m = |e—1|,|e—1| +
2,..., M +1 for the transgression cochain, and t € [0,1]. The maps

a0®...®am)_) [TH¢:n,t(a03"'aam)}7 a0®---®am)—) [TH®In7t(a0,...,am)},

are continuous multilinear maps from A @ A®™ to O,,.

Proof. We only give the proof for the resolvent cocycle, the case of the transgression cochain
being similar. So let us first fix r € C with R(r) > (1 — m)/2. Since Lemma [L.§] ensures that
our functionals are finite for these values of r, all that we need to do is to improve the estimates
of Lemma to prove continuity. We do this using the s- and A-tricks. We recall that we have
defined M = 2|(p+ e+ 1)/2] — o (which is the biggest integer of parity e less than or equal
to p+ 1). By applying successively the s- and A-tricks (which commute) (M —m)/2 times, we
obtain

(M—m)/2 (M—m)/2

1 1
" (g ay) = 22 )l . .
m’t(ao’ @ ) ( n) ll_‘[l p/2‘|—’f’—l1 ll__‘[ m+l2
= 2=1
(49) Z / a0> 1k0> da’la ]-kla SR da’m> 1km>M,r—(M—m)/2,s,tds>
|k|=M—m

where 1% = 1,1,...,1 with k; entries. Since M < p + 1, the poles associated to the prefactors
are outside the region {z € C: R(z) > (1 —m)/2}. Ignoring the prefactors, setting n; = k; + 1
and R := R,;(\), we need to deal with the integrals

/ SMT (’7 /)\—p/2—r—(M—m)/2a0RnodalRm . _damand)\> dS, |n| = M + 1’
0 ¢
where ( is the vertical line ¢ = {a + v : v € R} with 0 < a < p?/2. Let p := (M +1)/ny, so
that >/ p; " = 1. The Hélder inequality gives
||0l0113"°d@11‘3"1 s dan R |y < flagR™ |[po[|dayr R™ (|, - - - [|[dam B™™ [,

By Lemma [2.42] we obtain for € > 0, and with Ay = ag, A, =da;, [ =1,...,m,

AR, < 14D — juf2) el (2 4 ) o 2) /3ol e,
Since > )"y = M + 1, this gives
(4.10) |agR™day R™ - - - day, R ||y < Clag, . . ., am) ((s* + a)? + v?) =MD/ 2+Ere)/4

which is enough to show the absolute convergence of the iterated integrals (see [15, Lemma
5.4]). Now observe that the constant in Equation (4.I0) is equal to

Clao, ., am) = llao(D? — pu/2)~ PPt/ E 2| [y (D? — pof2)~ PPt/ tme D2,
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Note also that the explicit interpolation inequality of Lemma [2.40] reads
JA(L+D?) ™|, < [[A(1+D*) (/|| A]'7/7, A€ OP), q>p/a,

and the latter is bounded by P, x(A) for n = | (ag—p) ' | and k = 3| aq/4]+1, by a simultaneous
application of Lemma 2.29 and Corollary .33l Thus, with the same notations as above, we
find for [ # 0 and some constant C' > 0

| day(D? — pu)2)~ PPl et D < | day(D? — ga2) =@ DI gy ||
< CPyrldar),

for suitable n, k € N. For [ = 0 we have a similar but easier calculation. This proves the joint
continuity of the resolvent cocycle for the d-p-topology.

The proof that the map r + ¢, (ao, ..., ay) is holomorphic in the region R(r) > (1 —m)/2
follows from Lemma [4.106l O
Proposition 4.18. For each m = e, 0 +2 ... M, the map

0,1] 3t [r— ¢,,] € Hom(A®" O,,),

1s continuously differentiable and

Sl [ ] = [0 [ —(a/24 1) 632).

Proof. We do the case m < M where we must use some initial trickery to reduce to a computable
situation. For m = M such tricks are not needed. We proceed as in the proof of Proposition
417, applying the s- and A- tricks to obtain ([A.9). Keeping the same notations as in the cited
proposition, in particular p; = (M + 1)/n;, and ignoring the prefactors, we are left with the
integrals

/ sMr (7 /)\_p/z_r_(M_m)/zao RS day RY - - - day, RYY d)\) ds.

0 ¢

(Here ¢ is the vertical line £ = {a + v : v € R} with 0 < a < p?/2.) Now each integrand is not
only trace class, but also t-differentiable in trace norm. This is a consequence of the product

rule, Holder’s inequality and the following argument showing the Schatten norm differentiability
of ARY, for A € OP)). By adding and substracting suitable terms, the resolvent identity gives

A(a—l(R;m —R') + nR”+1) - A(nRg# ZR” k+1R’;t+€)

= nAR?, (Ry Z RFVRE,).
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The term in brackets on the right hand side converges to zero in operator norm since R k“R’; tia
is uniformly bounded. Thus
|A (6_1<R?,t+a R?t) + an+1) lp < InAR t”p Ry — Z R_kHRI;Ha —+0, =0

Choosing A = ag or A = da; and p = py or p = p; respectively proves the differentiability of
each term ARY, in the integrand in the appropriate p-norm, and so an application of Holder’s
inequality completes the proof of trace norm differentiability.

The existence of the integrals can now be deduced from the formula for the derivative of the
integrand and Lemma
This proves dlfferentlablhty, and so d/dt(¢y, ,(ao, . - ., a,)) exists and (reinstating the prefactors)
equals

(M—m) (M—m)

M—m 2 1 2 1
2T (M —m)! - -
K ( ) le p2+T—b % m+j

X Z Z / ]{3 + 1 CL(], 1k0, ey dCLZ’, 1ki+1, ey dCLm, 1km>M+17T_(M_m)/2’s7tdS.

Now undoing our applications of the s-trick and the A-trick gives

d
dt ( = Nm Z/ CL(), Ceey dCLj, 1, dCLj+1, Cey dam>m+1,r,s7tds,

and a final application of the A-trick yields our final formula,

d

E@mt(ao,...,am) —(p/2+471)¢ T“(ao,...,am).
We note that by our estimates the convergence is uniform in r, for r in a compact subset of a
suitable right half-plane. O

4.5. Cocyclicity and relationships between the resolvent and residue cocycles. We
start by explaining why the resolvent cochain is termed the resolvent cocycle.

Proposition 4.19. Provided R(r) > 1/2, there exists § € (0,1) such that the residue cochain
(¢r IM__ is a reduced (b, B)-cocycle of parity € {0,1} for A, modulo functions holomorphic

m,t/m=e

in the half plane R(r) > (1 —p)/2—§

Proof. Since (¢7, )M, is a reduced cochain, the proof of the first claim will follow from the

same algebraic arguments as in [L5, Proposition 7.10] (odd case) and [16], Proposition 6.2] (even
case). We reproduce the main elements of the proof for the odd case here.
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We start with the computation of the coboundaries of the ¢y, ;. The definition of the operator
B and ¢}, gives

m—+1
(B&e)(@os - 1) = Z O (L, s, g, ay)

m—+1

— Z Nm+2 / 8m+2<17 [Dv aj]v ety [D7 aj—1]>m+2,r,s,td3-

Using Lemma [L17T] and Lemma 9] this is equal to

m—+1

Z Tlm+-2 / 8m+2<[D7 CL(]], sy [Dv aj—l]v 17 [Dv aj]u sy [Du am+1]>m+2,r,s,td8
m+1) [
= —Um+2( 9 ) / S <[D7 CL(]], R [Dv am+1]>m+177"75,td8'
0

We observe at this point that 7,,.2(m~+1)/2 = n,,, using the functional equation for the Gamma
function.

Next we write [D,ag] = Dag — apD and anticommute the second D through the remaining
D, a;] using DD, a;] + [D,a;]D = [D? a;]. This gives, after some algebra and an application
of Equation (4.0) from Lemma [£12]

(B(b:n—i—zt)(a()v R am—l—l)

m—+1

(4.11) N / Z Hag, [Dyarl, -, [D% ), - [D, s Dng toridls.
Observe that for ¢7 , we have

(B&, ) (ag) = - /O T ( / APTRL (VD aO]Rs,t(A)dA) ds = 0,

2mi ’

by a variant of Lemma [£.121 We now compute the Hochschild coboundary of ¢y, ;. From the
definitions we have

m

(60 ) (@0, A1) = By (G001, Gz, ooy tgn) + S (1) (a0, Gl Ay

i=1

+ ¢:n,t(am+1&o, A1y .oy ),
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but this is equal to

nm/ Sm ((a'Oa'b [D, a'2]> ceey [D> am+l]>m,r,s,t + <a'm+1a'0a [D> al]a teey [Da a’m])m,r,s,t
0
+ Z(_1>i<a07 [D7 a1]7 tety ai[Dv ai+1] + [Dv ai]ai—l—la vevy [Du am—l—l])m,r,s,t) dS.
i=1

We now reorganise the terms so that we can employ the first identity of Lemma [£.12l So

(4.12)
m—+1

(06 Nan, s = 3 (=1 / (a0, [Dyarl, . D%y, (D s,
0

j=1
Form =1,3,5,...,2N — 3 comparing Equations (£I12)) and (A1) now shows that

(B(b:n—l—lt + b¢rm,t)(a0= csUmy) = 0.
So we just need to check the claim that b¢hy_; is holomorphic for ®(r) > —p/2 + § for some
suitable §. From the computation given above, we have (up to a constant)

M+1

b¢TM,t(a07 s an) = C(M) Z(—l)l/ 3M<aoada1, [Pl > dan1) M1, A,
0

=1

Now, since the total order |k| of the pseudodifferential operator entries of the expectation is
equal to one, we obtain by Lemma 3| that b}, ,(ao, ..., an1) is finite for (e > 0 is arbitrary)

R(r)>-M—-1+(1+M+1)/24ec=(1—-p)/2+(p—M—1+2¢)/2.

Since p— M — 1 < 0, one can always find £ > 0 such that —) :==p— M — 14 2¢ € (—1,0). The
holomorphy follows from Lemma [£.16] O

We can now relate the resolvent and residue cocycles.

Proposition 4.20. Assume that our smoothly summable spectral triple (A, H,D) has iso-
lated spectral dimension. Then for m = e, e +2. ... M, ag,ay...,a,, € A, the map [7’ >
or(ag, ... am)] € O, analytically continues to a deleted neighbourhood of the critical point
r=(1—p)/2. Keeping the same notation for this continuation, we have

reS,—(1-p)/2 O (05 -y am) = Glao, ... am), m=e e+2 .. M

Proof. For the even case and m = 0, we can explicitly compute

. B 1
T e

modulo a function of r holomorphic at r = (1 —p)/2. So we need only consider the case m > 1.

7(yag(1 + D?)~r=(1-p)/2)
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We start with the expansion, described in detail in the Appendix, Lemma[A.3] with L = M —m
and R := R,()\)

M—m
agRday R--- Rda,, R = Z C(n)ag dagnl) - dal") R a0 Py
[n|=0
Ignoring for a moment the remainder term Pps_,, ,,,, performing the Cauchy integrals gives
M—m 0o
o (ag, ... am) = Z C'(n,m,r) / s <7a0 da{™) - dam) (14 §2 + Dz)—m—m—p/z_r) ds.
0

m
[n|=0

Setting h = |n|+ (m —e)/2, and for R(r) > (1 —m)/2, one can perform the s-integral to obtain
(after some manipulation of the constants as in [16, Theorem 6.4]) for m > 0

(4.13)
M—-m h
Dm0, @) = (V2i)® Z (=1)"a(n) Z opt (r—(1 —p)/2)l_l._l‘
n|=0 I=le—1|
(414) X T(”Yao dagnl) e daggm)(l + D2)—|n\_m/2_r+1/2_p/2>.

From this the result will be clear if the remainder term is holomorphic for £(r) > (1 — p)/2,
since under the isolated spectral dimension assumption the residues of the right hand side of
the previous expression are individually well defined. This can be shown using the estimate of
the remainder term given in the proof of Lemma presented in [A.2.1] U

4.6. The homotopy to the Chern character. We explain here the sequence of results that
leads to the fact that the Chern character in degree M is cohomologous to the residue cocycle.

Lemma 4.21. Let t € [0,1], R(r) > 1/2 and m = e mod 2. Then we have

r r p— 1 r p+ 2r r
Bq)m—l—l,t + bq)m—l,t = (T + 7“) ¢m,t —1 9 @Itl-

Proof. By Proposition .17, we see that both sides are well defined as continuous multi-linear
maps from A%V to the set of holomorphic functions on the half plane R(r) > (m — 1)/2.
We include the following argument from [I7, Proposition 5.14] for completeness.



Index theory for locally compact noncommutative geometries 73

First, using the cyclic property of ((---)) of Lemma .13 and the fact that m = e(mod 2), we
have

B(I):n+17t(a07 R am) = 7777;-2 Z/ 8m+2(_1>mj<<1’ dCLj, cey daj—1>>m+1,r,s,td3
j=0 7"

= % Z/ s™2{dag, . .., da;_1,1,daj, ..., dam))ms1rsds
j=0 "0

1 o0
:_M / s™((dag, . .., dam))mrseds
0

(4.15) =5 [ " ((dao, . dag)) s
0

using the s-trick (Lemma [£.9) in the second last line. The computation for b®;, , ; is the same
as for bgy, , ; in Equation ({fLI2)), except we need to take account of the extra term in Equation

([@). This gives

Now put them together. First, using n,,12(m + 1)/2 = n,, we have

[e.e]

(BT, + b0 a0, -, ) = —777’“ s™({(dag, . .. , dam)ms.rads
0
+ ”—WZ(—DJ/ (o, day, . [D%as), . dam)hmsrads
2 o
_ m s™(ag, day, . .., dam)m.sreds,

2 Jo
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and then applying [D?, a;] = [D,[D, a,]]+ yields

=) [ D, ke s, )
0

% Z dog(ao +deg(day)+--+deg(daj_1) / Sm<<a0’ da1 o [D, daj]:l:a o dam>>m,s,r,td5
j=1 0

[e.e]

Tm M m
— 5 s™(ag, day, ..., dam)m.sreds.
0

Then identity (L8] of Lemma 13l shows that this is equal to

20 [ & m
277 / S (Z(CLQ, ceey daj, D2, daj+1, ceey dam>m+l,s,r,t + 5(610, dal, cee ,dam>m,s,r,t) d$>

then, applying Lemma .14 gives us finally

p+2r—1

(BT, L1 0P, t)(ao, ce ) = i / s"(ag, day, ..., dam)m.sreds
0

+ t 0, Z / (ag,...,daj, 1,dajiq, ..., day)ms1,sr1ds

p—l—2r 1 p+2r
(a0, ..., a) — 1 5 it (ao, -y am),

where we used the A-trick (Lemma [.10) in the last line. O

(4.16)

Proposition 4.22. Viewed as a cochain with non-trivial components for m = M only,
(r—(1- p)/2)_quD§\4+1,0=

is a (b, B)-cocycle modulo cochains with values in functions holomorphic at r = (1 — p)/2 and
is cohomologous to the resolvent cocycle (¢}, o)

m—e"*

Proof. Let M = 2N — . By Proposition A2l applying (B, b) to the finitely supported cochain

1 . 1 .
(G=a=p e = =gy e 00)

yields
r r r B¢7M+170 — T M B<I>§\/1+1,O
<¢.707¢.+2707"'7¢M,0_ (T—(l—p)/2)7070’> - (( m,O)m:o_ (T— (1_p)/2))

That is, (¢}, )m—s is cohomologous to mBQD’M +10- Observe that because it is in the

image of B, (r — (1 —p)/2)7'B®},,,, is cyclic. It is also a b-cyclic cocycle modulo cochains
with values in the functions holomorphic at » = (1 — p)/2. This follows from

by 1o+ BP0 =(r— (1—=p)/2)dh0,
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by applying b and recalling that b@}, , is holomorphic at r = (1 — p)/2. O

Taking residues at r = (1—p)/2 and applying Proposition [£.20] together with the two preceding
results, leads directly to

Corollary 4.23. If (A, H, D) has isolated dimension spectrum, then the residue cocycle (¢ 0)M.
is cohomologous to B<I>MJrl [? (viewed as a single term cochain,).

m=e

Proposition 4.24. Let R, T € [0,1]. Then, modulo coboundaries and cochains yielding holo-
morphic functions at the critical point r = (1 — p)/2, we have (¢}, p)i_y = (&5, 7)o

m=e ~ m,T'/m=e"

Proof. Replacing r by r + k in Proposition [L.2]1] yields the formula

T ]' T (s p (s
(4.17) ¢+k_7°—|—k:—|—(p—1)/2 (B<I> +1t+b<1>+“+<2+r+k:)t¢ +’f+1)

Recall from Proposition J that for D invertible, ¢}, , is defined and holomorphic for $(r) >
(1 —m)/2 for all t € [0,1]. As [0, 1] is compact, the integral

/ ¢mt ag,...,a )dt,

is holomorphic for R(r) > (1 — m)/2 and any a°,...,a™ € A. Now we make some simple
observations, omitting the variables ao, ..., a,, to lighten the notation. For T, R € [0, 1] we
have

T d T
(4.18) O = On= [ Gyt =—o/247) [ ol

R R
Now apply the formula of Equation (4I7) iteratively. At the first step we have

r ro_ _(p/2 + T) / ( r+1 r+1 (p ) r+2>
P, mR = T L (p—1)/2 Bo o, + 09+ 2+r+1 to

Observe that the numerical factors are holomorphic at » = (1 — p)/2. Iterating this procedure
L times gives us

¢Tm,T - ¢Tm,R =

—(p/247)---(p/2+71+ L) TL r+L+1
(r+1+( _1)/2)...(T+L+(p_1)/2)/Rtqu’t dt

—(p/2+7)---(p/2+7r+j—1) /T r+j rj i—1
Bo M J .
+Z T—|—1+ —1)/2)(T+]+(p_1)/2) R ( m—l—l,t‘l'b m—l,t)t dt
r+L+1

In fact the smallest L guaranteeing that ¢, ;" is holomorphic at r = (1 — p)/2 for all m is
N — . See [I7, Lemma 5.20] for a proof. Wlth this choice of L = N — e, we have modulo
cochains yielding functions holomorphic in a half plane containing (1 — p)/2,

L

m T = YmR — (r+1+(p-1)/2)--(r+j+ (-1

T
r+j r+j i—1
72) /R (B®, 7y, + 0P ) L.
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Thus a simple rearrangement yields the cohomology, valid for R(r) > (1 — e)/2,

L . T
—(p/2+7r)---(p/24+7+j—1) / rt 1
T~ O p)m=e — B : O
( T R ; 7,_'_1+ 1)/2)"'(7’4—]"—(]9—1)/2) M+1,t

L M—-1

_ —(p/2+7) (/247 45— 1)
_(B+b)<;<r+1+<p—1>/2>~~<r+j+< _1)/2)/(1) " dt)

Hence modulo coboundaries and cochains yielding functions holomorphic at r» = (1 — p)/2, we
have the equality

m:|o—l\

L i T
" _ —(p/247)-(p/24+1r+j—1) " _
e = Oidnee = B2 T3 T R, T

However, an application of Lemma now shows that the right hand side is holomorphic at
= (1 —p)/2, since j > 1 in all cases. Hence, modulo coboundaries and cochains yielding
functions holomorphic at r» = (1 — p)/2, we have

( :n,T)rAr{:o :( :n,R)%:u
which is the equality we were looking for. U

Corollary 4.25. Modulo coboundaries and cochains yielding functions holomorphic in a half
plane containing r = (1 — p)/2, we have the equality

(D )m=s = (@ 0)m=e = B 110

Thus at this point we have shown that the resolvent cocycle is (b, B)-cohomologous to the
cocycle WB(I) M41,0 (modulo functions holomorphic at = (1 — p)/2), while the residue

cocycle is (b, B)-cohomologous to B(IDE\Z +p1)7é2. We remark that B@g\b ﬂ)’{)z is well-defined (i.e.
finite) by an application of Lemma

Our aim now is to use the map [0,1] > v — D|D|™" to obtain a homotopy from B@g\}jﬁ)ﬁ

to the Chern character. This is the most technically difficult part of the proof, and we defer
the proof of the next lemma to the Appendix, Lemma [A.2.4l This lemma proves a trace class
differentiability result.

Lemma 4.26. For ag,...,apy € Aandl=0,..., M, we let

Ts,)\,l(u) = du(a0) Rs,u()\> T du(al> Rs,u(>\) Du Rs,u()\> du(al—l-l) Rs,u(>\) e du(aM> Rs,u(>\)7
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(M =2|(p+e+1)/2] —e). Then the map [u+ Ty, (u)] is continuously differentiable for the
trace norm topology Moreover, with R, := R ,(\) and D, = =D, log|D|, we obtain

de :
M Z dy(ao) Ry dy(ar) (2R, Dy Dy Ry) du(agsr) Ry - - - du(ans) Ry
+ du(ao) Ry -+ Ry (dy))a; Ry Dy (2R, Dy Dy Ry) dy(ais) - - - Ry duy(ans) Re

M

k=0
(419> + du(a0> Ru du(al) Ru T Ru du(al) Ru Du Ru du(al—l—l) o Ru du(aM> Ru
Lemma 4.27. Forr > (1 — M)/2, we have
d
(bB\Ily\/[,uanv s 7CLM) = %(Bq)gﬂ—i-l,o,u)(a()v T CLM)
M 0o )
- nM(T + (p - 1)/2) Z(_]-)Z / SM<[Du> aO]a CIR [Dua a’i]a Dua sy [Dua aM])M-l—l,r,s,O dS,
i=0 0

where the expectation uses the resolvent for D, that is Rs . (\). Moreover,

= =M Z / [Du> aol, - - -, [Du, ail, Dw oo s [Dus am]) 41,50 ds,

is a holomorphic functzon of r in a right half plane containing the critical point r = (1 — p)/2.

Proof. Lemma [L26] and together with arguments of a similar nature, show that Wj, —and
Lpr, 41,0 are well-defined and are continuous. The proof of Lemma (.2 also shows that the
formal differentiations given below are in fact justified.

First of all, using the D, version of Equation of Lemma H.21] and the R, version of
Definition [1.4 to expand (B®},,, o,)(ao, - - ., ax), we see that it is the sum of the T} ) ;(u) and
so its derivative is the sum over j of the derivatives in Lemma [£.26. Using the R, version of
Definition [£.4] again to rewrite this in terms of ({---)) where possible, shows that

d I8
@(B(I)M-HOu)(aOv s 7CLM)

- - / M Z ( Du> Cl() [Dua a’i]a 2DuDua ceey [Du> aM]>>M+1,s,T’,O
+ ({[Dusaols -, [Pus il [P ar))assro ) ds

- / MZ Duaa'o [Du7ai]7bu7 ceey [Duaa'M]>M+178,T’,OdS'



78 A. Carey, V. Gayral, A. Rennie, F. Sukochev

For the next step we compute BbW¥), ,, and then use bB = —Bb. First we apply b

(b\Ierm)(ao, ce A1) = _777M 5M<(a0a11>u, [Du,as, ..., [Du, arrs1])) mos.rods
0
M 0
TM Z / <a,0Du, ceey [Du, ajajH], ceey [Du, aM+1]>>M7877»70dS
- (_1)M+1n7M / SM<<CI,M+1CL0Du, [Du> al]a sy [Dua a’M]>>M,S,r,OdS
0
M+1
- / M Z aOD“’ D“’ al] [,D?U aj]? R [Duv aM+1]>>M+1,s,T,OdS
M+1 .
_ / M Z . deg ao’Du)-i- +deg([Du,a;— 1D<CI,ODU, [Du, al], RN [Du, CLM+1]>M+17877,70(Z3
* HTM SM<<a0[DU’ a'l]’ SRR [Dw aM+1]>>M,s,r,0d3~
0

The last equality follows from the R, version of Lemma [L.I3l In the above, we note that
deg(agD,) = 1 = deg([D,,a]) for all k so that deg(agD,) + - - - + deg([Dy,a;_1]) = j and
deg(aogDy) + - - -+ deg([Dy, arrs1]) = M + 2 = o(mod 2). We also note the commutator identity
(D2, a;] = {D., [Du,a;]} = [Du, [Du, a;]]+ so in order to apply the D, version of Equation (8]
of Lemma we first add and subtract

—BL [ MDD}, [Dus ] [Py aara]))arsn snods.
0

and then an application of Equation (Lg]) yields

- 2’7M / aOTDu, o [Duyai], D2, [Day st arszsrods

+ %M : <<a0{1>u,1'>u} 4 [Du, ao)Da, [P r], - -« s [Dus ] arsrr0ds
- %M(M +1) /0 " M (agDu, [Dusarl, - [Duangor]) arstorods

[ M o D], D angea]) )t sods.

2 Jo
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79
Then we apply the D, version of Lemma [£.14] to obtain
M

5 (p + 27‘) / SM<CL0Du, [Du> al], ceey [Du, a'M+1]>M+1,s,r,0dS
0

+ 777]\/[ / 3M<<a0{Du7 Du} + [Du, ao]Du, [Dm al], .
0

oo

o [Du, aM+1]>>M+1,S,T,0dS
M

+ 7 3M<<ao[7ju, @1]7 cee [Dm aM+1]>>M,s,r,od8-
0

The next step is to apply B to these three terms, producing

(Bb\l]?\/[,u)(a()a sy CLM)

M o
= (p+2r) Z(—1)<M+1>J’ / M (Do, [Das ], D s 1) arssemods
0
M o0
B [T DD, D) Pty D s srods
2 : 0 I b » Y7 ,8,7,
I >
M
5D [ B [Pty
7=0

which is identical to

2 o0 )
WZ( (M+1 j+|e— 1|J/0 ([Du,ag),- .., [Du,aj_1], Dy, ..

< [Du, @M]>M+1,s,r,od5
j=0

M
LY ()t / Y ([P, acl, .. {Du, D, [Dus gl -, [P ana])) s,
=0 0
’)7 M . . 0 .
4 TS (1) (sl / M (D ag], -+ [Dus a5 1)s [P 5], - [Dus ana]) ) atomodls.
=0 0

This last expression equals

M [S)
(p + 27’) 7734 Z(—l)] / SM<[DU, CI,Q], ey [Du, aj_l], Du, ey [Du, aM]>M+1,S7T70dS
Jj=0 0
mi e~ [ :
+ —MZ/ M (D o], -, 2DuDos [Das ), s [P ane])) ar 1 0ol
2 2 )y
M

+ TZ?M ZAOO 8M<<[Du,a0], ceey [Duvaj—l]v [Du7aj]v -

© [Duu aM]>>M,s,r,0dS-
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Using bB = —Bb, and our formula for -£(B®}, ., ,)(ao, . .., ay) gives
(bB\IﬂEM’u)(ao, e ,CI,M)
N = '
= —(p+ 27“)7M > (-1) / sM([Dy, ag), - .., [Du, aj—1), Du, - . ., [Du, anr]) ars1.6.r005
=0 0

v > '

+ TMZ(—DZ/ M([Dus ol -+ [Du @il D+ [P antlhats omods
i=0 0
d

This proves the result. O

Thus we have proven the following key statement.

Corollary 4.28. We have
7 B )= : L (B30 ) + holo(r)
(T+(p_1)/2) u, M ag, ..., apr _(r+(p—1)/2)du M+1,0,u ag, ..., Qpr oto(r),

where holo is analytic for R(r) > —M /2, and by taking residues

1-p)/2 d 1-p)/2
(BB ") ag, ..., an) = @(Bqﬁwﬁ{g,u)(ao, L an).

We now have the promised cohomologies.

Theorem 4.29. Let (A, H, D) be a smoothly summable spectral triple relative to (N, 7) and of
spectral dimension p > 1, parity e € {0,1}, with D invertible and A separable. Then

(1) In the (b, B)-bicomplex with coefficients in the set of holomorphic functions on the right half
plane R(r) > 1/2, the resolvent cocycle (¢, )M_, is cohomologous to the cocycle

(r—(1-p)/2)7'Chy,

modulo cochains with values in the set of holomorphic functions on a right half plane containing
the critical point r = (1 —p)/2. Here F = D|D|7!.
(2) If moreover, the spectral triple (A, H, D) has isolated spectral dimension, then the residue

cocycle (¢n,)M_, is cohomologous to the Chern character Chfg.

Proof. Up to cochains holomorphic at the critical point (the integral on a compact domain
doesn’t modify the holomorphy property), Lemma 27 gives

1 1 1 1 d
_— bBY", dy = ————— — (B’ du.
r—(1 —p)/2/0 ( wu)(ao, .. anr) du r—(1 —p)/2/0 du( M1,0,0) (00, - - - anr) du
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Since m fol bBW¥Y, , is a coboundary, we obtain the following equality in cyclic cohomology
(up to coboundaries and a cochain holomorphic at the critical point)

1 T = ;
ro - P Pe) = T

One can now compute directly to see that the left hand side is (r — (1 —p)/2)"'Ch} as follows.

(B 4100)-

Recalling that F* = 1 and using our previous formula for B®}, ., ,, (the D, version of Propo-
sition [4.21] with u = 1) we have

(B(I)TM—l—l,O,u)(aOu o) lu=1
I >
=g 2w | Bl (B ) IR ). P srads
0

Z / 2m (7 / APRTTR[F a) - [Fran] (A — (8% + 1))‘M‘2d>\) ds

e (CDM (M 414 p/2+7)
2 M! L(p/2+7)

| OFIF ] P54 1) s
0

In the second equality we anticommuted F' past the commutators, and pulled all the resolvents
to the right (they commute with everything, since they involve only scalars.) In the last equality
we used the Cauchy integral formula to do the contour integral, and performed the sum.

Now we pull out (s? +1)~M=1=P/2=" from the trace, leaving the identity behind. The s-integral
is given by

M2 —M—1—p/2—r _F((M—l—1)/2)F(p/2+r+M/2+1/2)
/0 ST+ s = (M +1+p/2+7) '

Putting the pieces together gives

(BPhy11,0) (@0, - - - anr)u=1
v, DM +1)/2)T(((p—1)/2+7) + M/2+1)
_7(_1> F(p/2—|—7") 2 M T(VF[F7a0][F7aM])

Now 1 = V20 (—1)M2MHID(M/2+1)/T(M 4 1), and the duplication formula for the Gamma
function tells us that T'((M + 1)/2)T(M/2 + 1)2M = \/7T'(M + 1). Hence

(B(I)§\4+1,O,u)(a07 R aM)|u=1
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Now we use the functional equation for the Gamma function

L((p—1)/24+7r)+M/2+1)=T((p—1)/2+7) H (p—1)/2+71+7]+e/2),

to write this as
(B®Yy4 1 0)(a0, - - -5 anr)lu=1

-0 (M—e)/2+1
Cp/2+r\/2_2 ( )/2+

T2 Ml Y. =1/ 0w m(VFF al[F,a] - [Fan]),
’ j=[e—1]

where the o(y/_e)/2,; are elementary symmetric functions of the integers 1,2,...,M/2 (even
case) or of the half integers 1/2,3/2,..., M/2 (odd case). The ‘constant’

_ Val((p—1)/2+7)
Cpja4r = )
C(p/2+T)
has a simple pole at 7 = (1 — p)/2 with residue equal to 1, and o7/2je—1] = I'(M/2+1) in both
even and odd cases, and recalling Definition B.20] of 7/ we see that

1 . B 1
) e

Chr(ag,ay,...,an) + holo(r),

where holo is a function holomorphic at r = (1 — p)/2, and on the right hand side the Chern
character appears with its (b, B) normalisation.

As the left hand side is cohomologous to the resolvent cocycle by Proposition .22 the first
part is proven. The proof of the second part is now a consequence of Proposition 420 O

4.7. Removing the invertibility of D. We can now apply Theorem to the double of a
smoothly summable spectral triple of spectral dimension p > 1. In this case, the resolvent and
residue cocycles extend to the reduced (b, B) bicomplex for A~ and it is simple to check that
they are still cocycles there. Moreover, as noted in Lemma (4.8 all of our cohomologies can be
considered to take place in the reduced complex for A™.

Thus under the isolated spectral dimension assumption, the residue cocycle for (A, H&H, D, 7)
is cohomologous to the Chern character Ch% , and similarly for the resolvent cocycle. We now
show how to obtain a residue and resolvent formula for the index in terms of the original spectral
triple.

In the following we write {¢L7m}m:.7.+2 ,,,,, wu for the resolvent cocycle for A defined using the
double spectral triple and {¢! }.n—ee+2.. s for the resolvent cocycle for A defined by using
original spectral triple, according to the notations introduced in subsection

The formula for Ch% is scale invariant, in that it remains unchanged if we replace D, by AD,,
for any A > 0. This scale invariance is the main tool we employ.
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In the double up procedure we will start with 0 < < 1. We are interested in the relationship
between (1 4 D?) ® Id, and 1+ D;, given by

2 2
12— ( 1+uO+D 1+u9+D2)'

If we preform the scaling D,, — (1 — p?)~/?D, then
(1+D2) = (1—p°)’(1+D*)° @ Idy.

This algebraic simplification is not yet enough. We need to scale every appearance of D in the
formula for the resolvent cocycle. Now Proposition [£.20] provides the following formula for the
resolvent cocycle in terms of zeta functions, modulo functions holomorphic at r = (1 — p)/2:

M-m (M—e)/2+|k| o)
r - _\e n —[o—1
rn(@0, - am) = (V2im)* > (=D)Ma(n) D" oni(r—(1—p)/2)
|k|=0 I=|e—1|
(4.20) X T & try (7% D,, al](kl) - [Dy, am](km)(l + Di)_w_mﬂ_’"ﬂm_pﬂ).

So we require the scaling properties of the coefficient operators
Wmk = [Dy, al](kl) - [Dy, am](km)

that appear in this zeta function representation of the resolvent cocycle. In order to study
these coefficient operators, it is useful to introduce the following operations (arising from the
periodicity operator in cyclic cohomology, see [14120]).

We define S : A®™ — OPY, for any m > 0 by

m—1

g(al) =0, g(alv e, a d az 1)a az+1d(az+2) d(@m)a

i=1

and extend it by linearity to the tensor product A®™. Here and below we write d(a) = [D, a].
To define ‘powers’ of S, we recursively set

k—1

gk(alv”’u Z ( B 1) ZSl A1y ey Qi I)Sk_l_l(aiai-l-lv-”vam)‘

1=
The following lemma is proven in [I4, Appendix].

Lemma 4.30. The maps S' satisfy the following relations:
(4.21) S(ay, ..., am_1)d(an) = S(ay, ... apm) — d(ay) - - d(Gm—2)am_10m,



84 A. Carey, V. Gayral, A. Rennie, F. Sukochev

and for 1 > 1

Sl(al, cey Uper)d(a,) = Sl(al, R lgl_l(al, ey Qy—2) Q1 Gy

15 ay, ... an_s)ag_1ay = S' (a1, . .., ax), S'ar, .. az1) = 0.

As a last generalisation, we note that if £ is now a multi-index then we can define analogues of
the operations S’ by
n—1
§k(a1) =0, gk(al’ o 7am) = Z d(al)(kl) .. .d(al_l)(klﬂ)al(kl)al(_’f_lirl)d(al+2)(kl+2) .. .d(am)(km)'
=1

With these operations in hand we can state the result.

Lemma 4.31. With D and D, as above, and for m > 1, the operator [D,,, a;]*V) - - - [D,,, a,,]*m)
15 given by

_ (km)
HWm—1,kAm

(m/2] . Gi
mk T i— CiS ar, ..., am E:m Qi
Wi,k Zz_l ( 1 ) — 4 1)/2] 1 Sl(al,.. s iy — 1)&%7")

(k1) ~ 2., (k1) ~ (km)

pay " O g —pPay " Om—o km
a3t a8y, an) T 0l S g™
In this expression
Wik = D, al](kl) .. [D, am](km)’ W1 = D, al](kl) .- [D, am_l](kmfl)’
ajm—l,k = [D7 aQ](kQ) e [D7 am](km)7 am—2,k = [D7 a2](k2) T [D7 am—l](kmil)

the superscript (k;)’s refer to commutators with D* (Definition[2.22), and ¢; = (—1)'u?'/i!.

Proof. This is proved by induction using

n kn D, a, (kn+1) —p as‘:n+1)
[,D‘u’a”'l'l](k ) = [,Duvagz—i-fl)] = [ ?;fln]ﬂ) 0+1 .
M@y g

It is important to note that the formulae for the S operation are unaffected by the commutators
with Dﬁ, since Dﬁ is diagonal. A similar calculation in [I4] Appendix], where there is a sign
error corrected here, indicates how the proof proceeds. O

0 8 gives us agwpy, k- Having identified the
p dependence of Wy, (1 + D2)~IH=m/2=r=0=1/2 arising from the coefficient operators wp, .k,
we now identify the remaining 1 dependence in agwy, k(1 + Di)—\kl—m/ 2=r=(P=1/2 coming from
(1+ D2)~Ikl=m/2=r=(=1)/2 " So replacing Dy, by (1 — p?)~/*D,,, our calculations give for m > 0

Multiplying the operator in Lemma F31] by (
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aowm7u7k(1 + Di)_lk‘_m/2—7’_(p_l)/2 —

—r—(p— —|k|l—m/2—r—(p— o
(1— ) (p 1)/2a0wm7k(1+p2) |kl=m/2=r=(p=1)/2 &, <O 0) + O(p),

where the O(u) terms, are those arising from Lemma 31l Of course at r = (1 — p)/2 the
numerical factor (1 — p?)™"~®=V/2 is equal to one, and contributes nothing when we take
residues. For m = 0 there are no additional O(u) terms.

-----

power of i, arising from the expansion of agwy, k.. This gives us a finite family of (b, B)-cochains
of different lengths but the same parity, one for each power of y in the expansion of agwp, .-
Denote these new cochains by ] = (¢7,,)m=eet2,.., Where ¥ is assembled as the coefficient
cochain for p’. To simplify the notation, we will consider the cochains ¢ as functionals on

suitable elements in OP*. With these conventions, and modulo functions holomorphic at r =
(1 —p)/2, we have

2L77LJ+1

r (ao,...,am):(l—,u —r+(-p)/ ( Z wzm aowmkz) '>>

where an,k are some coefficient operators depending on ay, ..., a,,, but not on p, and wy, xo =
Wik, as defined in Lemma [£.37]

Let & = (@4n)m=ee+2.. be a (b, B)-boundary in the reduced complex for A~. Then as Ch%ﬂ is
a (b, B)-cocycle, we find by performing the pseudodifferential expansion, for Cy, ..., Co|ar/2)+e
suitable reduced (b, B)-cochains on OPg, that

M
0= Ch%(aM) = TeS,—(1—p)/2 Z O () = Cola) + Cr(@) pp+ -+ - + Copagjz)4e() p2LM /20t

m=e

The class of Ch%ﬂ is independent of x> 0, and as we can vary pu € (0,1), we see that each
of the coefficients C;(ar) = 0. As the C;(«) arise as the result of pairing a (b, B)-cochain with
the (b, B)-boundary «, and « is an arbitrary boundary, we see that all the ¢! are (reduced)
cocycles modulo functions holomorphic at r = (1 — p)/2.

Now let 3 be a (b, B)-cycle. Then by performing the pseudodifferential expansion we find that

Chi, (Bar) = resr—q p/zZ% (Bn) = Co(B) + Ci(B) -+ -+ + Coppgaya(B) s+,

m=e

The left hand side is independent of y, and so taking the derivative with respect to u yields
0=C1(B)+ -+ (2] M/2] + )Conrjajse(B) p2M/2Fo=1,
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Again, by varying p we see that each coefficient C;(53), @ > 0, must vanish. As /3 is an arbitrary
(b, B)-cycle, for i # 0, ¢! is a coboundary modulo functions holomorphic at r = (1 — p)/2.
The conclusion is that res)| represents the Chern character. We now turn to making this
representative explicit.

The cocycle 1§ is given, in terms of the original spectral triple (A, H, D), in all degrees except
zero, by {¢! }in—eet2. ., that is the formula for the resolvent cocycle presented in Definition
with D in place of D,. In degree zero we need some care, and after a computation we find
that for b € A~ and p € (0, 1), ¢}, ((b) is given by

P () = 1im L= (= 2)/2)vA( )= r=(-p)/2)

0 A—r00 L(p/2+ 1)
30— 1)(1+ D) 45y (1 4+ D)0 0
X T & try 7 2\ —(r—(1—p) /2
0 —ya1p(1 4 D?)~ =0/

Cancelling the 1; terms and taking the limit shows that ¢}, ((b) is given by

D(r— (1= p)/2)Va(l —p) DD (p/2 4+ 1)) 7 (y(b — 1) (1 + D?)~ -0/

The function of r outside the trace has a simple pole at r = (1 — p)/2 with residue equal to
1, and can be replaced by any other such function, such as (r — (1 — p)/2)~*. Thus modulo
functions holomorphic at the critical point, we have

$po(b) = d5(b — 1).
Thus we have proved the following proposition.

Proposition 4.32. Let (A, H, D) be a smoothly summable spectral triple of spectral dimension

.....

.....

holomorphic at r = (1 — p)/2.

If moreover the spectral dimension of (A, H, D) is isolated, for each m > 0 we have

I'QST:(l_p)/Q ¢L,m(a0, ey am) = resr:(l_p)/g ¢Tm(a0, e ,CLm),
and form =0

res;—(1-p)/2 Pp.0(@0) = 1€8,=(1-p)/2 P (a0 — Lay)-

4.8. The local index formula. Let u € M,(A™) be a unitary and let e € M,(A™) be a
projection. Set 1, = 7"(e) € M,(C) as in ([3.3)). We also observe that inflating a smoothly
summable spectral triple (A, H,D) to (M,(A),H® C", D ®1d,) yields a smoothly summable
spectral triple for M, (A), with the same spectral dimension. Then we can summarise the
results of Sections 3 and 4 as follows.
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Theorem 4.33. Let (A, H,D) be a semifinite spectral triple of parity e € {0,1}, which is
smoothly summable with spectral dimension p > 1 and with A separable. Let also M = 2[(p +
o+ 1)/2| — e be the largest integer of parity e less than or equal to p+ 1. Let D,,,, denote the
operator coming from the double of the inflation (M, (A),H @ C",D ®1d,) of (A, H,D), with
phase F,, ® 1d,, and D,, be the operator coming from the inflation of (A, H,D). Then with the
notations introduced above:

(1) The Chern character in cyclic homology computes the numerical index pairing, so

~1
([u], [(A,H,D)]) = Nors

([e] = 1], [(A, H,D)]) = Ch%®1dn (Ch™(e)), (even case).

Ch ora, (ChY (@),  (odd case),

(2) The numerical index pairing can also be computed with the resolvent cocycle of D, via
M

—1
——TCS,—(1—p)/2 Z ¢, (Ch™(u)), (odd case),
2mi m=1, odd

M

([e] = [1c], [(A, H, D)]) = res,—(1—p)/2 Z ¢, (Ch™(e) — Ch™(1.)) (even case),

m=0, even

<[u]> [(Aa H, D)]) =

and in particular for x = u or x = e, depending on the parity, Z%:. ¢r (Chy,(z)) analytically
continues to a deleted neighborhood of the critical point r = (1 — p)/2 with at worst a simple
pole at that point.

(8) If moreover the triple (A, H,D) has isolated spectral dimension, then the numerical index
can also be computed with the residue cocycle for D,,, via

_2;2 Z G (Ch™(w)),  (odd case),

m=1, odd

<[u]> [(Aa H, D)]) =

M

([e] = L (AHD) = Y ¢m(Ch™(e) = Ch™(L,)), (even case).

m=0, even

4.9. A nonunital McKean-Singer formula. To illustrate this theorem, we prove a nonunital
version of the McKean-Singer formula. Let (A, H, D) be an even semifinite smoothly summable
spectral triple relative to (N, 7) with spectral dimension p > 1. Also, let e € M, (A™) be a
projection with 7"(e) = 1. € M, (C) C M,(N). Then using the well known homotopy (with
D,=D®]Id,)
(4.22) D, = eDpe+ (1 — €)Dp(1 —€) + t(eDy(1 —€) + (1 — €)Dye)

=eDpe+ (1 —€)Dy(1 —e) +t((1 — e)[Dy, e] — e[Dy,, €]) =: D, — t(2e — 1)[D,,, €],
we see that we have an equality of K K-classes

(M, (A),H®C",D,)] = [(M,(A),H®C",D.)] € KK (A Ky).
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However the property of smooth summability may not be preserved by this homotopy. The
next lemma shows that the summability part is preserved.

Lemma 4.34. Let (A, H,D) be a smoothly summable semifinite spectral triple relative to (N, T)
with spectral dimension p > 1. Let A € OPY. Then

BQ(D + A,p) = Bg(D,p) and Bl (D + A,p) = Bl (D,p)

Proof. For K = 1,2, ... arbitrary, Cauchy’s formula and the resolvent expansion gives
S|
1+ D+ A - (14D =" — /xsﬁ (RN ({D, A} + A%))™ R(N\)dA
— 2mi J,
1
g [ AP (ROVUD, A} + A2 TRy (Vax,
¢

where R(A\) = (A — (1 +D?))"" and Ra(\) = (A — (1 + (D + A)?))~"! and {-, -} denotes the
anticommutator. Now since {D, A} + A? is in OP(l]7 Lemma can be applied to all terms
except the last, to see that each is trace-class for s > p — m. Using Lemma [2.42] the Holder
inequality and estimating R4(\) in norm, we see that the integrand of the remainder term has
trace norm

|| (R()\)({D,A} +A2))K+1 RA()\)Hl < CE(CL2 —I—'U2)_(K+1)/4+(K+1)p/4Q+(K+1)E_1/2,

where ¢ > p and € > 0. Choosing ¢ = p + 0 for some 0 > 0, we may choose K large enough
so that the integral over v = R(A) converges absolutely whenever s > p — 1. Hence we can
suppose that the remainder term is trace-class for s > p — 1.

Now let T" € By(D, p) and use the tracial property to see that

(1 + (D4 A?)™ATT(1 4+ (D + A)?)~/*) = 7(|T|(1 + (D + A)*)~*/4T))
7(|T|(1 + D*)~|T)) + C,

(1 + D417 (1 + D) ~/*) 4 O,

where Cy = 7(|T] ((1 + (D + A)?)=/2 — (1 + D?)=*/) |T) is finite for s > p — 1. By repeating
the argument for 7% we have T € By(D+ A, p). As D = (D+A)— A, the argument is symmetric,
and we see that By (D, p) = B2(D + A, p). Now by definition Bi(D,p) = Bi(D + A, p). O

Unfortunately, there is no reason to suppose that the smoothness properties of the spectral
triple (M, (A), H",D,,) are preserved by the homotopy from D, to D.. Instead, consider
(A, H",D.), where A, is the algebra of polynomials in e — 1, € M,(A). Then by Lemma
134 and [D,e — 1.] = 0, we easily check that (A., H", D.) is a smoothly summable spectral
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triple. Now employing the resolvent cocycle of (A., H", D,) yields

M
deX, oy, (6(Fyp @ Id,)é) :resrz(l_p)/2< 3 ¢ (Chi(e)

m=2,even

1
+ 7@ tr, (v(e — 1) (1 + D?)~r=0-p)/2) )

r=-n ° )
This equality follows from Proposition and the explicit computation of the zero degree
term. Now since [D.,e] = 0, ¢! (Chy,(e)) = 0 for all m > 2. This proves the following
nonunital McKean-Singer formula.

Theorem 4.35. Let (A, H, D) be an even semifinite smoothly summable spectral triple relative
to (N, 7) with spectral dimension p > 1. Also, let e € M,,(A~) be a projection. Then

([e] = [1e], [(A,H,D)]) = res,—1-p)2 T ® tr, (’}/(6 —1.)(1+ Dg)_(“(l_f”)/z)),

1
(r—(1-p)/2)

This gives a nonunital analogue of the McKean-Singer formula. Observe that the formula has
D, not D,,.

Remark. We have also proved a nonunital version of the Carey-Phillips spectral flow for-
mula for paths (D;)icpo1) with unitarily equivalent endpoints and with D, satisfying suitable
summability constraints. The proof is quite lengthy, and so we will present this elsewhere.

We estimate the integrand of the remainder term in trace norm as follow:
K+1
I (ROVHD, A} + A%))" 7 Ra(M)lx < IRaVIROA)({D, A} + A%)[|58.
Since A = a + iv with 0 < a < p?/2 < 1/2, we get one the first hand
IRAN)| < (a® +0%)7Y2

Next, using the polar decomposition D = |D|u we write {D, A} = DA+ (|[D|A+(A))u, to get
(with the square root using principal determination)

IRV, A} + A%) 41 < IRV B(A) + A7)l xc1 + 2 RO)DI RO Al 41

In one hand, we have |R(A\)?|D||| < 2, while since §(A) + A% € OP) we deduce by Lemma
2.42] that for ¢ small enough

IR (S(A) + A) |1 < Cre(a® + o) T2 RNV A| g1 < Co(a® + o) 74P,
Putting everything together gives
H (R()\)({D,A} + A2))K+1 RA()\)HI < Cg(a2 +U2)—(K+1)/4+(K+1)p/4+(K+1)5—1/2'

Thus, we may choose K large enough so that the integral over v = R(\) converges absolutely
whenever s > p— 1. Hence we can suppose that the remainder term is trace-class for s > p—1.
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4.10. A classical example with weaker integrability properties. Perhaps surprisingly,
given the difficulty of the nonunital case, we gain a little more freedom in choosing repre-
sentatives of K-theory classes than we might have expected. We do not formulate a general
statement, but instead illustrate with an example. This example involves a projection which
does not live in a matrix algebra over (the unitisation of) our ‘integrable algebra’ B, (D, p), but
we may still use the local index formula to compute index pairings.

Consider the Sobolev algebra W1>°(R?) of integrable functions whose (distributional) deriva-
tives are integrable. It is a Fréchet algebra with topology determined by the seminorms
qn(f) = maxy, jn,<n |07705% f||1 and, by the Sobolev Lemma, is continuously embedded in

L>°(R?). The spin Dirac operator on R* ~ C is @ := < P 2—2'8 % 3182), with grading
—0 )

v = ((1) _01) Identifying a function with the operator of pointwise multiplication by it, an

0 f
Anticipating the results of the next Section, we know by Proposition Gdthat (W'>°(R?), L*(R? C?), )

is a smoothly summable spectral triple relative to (B(L*(R?,C?)), Tr) whose spectral dimension
is 2 and is isolated. Thus, we can employ the residue cocycle to compute indices.

Let pp € My(Co(C)™) be the Bott projector

1 1 z 0 0
(4'23> pB(Z) = m (z |Z‘2) ) 1pB - (0 1) :

It is important to observe that pg — 1, is not in By(@,2) since the off-diagonal terms are not
even L*-functions.

element f € W1*°(R?) is represented as (f 0) on L*(R?,C?).

Since the fibre trace of pg—1,,, is identically zero, the zero degree term of the local index formula
does not contribute to the index pairing. This observation holds in general for commutative
algebras since elements of K then correspond to virtual bundles of virtual rank zero.

Thus there is only one term to consider in the local index formula, in degree 2. More generally,
for even dimensional manifolds we will only ever need to consider the terms in the local index
formula with m > 2.

This means that all we really require is that [§ ® Ids, pp][@ ® Ids, pg| lies in My(WH=(R?)),
and this is straightforward to check.

The computation

/2 z/2 0 0
(pB—1/2)[@®1d2,p3][@®1d2,p3]:ﬁ Z(/)2 |z|0/2 _|Z?2/2 Z(/)2 |

0 0 2/2  —1/2
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is routine, and shows that (pg — 1/2)[@ ® Idy, pg][@ ® Ids, pp] is a matrix over W1 (R?). The
fibrewise trace gives

tro((pp — 1/2)[9 ® Idy, ppl[P ® 1d, ps]) = ﬁ <(1) _01) :

Applying [50, Corollary 14], we find (the prefactor of 1/2 comes from the coefficients in the
local index formula)

1 2N—1—€) I'(€) - r
§Tr®tr2(7(p3 —1/2)[9 @ Idy, pp|[§ ® 1da, ps(1 + D7) g) = _F(l ) /0 (1 +T2)2dr
1

Recalling that the second component of the Chern character of pg introduces a factor of —2,
we arrive at the numerical index

<[pB] - [117}3]’ [(WLOO(R2)>L2(R2aC2)>&)}> =1,

as expected. This indicates that the resolvent cocycle extends by continuity to a larger complex,
defined using norms of iterated projective tensor product type associated to the norms P,. We
leave a more thorough discussion of this to another place.

5. APPLICATIONS TO INDEX THEOREMS ON OPEN MANIFOLDS

This section contains a discussion of some of what the noncommutative residue formula implies
for the classical situation of a noncompact manifold. The main contribution of the noncom-
mutative approach that we have endeavoured to explain here, is the extent to which compact
support assumptions such as those in [28] may be avoided. However we do not exhaust all of
the applications of the residue formula in the classical case in this paper.

Our aim is to write an account of our results in a relatively complete fashion. We recall the basic
definitions of spin geometry, [38], and heat kernel estimates for manifolds of bounded geometry.
Using this data we construct a smoothly summable spectral triple for manifolds of bounded
geometry. Having done this, we use results of Ponge and Greiner to obtain an Atiyah-Singer
formula for the index pairing on manifolds of bounded geometry. Then we utilise the semifinite
framework to obtain an L2-index theorem for covers of manifolds of bounded geometry.

5.1. A smoothly summable spectral triple for complete manifolds.

5.1.1. Dirac-type operators and Dirac bundles. Let (M, g) be a (finite dimensional, paracom-
pact, second countable) geodesically complete Riemannian manifold. We let n € N be the
dimension of M and p, be the Riemannian volume form. Unless otherwise specified, the mea-
sure involved in the definition of the Lebesgue function spaces LI(M), 1 < ¢ < oo, is the one
associated with fi,.



92 A. Carey, V. Gayral, A. Rennie, F. Sukochev

We let Dg be a Dirac-type operator in the sense of [28/[38]. Such operators are of the following
form. Let S — M, be a vector bundle, complex for simplicity, of rank m € N and (:|), a
Hermitian form. We suppose that S is a bundle of left modules over the Clifford bundle algebra
Cliff (M) := CLff(T*M, g) which is such that for each unit vector e, of T M, the Clifford
module multiplication c¢(e,) : S, — S, is a (smoothly varying) isometry. It is further equipped
with a metric compatible connection V¥, such that for any smooth sections o € I'*°(S) and
p € I'°(Cliff(M)), it satisfies

(5.1) V3 (clp)o) = c(Vp)o + c(p) V(o).

Here, V is the Levi-Civita connection naturally extended to a (metric compatible) connection
on Cliff (M) which satisfies, for ¢, ¢ € Cliff (M), V(p-¢) = V(p) ¢+ ¢-V(¢) (the dot here is
the Clifford multiplication). We call such a bundle a Dirac bundle, [38, Definition 5.2]. Then,
Dy is defined as the composition

I(S) = I°(T"M @ S) — (),

where the first arrow is given by V* and the second by the Clifford multiplication.

For any orthonormal basis {e*},—; , of M, at each point x € M and {e,}, =1, , the dual
basis of T, M, with Einstein summation convention understood, we therefore have

Dgs = c(e!) Vfﬂ.

Let (01,02)s = [y, (01|02) (2) py(x) be the L2-inner product on I'°(S), with (+|-) the Hermitian
form on S. Asusual L?(M, S) is the associated Hilbert completion of I'>°(.S). Recall that under
the assumption of geodesic completeness, Dy is essentially self-adjoint and I'°°(.S) is a core for
Dg, [32, Corollary 10.2.6] and [28, Theorem 1.17]. Moreover, if the Dirac bundle S — M is a
Zo-graded Cliff (M )-module, then Dg is odd, and in the usual matrix decomposition, it reads

0 D : )
DS=<D5 OS), with (D35)* = Dg.

We identify L>°(M) with a subalgebra of the bounded Borel sections of Cliff (M) in the usual
way. We thus have a left action L>°(M) x L*(M,S) — L*(M,S) given by (f,o) — c(f)o.
In a local trivialization of S, this action is given by the diagonal point-wise multiplication. It
moreover satisfies |[c(f)|| = || f|lo-

We recall now the important Bochner-Weitzenbock-Lichnerowicz formula for the square of a
Dirac-type operator:

(5.2) Di = Ags+ 1R, R = c(e") c(e”) F(e' Ne),

where Ag := (V9)* V¥ is the Laplacian on S and F : A*T*M — End(S) is the curvature tensor
of V5.
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Remark. Using the formula (5.2)), Gromov and Lawson [28, Theorem 3.2] have proven that if
there exists a compact set K C M such that

inf R:R > klId 0
:cell\r}\K sup{k € (x) > kldg, } >0,

then Dg (and thus Dg in the graded case) is Fredholm in the ordinary sense.

Note that the Leibniz-type relation (G.I) shows that for any f € C°(M), the commutator
[Dg, c(f)] extends to a bounded operator since an explicit computation gives

(5.3) [Ds, c(f)] = e(df)-

5.1.2. The case of a manifold with bounded geometry. Recall that the injectivity radius ri,; €
0, 00), is defined as

Tinj 1= ;élj\fJ sup{r, > 0},

where 7, is such that the exponential map exp, is a diffeomorphism from B(0,7,) C T, M to
U, », an open neighborhood of x € M. We call canonical coordinates the coordinates given by
exp,! : U, — B(0,7) C T,M ~ R". Note that ry,; > 0 implies that (M, g) is geodesically
complete.

With these preliminaries, we recall the definition of bounded geometry.

Definition 5.1. A complete Riemannian manifold (M, g) is said to have bounded geometry if
it has strictly positive injectivity radius and all the covariant derivatives of the curvature tensor
are bounded on M. A Dirac bundle on M 1is said to have bounded geometry if in addition all
the covariant derivatives of F, the curvature tensor of the connection V°, are bounded on M.
For brevity, we simply say that (M, g, S) has bounded geometry.

We summarise some facts about manifolds of bounded geometry. Bounded geometry allows the
construction of canonical coordinates which are such that the transition functions have bounded
derivatives of all orders, uniformly on M, [51, Proposition 2.10]. Moreover, for all € € (0, 74,;/3),
there exist countably many points x; € M, such that M = UB(z;, ¢) and such that the covering
of M by the balls B(z;,2¢) has finite order. (Recall that the order of a covering of a topological
space, is the least integer k, such that such the intersection of any k& + 1 open sets of this
covering, is empty.) Subordinate to the covering by the balls B(z;, 2¢), there exists a partition
of unity, Y. y; = 1, with supp ¢; € B(x;,2¢) and such that their derivatives of all orders and
in normal coordinates, are bounded, uniformly in the covering index i. See [54, Lemmas 1.2,
1.3, Appendix 1] for details and proofs of all these assertions. Also, a differential operator is
said to have uniform C*-bounded coefficients, if for any atlas consisting of charts of normal
coordinates, the derivatives of all order of the coefficients are bounded on the chart domain and
the bounds are uniform on the atlas.

The next proposition follows from results of Kordyukov [36] and Greiner [30], and records
everything that we need to know about the heat semi-group with generator D%.
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Proposition 5.2. Let (M, g) be a complete Riemannian manifold of dimension n with bounded
geometry. Let Dg be a Dirac type operator acting on the sections of a Dirac bundle S of bounded
geometry and P a differential operator on I'°(S) of order a € N, with uniform C*-bounded
coefficients. Let then K{p(x,y) € Hom(S,, S,) be the operator kernel of Pe P2 Then:

i) We have the global off-diagonal gaussian upper bound

d2(x,y)

}KEP(I,Q)‘OO < Ot (2 exp < — m

), t >0,

where | - | denotes the operator norm on Hom(S,, S,) and d, the geodesic distance function.
it) We have the short-time asymptotic expansion

tr(KPp(z, ) ~isor 272N " Hhpi(a), Vo€ M,

>0

where the functions bp;(x) are determined by a finite number of jets of the principal symbol of
P(at + ’D%)_l,

iii) Moreover, this local asymptotic expansion carries through to give a global one: For any
f € LY (M), we have

[ 1@ (K, diyfo) s 125025 (0 o) ).

i>0

Proof. When M is compact, the first two results can be found in [30, Chapter I]. When M
is noncompact but has bounded geometry, Kordyukov has proven in [36, Section 5.2] that all
the relevant gaussian bounds used in [30] to construct a fundamental solution, via the Levi
method, of a parabolic equation associated with an elliptic differential operator, remains valid
for any uniformly elliptic differential operator with C'*°-bounded coefficients, which is the case
for DZ. The only restriction for us is that Kordyukov treats the scalar case only. However, a
careful inspection of his arguments shows that the same bounds still hold for a uniformly elliptic
differential operator acting on the smooth sections of a vector bundle of bounded geometry, as
far as the operators under consideration have C'*°-bounded coefficients. With these gaussian
bounds at hand (for the approximating solution and for the remainder term), one can then
repeat word for word the arguments of Greiner to conclude for i) and ii). For iii) one uses
Kordyukov’s bounds extended to the vector bundle case, [36, Proposition 5.4], to see that for
all k=0,1,..., one has

k
tr(KtS,P(x, x)) _ ¢~ la/2]=n/2 Z tibp,i(x)’ < Ct—m/2j—n/2+k+17
i=0

for a constant C' > 0, independent of x € M. This is enough to conclude. O
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Given w, a weight function (i.e. positive and nowhere vanishing) on M, we denote by W*!(M, w),
1<k <o00,0< 1< o0, the weighted Sobolev space associated to the norm

1/k
s i= ([ 1871w ,) "

where, A denotes the scalar Laplacian on M. For w = 1 we simply denote this space by
WHH(M) and the associated norm by [ - [[x;. We also write WH(M,w) = (5, W*(M,w)
endowed with the projective limit topology.

When M has strictly positive injectivity radius (thus in particular for manifolds of bounded
geometry), the standard Sobolev embedding

WH(M) c L>®(M),

holds for any 1 < k < oo and [ > n/k (see [2, Chapter 2]). In particular, if ¢ > 0 then
Whn/k+2( M) is not only a Fréchet space but a Fréchet algebra. The next lemma gives equivalent
norms for the weighted Sobolev spaces W"! (M, w).

Lemma 5.3. Let Y p; = 1 be a partition of unity subordinate to a covering of M by balls of
radius € € (0,7i5/3). Then the norm || - ||x1w on WP (M w), 1 < k < oo, I =0,1,..., is
equivalent to

Feo > llif ke
i=1

Proof. This is the weighted version of the discussion which follows [54] Lemma 1.3, Appendix
1], which is a consequence of the fact that the normal derivatives of ¢; are bounded uniformly
in the covering index and because this covering has finite order. U

In the following lemma, we examine first the question of (ordinary) smoothness before turning
to smooth summability.

Lemma 5.4. Let (M, g, S) have bounded geometry. For T an operator on L*(M,S) preserving
the domain of Dg, define §(T) = [|Dg|,T)|. Then for any f € W(M), the operators c(f)
and c(df) on L*(M, S) belong to (1,2, dom &'

Proof. By the discussion following Definition 2.22] it suffices to show that for f € W°>°(M),
c(f) belongs to N2, dom R!, with R(T) = [D%,T)(1 + D?%)~"/2. Next observe that since
[c(f),R] = 0, with R the zero-th order operator appearing in (5.2]), we have
R*(c(f)) = D3, ..., [D5, [Dg, e(f)]] ... ]J(1 + DF) /2
=[As+ IR [, [As + IR, [As,c(f)]] ... N1+ Dg) ™+,

with k& commutators. Define

Bk = [AS‘I’ %R, [,[AS‘I' %,Rw [As,C(f)]] Ha
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so that R*(c(f)) = By (1 + D%)7*/2. Since the principal symbol of Ag is |¢|*Ids,, a local
computation shows that By is a differential operator of order k. With the bounded geometry
assumption, we see moreover that By has uniform C*-bounded coefficients. (This follows
because the covariant derivatives of R will appear in the expression of the coefficients of Bj
and since R(x) = c(et) c(e’) F (et N e?) € End(S,).) In particular, By is a properly supported
pseudodifferential operator with bounded symbol (in the sense of [36], Definition 2.1]) of order
k. While (1 —i—Dg)_k/ 2 is not a properly supported pseudodifferential operator, it can be written
as the sum of a properly supported pseudodifferential operator of order —k and an infinitely
smoothing operator; see [36, Theorem 3.3| for more information. Hence by [36, Proposition
2.7, R (c( f )) is properly supported with bounded symbol of zeroth order. Then one concludes
using [36 Proposition 2.9], where one needs [54, Theorem 3.6, Appendix] instead of [36, Lemma
2.2] used in that proof, to extend the result to the case of a vector bundle of bounded geometry.
The proof for ¢(df) is entirely similar. O

As before, we let K, t > 0, be the Schwartz kernel of the heat semigroup with generator D%.
When it exists, we let kg, s > 0, be the restriction to the diagonal of the fibre-wise trace of the
distributional kernel of (1 + D%)~*/2. That is for s > 0 and x € M, we set

ko(x) = tr([(1+D§) "/ ua),
where the trace tr is the matrix trace on End(S,) and for A a bounded operator on L?(M, S)
we denote by [A],, its distributional kernel.

Now assuming the geodesic completeness of M, the heat kernel K, t > 0, is a smooth section
of the endomorphism bundle of S. Combining this with the Laplace transform representation

1 o
ky(r) = —— 32 et e (K (2, 2)) dt, Ve M,
@ =107 ) (KS (2,2)
we see that the question of existence of ky is uniquely determined by the integrability of the
on-diagonal fibre-wise trace of the Dirac heat kernel with respect to the parameter t. More
precisely, Proposition [(.2]1) gives

Lemma 5.5. Let Dg be a Dirac type operator operating on the sections of a Dirac bundle S of
bounded geometry. Then, for s > n, the function ks is uniformly bounded on M.

As a corollary of the lemma above, we see that W™ (M) C W™ (M, ks) with || - |lren, <
C()| - ||t , for some constant C'(s) independent of r € [1,00] and of t € R.

Lemma 5.6. Let Dg be a Dirac type operator operating on the sections of a Dirac bundle S of
bounded geometry. Then provided f € W2°(M, k,) and s > n, the operator c(f)(1+ D2)~5/* is
Hilbert-Schmidt on L*(M, S), with

I+ D3 = ([ 17P@) o) (@) =l
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Proof. From Lemma [5.5 the function kg is well defined and uniformly bounded on M. Now
let A be a bounded operator acting on L?(M,S), with distributional kernel [A],,. Then for
f € L>(M), a calculation shows that A c¢(f) has distributional kernel f(y)[A],,. We then have
the following expression for the Hilbert-Schmidt norm of A ¢(f):

1AeNIE= [ (A anl?) dioo) i) = [ 5 @Pr([ALa) diy() diy()

- /M P (A ALy i) di ) = /M )Pt ((AAly) ditg(y),

where in the last equality we used the operator-kernel product rule. Then, the proof follows by
setting A = (1 + D%)~/4. O

As explained above, we identify the von Neumann algebra generated by {c(f), f € C**(M)}
acting on L?(M, S) with L>(M). Then, from the previous Hilbert-Schmidt norm computation,
we can determine the weights o, of Definition 2.1l constructed with Dg.

Corollary 5.7. Let Dg be a Dirac type operator operating on the sections of a Dirac bundle S
of bounded geometry. For s > n, let pg be the faithful normal semifinite weight of Definition
(21, on the type I von Neumann algebra B(L*(M,S)) with operator trace. When restricted to
L>(M), ¢s coincides with the integral on M with respect to the Borel measure ks dy,.

We turn now to the question of which functions on the manifold are in B{°(Dg,n). Combining
Proposition Z21] with Lemma 5.6 allows us to determine the norms P, restricted to L>°(M).

Corollary 5.8. Let Dg be a Dirac type operator operating on the sections of a Dirac bundle S
of bounded geometry. Then

Bi(Ds,n) () L®(M) = L®(M) () L' (M, ka1 /mdpsq)-
meN
Moreover we have the equality

Pm(c(f)) = || flloo + 201 fllikpiijm> m=1,2,....

By LemmalB5.0, we see that (), oy L' (M, kgt1/mdpty) contains L (M). Note also that if a uniform
on-diagonal lower bound for the Dirac heat kernel of the form

‘Kf(:c, x)‘oo > ot "2,

holds (with |- |, the operator norm on End(S;)), then (N, oy L' (M, kss1/mdpg) = L' (M). Such
an estimate holds for the spin Dirac operator on Euclidean spaces, for example, and for the
scalar heat kernel for any manifold of bounded geometry.

We now arrive at the main statement of this Section.

Proposition 5.9. Let Dg be a Dirac type operator operating on the sections of a Dirac bundle
S of bounded geometry on a manifold of bounded M of dimension n. Relative to the I, factor
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B(L*(M, S)) with operator trace, the spectral triple (W'>°(M), L*(M, S), Ds) is smoothly sum-
mable and of spectral dimension n. Moreover, the spectral dimension is isolated in the sense of

Definition [{.1].

Proof. We first show that for any f € Wh*(M), the operators 6*(c(f)) and 6*(c(df)), k =
0,1,..., all belong to Bi(Dg,n). That ¢(f) € Bi(Dg,n) for f € Wh=(M) has already been
proven in Corollary B8] since (), Wh®(M, kyi1/m) D WH(M). For the rest, we know by
Proposition that it is sufficient to prove that

(1+D2) R (c(f)(1 + D2)~* € £LY(L*(M, S)), Vk=0,1,..., Vs >n,

and similarly for ¢(df).

From the proof of Lemma [5.4], we also know that for f € W1>(M) C W°*°(M), the operators
R¥(c(f)) and RF(c(df)) are of the form By(1+D%)~%/2, where B is a differential operator of or-
der k, with uniform Wh°°(M)-coefficients. This means that for any covering of M = UB(x;, €)
of balls of radius ¢ € (0, 7y,;/3) and partition of unity > ¢; = 1 subordinate to the covering,
there exist elements f, € End(S;) with Bi|p(, ) = Z\al <k fa0% in normal coordinates. More-
over, Y20 ||¢il falsoll1 < 00, where |- | is the operator norm on End(S,), each ¢; has bounded
derivatives of all order, uniformly in the covering index i. Now take Y v; = 1 a second partition
of unity subordinate to the covering M = UB(z;,2¢) (recall that the latter has finite order),
with ¢;(x) = 1 in a neighbourhood of supp(y;). We then have

Bk - szBkgpz = Z Z wifaaagpz Z Z %fa z
i=0 i=0 |a|<k i=0 |al,|8|<k
Let 1; fa0°(035) = Ui 0.8|0i f0” (0;)] be the polar decomposition. Define

Czaﬁ _u2a5|wzfaaﬁ( )|1/2 Dzaﬁ - |¢z.focaﬁ( )|1/2aa
so that

(1+D§1)_S/4Bk(].+p2 —s/4 __ Z Z 1—|—D2) S/4CzaBDzaB(]-+D2) (s+2k)/4
=0 |al,|8|<k

The fibre-wise trace of the on-diagonal operator kernel of C7, 5(1 + D)3/ 2C;.o.p being given
by i () fo(2)0P (0;)(x)]1ks(x) (With | - |; the trace-norm on End(S,)), we have for s > n

Te(Cin 1+ DY) Cos) = [ a0 () ) k),

so that
e 1/2 1/2
11+ D2)™4Casllz = 1103l fa 10 (@) Vo, < Coplltril faloolli.
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For D, note that the off-diagonal kernel of D;q 4(1 + Dg)~+2M/2Dr |, reads up to a I-
function factor

i fa0 (03)| ()2 / tEFERE e Q200 K (0, y) dt [ f20" (i)l (y) /2.
0

But Proposition i) gives

d2(x,y)

a8 1.8 < ' —(n+lal+]81)/2 __9\Il
OO (2, 0)]e < C'(a B (- 5o

), t> 0.
Since |a|, |B] < k, we finally obtain the inequality

|1Dsas(1 +DF)~ T3 < C'(a) / [¥1.fa0” (i) oo () dpty ()

B(x;,2¢)
< C"(a, B) / ] oo (2)dttg () = C"(ct, B) 16| fl sl
B(x,2¢)
Thus,

IQ+D Bl +D) ™ <D D I +D5) ™ Crapllz | Dias(1+DF) =+,
i=0 [al|8|<k

<O S il faluolls < oo.

i=0 |o|<k

This proves that for all k = 0,1,..., 6*(c(f)) and §*(c(df)) are in By (Dg,n). We also have
proven that the triple (W'*(M), L?(M, S), Ds) is finitely summable.

That n is the smallest number such that c¢(f)(1 + D%)~%/2 is trace class for all s > n follows
from Proposition [£.2]iii), since

1

TN+ D) = 1)

[T [ g n) i

and
tr(K7 (2, 2)) ~iso 72 i),
i>0

Thus, the spectral dimension is n.

Last, that the spectral dimension is isolated follows from the fact that it has discrete dimension
spectrum, which follows from Proposition iii) and the trace computation above, since for
any fo, f1,- -+, fm € WH(M), the operator

c(fo)e(dfr)®) - c(df ) ),

is a differential operator of order |k| with uniform C'*-bounded coefficients. O

5.2. An index formula for manifolds of bounded geometry.
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5.2.1. Extension of the Ponge approach. We still consider (M, g), a complete Riemannian man-
ifold of dimension n, but now suppose that (M, g) is spin. We fix S to be the spinor bundle
endowed with a connection V° which is the usual lift of the Levi-Civita connection. We let Dg
be the associated Dirac operator. We still assume that (M, g, .S) has bounded geometry, in the
sense of Definition .11

Now we need to explain how to use the asympotic expansions of Proposition [5.2iii), to deduce
the Atiyah-Singer local index formula from the residue cocycle formula for the index. (Recall
that by Proposition (.9, the spectral triple (Wl’w(M),L2(M, S),DS) has isolated spectral
dimension, so that we can use the last version of Theorem to compute the index.) The
key tool is Ponge’s adaptation of Getzler’s arguments, [46].

As Ponge and Roe explain, [46l51], the arguments that Gilkey uses to prove that the coefficients
in the asymptotic expansion of the Dirac Laplacian are universal polynomials carries over to
the noncompact situation and produces universal polynomials identical to those of the compact
case. Moreover Ponge’s argument is purely local; that is, it proceeds by choosing a single point
in M and checking what the asymptotic expansion gives for the terms in the residue cocycle
formula at that point. As such there is no change needed in Ponge’s argument to handle
complete manifolds of bounded geometry.

Thus both the following results are proven just as in Ponge, and the only work is in checking
that the constants are consistent with our conventions.

5.2.2. The odd case. We treat the odd case first, which is not affected by our ‘doubling up’
construction.

Theorem 5.10. Let (M, qg,S) be a Riemannian spin manifold with bounded geometry and of
odd dimensionn = 1,3,5,.... Let (Wl"’o(M), L*(M,S), Ds) be the smoothly summable spectral
triple of spectral dimension n described in the last section. The components of the odd residue
cocycle are given by

1)™v/2mi .
Gomr (f0, f1y o f21) = - ) / FOFEA - A dFETE A A(R) (2
(2mi)“z (2m + 1)!'m!

for fO, 1 .. ATt e WH(M), m > 0, R being the curvature tensor of M.

Remark. The A-roof genus, A(R), is computed here with no normalisation of the Pontryagin
classes by factors of 2mi. To obtain the index formula in the next result, one should use the
(b, B)-Chern character of a unitary u € My (Wl’w(M )N), antisymmetrising after taking the
matrix trace.

Corollary 5.11. For any unitary u € My (Wl’OO(M)N) and with 2P, — 1 being the phase of
Ds,, @ Idy and P = X[0,00)(Ds) ® ldy, we have the odd index pairing given by

. 1 & (- . o
Ind(PuP) = Ind(P,aP,) = — h A(R)(n—2m=1)
W(PUP) = DA(RP) =~ 3 i | G0 A AGR)
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5.2.3. The even case. Now as the rank of a projection f & MN(WLOO(M)N) is constant on
connected components and equal to the rank of 1, the contribution of the zeroth term to the
local index formula is zero. It remains therefore to compute ¢o,, for m > 1 evaluated on the
Chern character of a projection f.

Theorem 5.12. Let (M,qg,S) be a Riemannian spin manifold with bounded geometry and
of even dimension n = 2,4,6,.... Let (W'*(M),L*(M,S),Ds) be the smoothly summable
spectral triple of spectral dimension n described in the last section. The non-zero components
of the even residue cocycle are given by

0 r1 2m (_l)m / 07,1 2m A (n—2m)
m(fof = d o Ad A , >1,
for fO fL ..., f7m e Wh°(M), R being the curvature tensor of M.

Again the A-roof genus is defined without 277 normalisations, and in the following result one
uses the (b, B)-Chern character of f &€ MN(WLOO(M )N), antisymmetrising after taking the
trace.

Corollary 5.13. For any projector f € My(W'>*(M)~) and with F, being the phase of
Ds, @ Idy, we have

nd(f F, . f):(zm)—mz o] / Chon (f) A A(R)®=2m)

The sum begins at m = 1 because Chy( f ) = 0 as noted earlier. Thus, as expected, information
on ranks of bundles seems to be lost.

5.3. An L?-index theorem for coverings of manifolds of bounded geometry. In this
section we show how a version of the relative L?-index (see [58] for another version) which
generalises that in [I], can be obtained from our residue formula.

As above, we fix (M g), a Riemannian manifold of dimension n and of bounded geometry. Let
also G be a countable discrete group acting freely and properly on M by (smooth) isometries.
Note that we do not assume M to be G-compact and we let M := G \ M be the possibly
noncompact manifold (by properness) of right cosets. It is then natural to think of M as the
total space of a principal G-bundle with noncompact base M. We denote by ¢ : M — M the
projection map. Note that the metric g on M then naturally yields a metric g on M given
by g.(vi,v9) = gz(01,09), if x = ¢(Z) € M and v; = q(v;) € T, M where we have identified
T,M ~ G.(T;M), since the action of G naturally extends to 7M. In particular, (M, g) also
has bounded geometry.

An important class of examples is given by universal coverings. In this case, G is the funda-
mental group of a manifold of bounded geometry M and M is its universal cover. Also, in this
case ¢ : M — M is the covering map and § is the lifted metric on M by §z = 9q(@)-
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Let now Dg be a Dirac type operator acting on the sections of a Dirac bundle S of bounded ge-
ometry on M. To simplify the notations, we denote by (A, H, Dg) := (W'>*(M), L*(M, S), Ds)
the smoothly summable spectral triple constructed in Section [5. 1.1l If the triple is either even
or odd, then we have various formulae for

Index(éF), +€) even case, Index(P,uP,) odd case,

where F), is the phase of Dg,,, is the double of Dg (see Definition B.7), and P, = (F, +1)/2.

We lift the bundle S to a bundle S on M (pullback by ¢) and we also lift the operator Dg to
an equivariant operator Dg on sections of S. This requires that the action of G on M lifts to
an action on S, and we assume that this is the case. We also denote by ¢ the Clifford action
of Cliff(M) on S. We let H = L*(M,S), and observe that A acts on H by (¢(f)&)(z) =
c(f(2)E(x), for f e A, € € H, and & € M.

We now briefly review the setting for L?-index theory referring for example to the review [53]
for some details and references to the original literature. Since the action of G on M is free and
proper, we have an isometric identification L*(M,S) = L*(M,S) ® (*(G). This allows us to
define the von Neumann algebra Ng = G' = B(H) ® R(G)", where R(G) is the group algebra
consisting of the span of the unitaries giving the right action of G' on ¢?(G). There is a canonical
semifinite faithful normal trace 7¢ defined on elementary tensors T ® U € B(H) ® R(G)" by

76(T ®U) = Try(T) 7e(U),

where Try is the operator trace on H and 7, is the usual finite faithful normal trace on R(G)”

given by evaluation at the neutral element. Let now T be a pseudo-differential operator on H
with smooth kernel [T'] € I'*°(S X S). Then, T is G-equivariant if and only if

[T1(h-&,h- ) = ex(h) [T)(Z,5) e,(h) ", ¥ (h,&,§) € G x M?,

where e, : G — Aut(S,) is the fibre-wise lift of the action of G to S. For such G-equivariant
pseudo-differential operators on H which belongs to £!(Ng, 7¢), we have

(5.4) ro(T) = / tr([T)(E, 7)) dss (2,

where F is a fundamental domain in M and tr is the fibre-wise trace on End(S,). This latter
formulation is the natural one, and was initially defined by Atiyah [I]. It is clear from its
definition that 74 is faithful so that the algebra Ny is semi-finite. It need not be a factor
because (as is well known) the algebra R(G)” has a non-trivial centre precisely when the group
G has finite conjugacy classes [53].

We note that when T is a pseudo-differential operator of trace class on L*(M, S) with Schwartz
kernel [T'] (and thus order less than —n and with L'-coefficients), and U € R(G)", we have

(TR U) ::/Mtr([T](x,z))ug(x) < 7. (U).
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When the original triple (A, H, Dg) on M is even with grading v, we denote by 7 := v ® Idp (g
the grading lifted to H.

Remark. The ideal of 7g-compact operators Ky, = K(Ng, 7¢) is given by the norm closure
of the G-equivariant WDO'’s of strictly negative order and with integral kernel vanishing at
infinity inside a fundamental domain.

Lemma 5.14. Let (M,§) be a complete Riemannian manifold of bounded geometry endowed
with a free and proper action of a countable group G. Let also P be a differential operator
of order a« = 0,1,2,... and of uniform C*-bounded coefficients, acting on the sections of S
and let P be its lift as a G-equivariant operator on S (which has also uniform C*-bounded
coefficients). Assume further that

ko= inf {dy(@, h-&) : ¥ € M, h € G\ {e}} >0.

Then there exist two constants C' > and ¢ > 0, such that for any (&,x) € M x M, with © = q(&)
we have

[[PemP8)(, 2) — [Pe” 8 (w,2)|, < OBl

where | - |« is the operator norm on End(S,).

Proof. Note first that for any (i, ), (§,y) € M x M, with z = ¢(Z), y = q(7), we have
[PeP5)(@,y) = D [Pe"PE) (&, 1 - ),
heG
which is proven using the uniqueness of solutions of the heat equation on M and on M. Thus
[P (2, ) = [Pe™PS)(8,2) = ) [P 'P5](&,h- ).
heG, hite

From Proposition [5.2] we immediately deduce

Hpe_tﬁ%](i’, i’) i [Pe—tbg](x’x)‘ < Ct—(n+a)/2 Z 6—d3(5c,h-55)/4(1+c)t.
heG, hte

Since (M ,g) has bounded geometry, the sectional curvature is bounded below, by say —K?
with K > 0. From [40], we have for any p > 0

Ni(p) := Card{h € G : dg(i,h-Z) < p} < ' en=1Ep

Then the assumption that x := inf {dg(it, h-%): &€ Mhe G\{e}} > 0, yields the inequality

P "™)(3.2) ~ [Pe ™ (w,0)], < €740 [ PN ),

K

which after an integration by parts, gives the proof. O
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Lemma 5.15. Under the hypotheses of Lemmal[5.14 and for f € A and P a differential operator
on S with uniform C*-bounded coefficients (and P its lift on S as a G-equivariant operator),
the functions

Cozm—1g (é(f)p/ tze_t(Hﬁ%)), Cozm Tr(c(f)P/ tze_t(HD%)),
1 1
are entire.

Proof. From Proposition and Equation (5.4]), we see that the integral is absolutely conver-
gent. We thus may differentiate under the integral sign with respect to z and since the resulting
integral is again absolutely convergent, we are done. U

Proposition 5.16. Under the hypotheses of Lemma[5.13, for f € A, P a differential operator
of uniform C*°-bounded coefficients and R(z) > n, there is an equality

76(3E(f)P(1 + D3)~*/?) = Tr(ye(f) P(1 + DF)~*/?)

modulo an entire function of z.

Proof. This is a combinations of Lemmas [5.14] and [5.15] together with the usual Laplace trans-
form representation for the operators concerned. O

The following result, whose proof follows from the previous discussion and the same arguments
as in Section B.1.1] is key.

Corollary 5.17. The triple (A,’;':[,f)) 1s a smoothly summable semifinite spectral triple with
respect to (Ng,7a), of isolated spectral dimension n.

Proof. This follows from Proposition combined with Proposition 0.9 together with similar
arguments as those of Proposition [5.9] to prove that the operators 6*(¢(f)) and 6*(c(df)), k =
0,1,..., all belong to Bi(Dg,n) for f € A. d

We arrive at the main result of this section.

Theorem 5.18. The numerical pairing of (A, H, D) with K.(A) coincides with the numerical
pairing of (A, H,D) with K.(A) (which is thus integer-valued).

Proof. Since both spectral triples (A, H,D) and (A, H,D) have isolated spectral dimension,
one can use the last version of Theorem .33 to compute the index pairing, i.e. we can use the
residue cocycle. Then the result follows from Proposition (.16 U

6. NONCOMMUTATIVE EXAMPLES

In this section, we apply our results to purely noncommutative examples. The first source of
examples comes from torus actions on C*-algebras and the construction follows [41] and [42]
where explicit special cases for graph and k-graph algebras were studied. The second describes
the Moyal plane and uses the results of [26].



Index theory for locally compact noncommutative geometries 105

6.1. Torus actions on C*-algebras. We are interested here in spectral triples arising from
an action of a compact abelian Lie group TP = (R/27R)? on a separable C*-algebra A. We
suppose that A possesses a TP-invariant norm lower-semicontinuous faithful semifinite trace, 7.
Recall that 7 is norm lower-semicontinuous if whenever we have a norm convergent sequence
of positive elements, A 3 a; — a € A, then 7(a) < liminf 7(q;).

We show that with this data we obtain a smoothly summable spectral triple, even if we dispense
with the assumption that the algebra has local units employed in [41],42/[59].

We begin by setting H; = L?(A,7), the GNS space for A constructed using 7. Since T?, our
algebra is ZP-graded by its spectral subspaces for the TP-action:

A= P An.
mezZp

So for all a € A we can write a as a sum of elements a,, homogenous for the action of TP

a= Z s t-am:eizmﬂ'tﬂ'am, t=(t,...,t,) € T".

The invariance of the trace 7 implies that the T? action extends to a unitary action U on H;
which implements the action on A. As a consequence there exist pairwise orthogonal projections
d,, € B(H1), m € ZP, such that ) ., &, = Idy, (strongly) and a,, &, = Ppypan, for a
homogenous algebra element a,, € A,,. Moreover, we say that A has full spectral subspaces if
for all m € ZP we have A,,A* = Ay, where Ay = A™ denotes the fixed point algebra.

Let H := H; ®c Hy, where Hy := C2""* . We define our operator D as the operator affiliated
to B(H), given by the ‘push-forward’ of the flat Dirac operator on T? to the Hilbert space H.
More precisely we first define the domain dom(D) by

dom(D) :=HFE @ Hy, HT:={veM; : [t—t-¢]eC(T", Hi)}.
Then we define D on dom(D) by

D= &,@9(in),

nezp

where v(in) =i )_"_, y;n;, and the v; are Clifford matrices acting on H; with
Vit vy = —205 Idy,.

In future we will abuse notation by letting ®,, denote the projections acting on H;, on A, and
also the projections ®,, ® Idy, acting on H. Similarly we will speak of A and A, acting on H,
by tensoring the GNS representation on H; by Idy,. To simplify the notations, we just identify
A with its image under the left regular representation.

We let N' C B(H) be the commutant of the right multiplication action of the fixed point algebra

Ap on H. Then it can be checked that the left multiplication representation of A is in N and
D is affiliated to N.
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To obtain a faithful normal semifinite trace, which we call Tr,, on A, we have two possi-
ble routes, which both lead to the same trace, and which yield different and complementary
information about the trace.

The first approach is to let Tr, be the dual trace on N' = (A4y)’. The dual trace is defined
using spatial derivatives, and is a faithful normal semifinite trace on A/. A detailed discussion
of this construction, and its equivalence with our next construction, is to be found in [37, pp
471-478]. The discussion referred to in [37] is in the context of KMS weights, but by specialising
to the case of invariant traces, the particular case of S-KMS weights with § = 0, we obtain
the description we want. (Alternatively, the reader may examine [37, Theorem 1.1] for a trace
specific description of our next construction).

In fact, the article [37] is, in part, concerned with inducing traces from the coefficient algebra
of a C*-module to traces on the algebra of compact endomorphisms on that module. To make
contact with [37], we make A ® Hy a right inner product module over Ay via the inner product

(a®@&b®n) = do(ab)(E,Mn,, a, beA, & neHy.

Calling the completed right Ap-C*-module X, it can be shown, see [37], that End 4, (X) acts on
H and that N’ = End,(X)”. We introduce this additional structure because we can compute
Tr; on all rank one endomorphisms on X. Given z, y, z € X, the rank one endomorphism O, ,
acts on z by 0, ,2 := z(y|z).

Then by [37, Lemma 3.1 & Theorem 3.2] specialised to invariant traces, see also [37, Theorem
1.1], we have

olp/2]

(6.1) Trr(Osy) = 7((yle) = Y 7((yilz),

ij=1

where © = ). z; ® ¢;, the e; are the standard basis vectors of Hy, and similarly y = > . v; @ e;.
Moreover, Tr, restricted to the compact endomorphisms of X is an AdU invariant norm lower-
semicontinuous trace, [37, Theorem 3.2], where U is the action of T? on H.

Lemma 6.1. Let 0 < a € dom7 C A CN. Then for m € ZP we have

(6.2) 0 < Tr,(a®,) < 2P/2 7(a).

Moreover, we have equality in Equation ([62)) if A has full spectral subspaces and
Tr, (a®y) = 27/% 7(a),

in all cases.

Proof. We prove the statement for a € Ay, and then proceed to general elements of A.

We begin with the case of full spectral subspaces. Consider first a = bb* for b € Ay N dom'/? 7
homogenous of degree k, so that a € dom7 (7 is a trace). Then a short calculation shows that



Index theory for locally compact noncommutative geometries 107

ad;, = Z?iplm Obze; boe; Where the e; are the standard basis vectors in ‘Hy. Hence
olp/2] olp/2]
Tr (a®y) = Y 7(b°b) = > 7(bb*) = 2" 7(a).
i=1 i=1

Therefore Tr,(a®;) = 2P/217(a) if a is a finite sum of elements of the form bb*, b € A;. Thus
if ApA; = A for all k € ZP we get equality for all dom7 N Ay 3 @ and k € ZP. In particular,
we always have Tr,(a®g) = 27/2/7(a).

In the more general situation consider the ideal AzAf in Ay. Choose an approximate unit
{n}ns1 C ARA; for A AL Since AyA;A; is dense in Ay, we have v,z — x for any = €
X, = A ® Hy. Hence v,a1, € AiAj converges strongly to the action of a on X}, for any
a € Ap. Since Tr, is strictly lower semicontinuous, [37, Theorem 3.2], for Ag Ndom7 > a >0
we therefore get

Tr.(a®;) < liminf Try (¢, ath, @) = lim inf 2/2 7 (4, a1, ) = liminf 20/ 7 (/%2 61/?)
< Qtp/2JT(a).

This proves the Lemma for a € Ay Ndom 7.

Now for general a € dom 7, we may use the AdU-invariance of Tr, to see that
Tr, (a®y) = Tr (Pg(a)®y) < 2727 (Dy(a))
with equality for & = 0 or for all £ € Z” if A has full spectral subspaces. Thus if we write
a =y e am as a sum of homogenous components,
Tr, (a®y) = Tr,(ao®y) < 2P/ 7(ag) = 2P/87(a)
with equality if k£ = 0 or for all k£ € ZP if A has full spectral subspaces. O

Corollary 6.2. Let A,H,D,N,Tr, be as above. Use D and Tr, to define weights ps, s > p,
on N using Definition [21. Consider the restrictions 1, of the weights o to the domain of T
in A. Then

Ys(a) < 2“’/2J< Z (1+ |m|2)_s/2) T(a), a€ AynNndomrt, s>p,
mezZp

with equality if A has full spectral subspaces.

Proof. Note first that
(1+D*) 2= > (14 |m|]>) 2,

mezZP

so that for a € A, and s > p, we have by definition of the weights ¢, that
SOS(CL) = TI‘T((l + 'D2>—S/4a(1 + 1)2)—5/4)7
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which by traciality of Tr, implies
ps(a) = Tr.(Va(l + D*)**Va) = TrT( d 1+ |m\2>—s/2¢a@m¢a).
mezZp

The normality of Tr, allows us to permute the sum and the trace

psla) = > (1+[mP) T, (Va®, va) = > (1+ [mf*) ™ *Tr, (B a Dy,

meZpP meZpr
(6.3) = > (1 +|m) T, (Dg(a) @) < 219/ ( >+ |m|2)—s/2) (a),
mezZP MmEZP

the last inequality following from Lemma [6.1] and it is an equality if A has full spectral sub-
spaces. [
Let A C A be the algebra of smooth vectors for the action of T?

A={acA: [ttt -aeC>(T" A)}

:{a: S ame @ An: S Imlllan] <ooforallk::0,1,2,...}.

mezZP mezZP mezZP

Then, as expected, A is contained in OP°.

Lemma 6.3. The subalgebra A of smooth vectors in A for the action of TP is contained in
N, dom(6%). More explicitly, for a =3, ., am € @B,,cz0 Am we have the bound

I6% (@)l < G Y Iml** lan].

mezpP

Proof. By the discussion following Definition 222 the claim is equivalent to A C Npdom(R¥),
where R(T) = [D?, T](1+ D?)~'/2. Recall that for a € Aand k=0, 1, ..., we have
Rf(a) = [D?,...[D?%a]...](1+ D)+
For j =1,...,p, denote by 0, the generators of the TP-action on both A and H;. For v € NP,
let 0% := 07" ... 0,". Since D* = —(3°¥_, 97) @ Idy,, an elementary computation shows that
Ria)= Y Capd®(a)d’ @1dy, (14 D)2

lor| <2k, | 8| <k

This is enough to conclude since a € A implies that ||0*(a)|| < oo, and elementary spectral
theory of p pairwise commuting operators shows that for |8| < k, 9% @ Idy, (1 + D?)7*/? is
bounded too. The bound then follows from

0%(am) = N 4, am € A,

which delivers the proof. O
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Define the algebras B,C ¢ A C A by

B = {a = Z Ay € A Z im|* (7(af,am) + T(amal,)) < oo for all k = 0,1,2,...},

meZzpP meZpr
C:{a: Z am € A : Z |m|k7'(|am|)<ooforallk:0,1,2,...}.
mezZP MEZLP

The following is the main result of this subsection.

Proposition 6.4. Let T? be a compact connected abelian Lie group acting on a C*-algebra A
with a norm lower-semicontinuous faithful TP-invariant trace 7. Then (C,H, D) defined as above
is a semifinite spectral triple relative to (N, Tr,). Moreover (C,H, D) is smoothly summable with
spectral dimension p. The square integrable and integrable elements of A satisfy

Bo(D,p) (A = (dom(r))"?,  Bi(D,p)[ A = dom(r)

The space of smooth square integrable and the space of smooth integrable elements of A contain
B and C respectively. More precisely,

B3(D,p) > BU[D,B|, BF(D,p) >CUI[D,C|.

Furthermore, if 0 < a € dom(7) then

res,—oTr,(a(1 4+ D?)7P/27%) < 2P/2=1 Vol (SP~1) 7(a)
with equality when A has full spectral subspaces.
Proof. We begin by proving that By(D,p)(A D (dom(7))"/2. Lemma shows that for all
a € dom(7) with a > 0 and all m € Z” we have
(6.4) Tr, (a®,,) < 2/% 7(a),
and equality holds when we have full spectral subspaces or m = 0.

Thus for a € (dom(7))"? and R(s) > p we see that, using the normality of Tr, and the same
arguments as in Equation (6.3]),

Tr((1+D%) " *a*a(1+D*) ™) = 3 (1 + [n") ™ Tr,(a"ad,)

nezpr

< 7(a*a) 2P/% Z(l + |n)?)7%/? < 0.
nezp

Hence (dom(7))Y? C By(D,p). Conversely, if a € A lies in By(D, p) we have a(1 + D?)~5/* ¢
L2(N, Tr,) for all s with (s) > p. Then

a®oa* < a(l+D*)~*%a* € LYN, Tr,), R(s) > p,
and so a®ya* € L'(N, Tr,). Then
oo > Tr (a®pa”) = Tr, (Poa*ady) = 7(a*a).
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Thus a*a € dom(7), and so a € dom(7)/2.

Now for 0 < a € A, Lemma 214 tells us that a € By (D, p) if and only if a'/? € By(D,p). So
a € dom(7) if and only if a¥/2 € (dom(7))}* = (By(D, p) N A), proving that dom(r), =

Bl (Du p)-l— m A+.
Since B (D, p) is the span of its positive cone by Proposition 215, we have

Bi(D,p) (A = span(Bi (D, p), [ | A+) = span(dom(r).) = dom(r).

Now we turn to the smooth subalgebras. The definitions show that for k£ € ZP, and a homoge-
neous element a,, € A,,, we have

am)Pr = (Jm + k| — |k])am Pk
Since d(a,,) is also homogenous of degree m, we find that for all « = 1,2, ...
0 (am)Pr = (|m + k| — |k])“a Py
Hence for a =),  a, € B and s > p we have
Tr, (1 +D?)~*6%(a)[*(1 + D?)~*/*)
= > (L4 [k Tr, (94]6°(a)*@1)

kezp
- Z (14 [k)*) ™2 Tr, (D10%(ap)*6% (an) Py
m,n,keZP
(6.5) = Z (Im + k| — kD) (In + k| — [k])*(L + [k[*)~**Tr, (Pral,an®y) -
m,n,keZP

Now, using a,, Py = ®,,,ra,, for a,, € A,, we have
* * *
Srar an, Py = ay, a4, Pi—rimPr = 0 ma,, 0, Pr.

Inserting this equality into the last line of Equation (6.0) yields

= > [Im k= K@+ k2T, (0,00 P)

m,keZLP
< ST+ S T (0, 0n®)
kezZpr meZpr
<IN R Y ImPr (ag,am),
kezZpr meZpr

where we used Lemma in the last step and the latter is finite by definition of B. Since
Q. (0%(a))* = [[8%(a)|I” + Tu, (1 +D?) P13 (a)P(1 + D?)~P/4=4/")
+ Tr, (14 D) P47V 6%a)* P (1 + D) P41
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we deduce that B C B°(D,p). Finally, for m € ZP and a,, € B homogenous of degree m, we
have

D, ay] = ap, Idgy, @ v(im).
Then by the same arguments as above, we deduce that [D,a,,| € By(D, p), and thus [D, B] C
By (D, p). By combining the estimates for [D, a] and §*(a), we see that BU [D, B] C B3°(D, p).

Now let @ = Y, a,, € C, so that in particular |a,,|, |aZ,| € dom(7). Then vy,|a,|"?, |an|"/? €
(dom(7))Y2 C By(D, p) where a,, = v,,|a.n,| is the polar decomposition in A

To deal with smooth summability, we need another operator inequality. For a,, € A,,, k € ZP
we have the simple computation

0 (am) 0% (am ) s

(=1)%6%(ay,)0% (am ) Py,
(=D)*(|k] = |m + E[)*(m + k| — |k[)¥a;,am Py,
(|m + k| — [k])*“a’, am @y

Since 0 < (|m + k| — |k[)** < |m|?® for all k € ZP, we deduce that

0 < 8(am) 6% (am) < |m|**a’,ap.

With this inequality in hand, and using a € C, we use the polar decomposition as above to see
that for all « =0,1,2, ..., the decomposition

6%(a) = Zéa(am) = Zva,m‘éa(am)‘lp ‘5a(am)‘l/2 € Bi(D, p),

m

gives a representation of 6%(a,,) as an element of B;(D,p). To see this we first check that
6%(a,)|"/? € By(D, p), which follows from

Tr, ((1+ D) P/* 6% (ay,)|(1 4 D) P41
= > (L4 B T (D /6% () *0% (a ) 1)

kezp
(6.6) < Z(l K2 PR e (ar am) = || T(Jam)) Z(l + k2) P2
kezp kezZp

Since

(Va0 (@) ['?) Va,m] 0% (am) ' = [0 (@),
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the corresponding term is handled in the same way. Finally we have
TI"T ((1 + D2) p/4— 1/n,U m|5a(am)| (1 + D2) /4—1/n)
=Y (L k)P TrT(@kuma () |0 @)

kezp

_ Z(l + k2)—p/2—1/2nTrT(|5a(a )|1/2 * (I)kvam|5a(am)|l/2)
kezp

= Z (1+ kz)_p/2_l/2nTrT(|5a(am)|1/2¢k—mvz,mva,m|5a(am)|1/2) (%)
kezp

= Z (1+ kz)_p/2_l/2nTrT(|5a(am)|1/2q)k—mvz,mva,mq)k—m|5a(am)|1/2) ()
kezZr

<D (LR (167 ()| 2 R (@) V2)
kezp

= (L4 BT T (@0 () [P
keZr

<O (BT T (R i | Do) (% % %)
kezp

< fml* 7 (lam|) Y (14 &2 PE

kezZp

In line (*) we again used v}, ®; = ®4_,,v},,, which is true since 6*(a,,) is homogenous of
degree m and |d%(a,,)| is homogenous of degree zero. In line (x*) we used this again for both
Va,m and v, In (x * %) we again used this trick, and the fact that [§*(a,,)| is homogenous of
degree zero. The last two inequalities follow just as in Equation (6.6). So

1/2
Q(16%(am)|"?) < [m|*([|aml| + 7(lam]) + 7(lap, )2 (Z (1+ kz)"’”_”%)

kezp

1/2
= [l (| + 27 (Jan])) (zu . kz>—p/2-1/2n> |

kezp

and similarly for vg,,,|6%(a,,)|*/?. Hence

B
DMICILCASEAL RIS

PIUEREEE 0SS ol + 2r(lam)),
ezp

a=0 m
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which is enough to show that 6%(a) € By(D, p). Since similar arguments show that §*(|D, a|) €
Bi(D, p), we see that C U [D,C] C B¥*(D,p).

The computation of the zeta function is straightforward using Lemma [6.Il This also proves
that the spectral dimension is p. O

Semifinite spectral triples for more general compact group actions on C*-algebras have been
constructed in [59]. These spectral triples are shown to satisfy some summability conditions,
but it is not immediately clear that they satisfy our definition of smooth summability. We leave
this investigation to another place.

For torus actions we can give a simple description of the index formula. First we observe
that elementary Clifford algebra considerations, [3, Appendix] and [411[42], reduce the resolvent
cocycle to a single term in degree p. This means that we automatically obtain the analytic
continuation of the single zeta function which arises, and so the spectral dimension is isolated,
and there is at worst a simple pole at 7 = (1 — p)/2. Hence the residue cocycle is given by the
single functional, defined on ay,...,a, € C by

v 22'7r%! ress_o1r, (ao [D,aq]---[D,ay)(1+ D2)_p/2_s> p odd,

op(ag, ..., a,) =
%!ress:oTrT (7@0 [D,aq] - [D,ap)(1+ Dz)_p/2_8> p even.

Applications of this formula to graph and k-graph algebras appear in [41l42]. Both these papers
show that the index is sensitive to the group action, by presenting an algebra with two different
actions of the same group which yield different indices.

6.2. Moyal planes.

6.2.1. Definition of the Moyal product. Recall that the Moyal product of a pair of functions (or
distributions) f, g on R??, is given by

(67) oo g(o)i= (mt) [ [ e p)g(2) dya

The parameter 0 lies in R\ {0} and plays the role of the Planck constant. The quadratic form
wo is the canonical symplectic form of R?? ~ T*R? With basic Fourier analysis one shows
that the Schwartz space, S(R??), endowed with this product is a Fréchet *-algebra with jointly
continuous product (the involution being given by the complex conjugation). For instance,
when f, g € S(R?*?), we have the relations

(6.8) / f w0 9(x) di = / (@) g@)de, O,(f 0 g) = 0;(f)xsg+ fr0i(g). Trag=7%T.
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This noncommutative product is nothing but the composition law of symbols, in the framework
of the Weyl pseudo-differential calculus on R%. Indeed, let Opy, be the Weyl quantization map:

Opy : T € S'(R*)
[ap € S(RY) [qo € R — (2m)™¢ /R2d T((qo + q)/2,p)<p(q0)ei(q°_‘”p diq ddp} € S'(Rd)].

Again, Fourier analysis shows that Opy, restricts to a unitary operator from the Hilbert space
L*(R?%) (the L2-symbols) to the Hilbert space of Hilbert-Schmidt operators acting on L?(R?),
with

(6.9) 10pw (/)2 = 2m)~ 2| f]l2

where the first 2-norm is the Hilbert-Schmidt norm on L?(IR?) while the second is the Lebesgue
2-norm on L?(R??). Thus, the algebra (L?(R??),x,) turns out to be a full Hilbert-algebra. It
is then natural to use the GNS construction (associated with the operator trace on L?(R?) in
the operator picture, or with the Lebesgue integral in the symbolic picture) to represent this
algebra. To keep track of the dependence on the deformation parameter 6, the left regular
representation is denoted by LY. With this notation we have (see 26, Lemma 2.12])

(6.10) L(flg=fxog. ILO(HI < @r0) | fll2  f.g € L*(R™).

Note the singular nature of this estimate in the commutative # — 0 limit. Since the operator
norm of a bounded operator on a Hilbert space H coincides (via the left regular representation)
with the operator norm of the same bounded operator acting by multiplication on the Hilbert
space L?(B(H)) of Hilbert-Schmidt operators, we have

(6.11) IZ° ()= (2m) 2] Opw (F)II,

where the first norm is the operator norm on L?(R?*?) and the second is the operator norm on
L2(R%). In particular, the Weyl quantization gives the identification of von Neumann algebras:

(6.12) B(LA(R*)) > {L(f), f € L*(R*)}" ~ B(L*(R?)).

The following Hilbert-Schmidt norm equality on L?(R??), is proven in [26, Lemma 4.3] (this is
the analogue of Lemma in this context):

(6.13) IL(H)g(V)ll2 = (2m) g2l fl2-
Note the independence of # on the right hand side.

6.2.2. A smoothly summable spectral triple for Moyal plane. In this paragraph, we generalize
the result of [26]. For simplicity, we restrict ourself to the simplest d = 2 case, despite the fact
that our analysis can be carried out in any even dimension. Here we let H := L*(R?) @ C?
the Hilbert space of square integrable sections of the trivial spinor bundle on R2. In Cartesian
coordinates, the flat Dirac operator reads

(0 D -0,
= (050 "0 %)
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Elements of the algebra (S(R?),%,) are represented on H via L’ ® Id,, the diagonal left regular
representation. In [26], it is proven that ((S (R?), %9), H, D) is an even QC* finitely summable
spectral triple with spectral dimension 2 and with grading

(10
T=\o -1/
In particular, the Leibniz rule in the first display of Equation (G8]) gives

(6.14) D, L°(f) © 1dy] = <iL9(81f)(3LL9(82f) iLe(alf)()_Le(82f)) |

which together with (GI0), shows that for f a Schwartz function, the commutator [D, L%(f) ®
Ids] extends to a bounded operator.

Then, from the Hilbert-Schmidt norm computation of Equation (G.I3]), we can determine the
weights ¢, of Definition 2] constructed with the flat Dirac operator on R2.

Lemma 6.5. For s > 2, let ¢, be the faithful normal semifinite weight of Definition [2.1]
determined by D on the type I von Neumann algebra B(H) with operator trace. When restricted

to the von Neumann subalgebra of B(H) generated by L°(f) ® Idy, @, is a tracial weight and
for f € L*(R?) we have

s (L'(f)LO(f) @ 1dz) = (m(s — 2))7" / (@) %o f(z)dz = 2(s — 2)7 [ Opw (f)]I3-

Proof. Since D? = A @ Id,y, with 0 < A the usual Laplacian on R?, we have
s (L)L (f) ©1da) = 2Tr ey (14 A) /U LO(F) L0 () (1 + A)/1).
Thus the result follows from Equations (6.8]), (6.9) and (G.13). O

We turn now to the question of which elements of the von Neumann algebra generated by
LO(f) ® Idy are in B°(D,2). The next result follows by combining Proposition 221 with
Lemma [6.5]

Corollary 6.6. Identifying the von Neumann subalgebra of B(L*(R?)) generated by LY (f)®1ds,
f € L*(R?), with B(L*(R)) as in Equation [612) yields the identifications

Bi(D,2)( | B(L*(R)) ~ L*(R?) %y L*(R?) ~ L' (L*(R)).
Moreover, for allm =1,2,..., the norms on L*(R?) %y L*(R?)
fe Pu(L(f) @ 1dz),

are equivalent to the single norm

I = 1O0py ()1
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Proof. The identification L*(R?)%,L?(R?) ~ £'(L?*(R)) follows from the identification L*(R?) ~
L£?(L*(R)) given by the unitarity of the Weyl quantization map, and the equality

L(R) - L(IR) = £(IP(®)).
By Proposition 22T we know that B;(D,2) (B(L*(R)) is identified with
() £ (B(L*(R)), gas1/n)-

n>1

Lemma says that restricted to B(L*(R)), all the weights 2.1/, are proportional to the
operator trace of B(L?(R)), giving the final identification. Moreover, Proposition 2.21] also
gives the equality

Pr() =20 Ml + 11+ 1],

where || - ||, is the trace norm associated to the tracial weight ¢oy1/, restricted to B(L*(R)).
As the latter is proportional to the operator trace on B(L?*(R)), which dominates the operator
norm since we are in the I, factor case, we get the equivalence of the norms

f Po(LX(f)®1dy), and [|Opw(f)li n=1,2,...,

and we are done. O

On the basis of the previous result, we construct a Fréchet algebra yielding a smoothly summable
spectral triple of spectral dimension 2, for the Moyal product.

Lemma 6.7. Endowed with the set of seminorms
F = e = 10pw (0°f)lh, o€ N?,
the set
A:={feC®R? : Vne N’ 3fi, fr € L*(R?), O03*f = fixo [}
is a Fréchet algebra for the Moyal product.

Proof. From the Leibniz rule for the Moyal product (see Equation (6.8]) second display) and
the fact that L*(R?) ¢ L*(R?) C L*(R?), the set A is an algebra for the Moyal product. Since
L2(R?) %9 L*(R?) ~ L'(L*(R)), the seminorms | - |[1,4, @ € N?, take finite values on A. It
remains to show that A is complete for the topology induced by these seminorms. So let
(fr)ken be a Cauchy sequence on A, i.e. Cauchy for each seminorm || - ||;. Since £'(L?*(R))
is complete, for each a € N2, (Opw(ﬁa fk)) ey converges to A, a trace-class operator on
L*(R). But since £!'(L*(R)) ~ L?(R?) %y L*(R?), via the Weyl map, A, = Opy,(f,) for some
element f, € L*(R?) %y L?*(R?). In particular for a = (0,0), the sequence (fy)ren converges
to an element f € L?(R?) %y L*(R?). But we need to show that f € A, that is, we need to
show that ||Opy (0“f)||;1 < oo for all @ € N?. This will be the case if 9*f = f,. Note that
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f € L*(R?) %y L*(R?) C L*(R?) C S'(R?), so that 0°f € S'(R?) too. With (-]} denoting the
duality bracket S'(R?) x S(R?) — C, we have for any k¥ € N and any ¢ € S(R?)
(@ f = f)l)| = [{(0%F = 0 fi) [¥) — ((fa — O fi) [¥)]
= [(=D)"™(f = flo ) = ((fo = 0 f)|0)]
<N f = fell2 01072 + {1 fa — 0% fill2 [1¥]]2
= (2m)"2[10%¢ |2 [|0pw (f = fi)lla + (27) |||z [|OPw (fa — 8* i) 2,

where we have used Equation (6.I3]). Now, since the the trace-norm dominates the Hilbert-
Schmidt norm, we find

[((0°f = f)l)]| < CW)([IOpw (f) = Opw (fi)lh + [|OPw (fa) — Opy(8° fi)ll1)-

But since Opy, (9° fi) — Opyy (fa) in trace-norm for all a € N2, we see that |((0°f — fo)|0)| < €
for all € > 0 and thus ((0°f — f,)|¥) = 0 for all ¥ € S(R?). Hence 0°f = f, in S'(R?), but
since f, € L*(R?) %y L*(R?), 0°f € L*(R?) %9 L*(R?) too. This completes the proof. O

Remark. Note that the C*-completion of (A, xg), is isomorphic to the C*-algebra of compact
operators acting on L*(R).

Combining all these preliminary statements, we now improve the results of [26].

Proposition 6.8. The data (A, H, D, ) defines an even smoothly summable spectral triple with
spectral dimension 2.

Proof. We first need to prove that (A, H, D, ~) (which is even) is finitely summable, that is, we
need to show that

SF(LU(f)®@1dy) (1 + D)™ e LYH), VfeA Vs>2, Vk=01,....
But from the proof of Proposition B.19] this will follow if
(L+D)MRYLO(f) @ 1dy) (1 +D*)** € LY(N, 1), VfeEA Vs>2, Vk=01,....
Now, by the Leibniz rule (Equation 68 first display), we have with A = —9? — 92,
(A, LP()] = LY(AS) +2L° (01 f)Oh + 2L°(95.f) D%,
so that since D? = A ® Idy, we have for all k =0,1,. ..
RE(L(f)@1dy) = D CapL’(0°f)0°(1+A) @ 1d,,

o, |1BI<k
and thus
(1+D2)—s/4Rk(L0(f)®Id2)(1+p2)—s/4

= Y Cap(L+ D)LY )1+ A)1P (1 + A) 2 @ 1dy,

o, BI<k
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which is trace class because 9°(1 4+ A)™#/2 is bounded and by definition of A, 9%f = f %g fo
with fi, fo € L?(R?), so that this operator appears as the product of two Hilbert-Schmidt by

Equation (G.I3]). Thus, the spectral triple is finitely summable, and the spectral dimension is
2 by [26, Lemma 4.14], which gives for any f € A

1
7T(S — 2) R2

From Proposition B.I9, we also have verified one of the condition ensuring that A U [D, A] C
B ((D,2). the second is to verify that

(1+D*)/*R¥([D, L(f) ® 1do]) (1 + D*)~/* € LYN,7), Yk =0,1,..., Vs > p.
This can be done as for R¥(L?(f) @ Idy) by noticing that

Tr(L(f) ® Ido(1 + D?)~*/?) = f(x)dz.

RH(ID, LO(f) © 1dy)) = Z Z Cla s (Le(é)ﬁzﬂ L@(%ﬁlf)) 91+ A)2 @ 1d,,

la| <k |B1],| B2| <k+1

and the proof is complete. O

6.2.3. An index formula for the Moyal plane. In order to obtain an explicit index formula out of
the spectral triple previously constructed, we need to introduce a suitable family of projectors.
Let H := %(:c% + 23) be the (classical) Hamiltonian of the one-dimensional harmonic oscillator.
Let also a := 27Y2(xy +ixy), @ := 27Y/?(x; — izy) be the annihilation and creation functions.
Define next

1 2
_ —2H
Jmn = ——=—=0"" %9 fo,0 *xg ™" where foo:=2e 0", m,n € N.

vV Ortmplm!

The family {f.n}mnen forms an orthogonal basis of L?(IR?), consisting of Schwartz functions.
They constitute an important tool in the analysis of [26], since they allow to construct local
units. In fact, they are the Weyl symbols of the rank one operators ¢ — (@m|®) pn, with
{0 }nen the basis of L?(R) consisting of eigenvectors for the one-dimensional quantum harmonic
oscillator. The proof of the next lemma can be found in [26, subsection 2.3 and Appendix].

Lemma 6.9. The following relations hold true.

fm,n = fn,ma fm,n *0 .fk,l = Onk fm,la /.fm,n(x) dr = 270 5m,n>
so in particular { fnntnen, s a family of pairwise orthogonal projectors. Moreover we have:
(D, L(finn) ® 1ds] =

— Z\/g ( 0 \/mLe(fm—lvn) —vn-+ 1 Le(fm,n-i—l))
0 \/ﬁLe(fm,n—l) —vm + 1 Le(fm-l-l,n) 0 ’

with the convention that fp,, =0 whenever n <0 or m < 0.
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We are in the situation where the projectors f,,, belong to the algebra (not its unitization,
nor a matrix algebra over it). Thus if we set F' = D(1 + D?)~Y2 then LY(f,,)FLL(f,.,) is a
Fredholm operator from L?*(IR?) to itself, according to the discussion at the beginning of the
subsection Thus, we don’t need the ‘double picture’ here. In particular, [f,,] € Ko(A).
The next result computes the numerical index pairing between (A, L*(R?,C?), D) and Ky(A).

Proposition 6.10. For J a finite subset of N, let py := Y, .; L%(fun). Setting F = D(1 +
D?)~1/2 we have the integer-valued index paring

Index(p;Fyps) = ([ps], [(A, L*(R*,C*),D)]) = Card(J).
In particular, the index map gives an explicit isomorphism between K (IC(Lz(R))) and 7.

Proof. Assume first that J = {n}, n € N. The degree zero term is not zero in this case as the
projection lies in our algebra. Hence, including all the constants from the local index formula
and the Chern character of f, , gives

Index (L% (frn) FrL%(fon)) = resz:(éTr (VLY (fon) (1 +D*)7%)

— xesecg T (Y(E () © s = 1/2)[D, () @ Ts][D, () @ 10:](1 + D)%),
The second term is computed with the help of Lemma First we have
V(L (fam) @1ds = 1/2)[D, L (fnn) @ 1ds][D, L (fo.n) @ 1do]

_ 1 (n L (fa-1n-1) = (n+1) L(fun) 0 )
a 9 0 _(n + 1) Le(fn+1,n+1) +n Le(fn,n) .

Since D? = A ® Id,, with here A = —0? — 93, we find that
Te (y(L(fan) ©1dz = 1/2)[D, L*(fun)] @ 1da[D, L°( fon) ® 1] (1 + D*) 7' 77)

- % ( Le (fan) = (n+ 1>L9(fn+1,n+1) + "Le(fn_m_l))(l + A)—l—z)
1 1 2\—1—=z
- 02 2m)? / ( fon(@) = (0 +1) fasi i (2) + nfn—1,n—1($))dx /(1 +1€17) d&
1 1 1
:gw(—l—(nﬂwn)(zwe)% -

In the second equality we have used [26, Lemma 4.14]-the factor (27)7 can also be deduced
from (6.I3)-and we have used Lemma to obtain the last line-this is where the factor 276
comes from. Thus the residue from the second term gives us 1. For the first term we compute

1
Ires,—o ;TI'(”)/LG(fn,n) ® Id2 (1 + 'D2)_Z) = 07

because the grading v cancels the traces on each half of the spinor space. This gives the result in
this elementary case, Index(L?(f,,) D4 L?(fa)) = 1. For the general case, note that since for
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n #m, fummand f,, are orthogonal projectors, we have [fu.m+ fun] = [frm] + [fon] € Ko(A)
and the final result follows immediately. O

APPENDIX A. ESTIMATES AND TECHNICAL LEMMAS

A.1. Background material on the pseudodiferential expansion. To aid the reader, this
Appendix recalls five Lemmas from [I5] which are used repeatedly in Section [ and in Section
[ All were proved in the unital setting, however all norm estimates remain unchanged, and in
the pseudodifferential expansion in Lemmas [A1] [A3] if the operators A; lie in OP, then so
does the remainder, by the invariance of OPf under the one parameter group o (see Section [2).
The integral estimate in Lemma [A.5] is unaffected by any changes.

We begin by giving the algebraic version of the pseudodifferential expansion developed by
Higson. This expansion gives simple formulae, and sharp estimates on remainders. In the
statement Q =t + s* +D? ¢t € [0,1], s € [0, 00).

Lemma A.1. (see [15, Lemma 6.9]) Let m,n,k be non-negative integers and T' € OP" (resp.
T € OP™). Then

a-orr=Y (" T 00 - po

k
1=0
where the remainder P(X) belongs to OPy *" ™™ (regp QP~@mh=m+1) ) 41 is given by
"4+ k—1 P -
P(\) = A\ — n T(k—l—l))\_ lk'
w=> (" e (h-Q)

=1
In the following lemmas, we let R (\) = (A — (1 +D? + s%))~L.

Lemma A.2. (see [15, Lemma 6.10]) Let k,n be non-negative integers, s > 0, and suppose
ANEC, 0<R(\) <1/2. Then for A € OP*, we have

IR\ ZHPAR(A) T2 < Crpe and [[Ry(N) "2 AR, (N2 < Gy,
where C,, , is constant independent of s and X\ (square roots use the principal branch of log.)

Lemma A.3. (see [15, Lemma 6.11]) Let A; € OPy* (resp. A; € OP™) fori=1,...,m and
let 0 < R(N) < 1/2 as above. We consider the operator

Rs(MN)AI1Rs(AN)ARg(N) -+ - Ry(N) A Rs (),
Then for all M >0

M
RyNAIR(N Ay A Ry(A) = Y C(R)AT - Al R ()W 4y
|k|=0
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where Py, € Op[I=2m=M=8 fregp, Pyp € OPM=2m=M=3) “und k and n are multi-indices with
k| =ki+ -+ ky and |n| =ny + - - + ny,. The constant C(k) is given by

_ (|k| +m)!
]{31!/{?2! s k’m'(k’l + 1)(]{31 + k’g + 2) cee (|k’| + m)

Lemma A.4. (see [15, Lemma 6.12]) With the assumptions and notation of the last Lemma
including the assumption that A; € OP™ for each i, there is a positive constant C such that

||()\ . (1 + D2 + 32))m+M/2+3/2_|nV2PM,m|| < C,
independent of s and A (though it depends on M and m and the A;).

Lemma A.5. (see [15, Lemma 5.4]) Let 0 < a < 1/2 and 0 < ¢ < V2 and j =0 or 1. Let
J, K, and M be nonegative constants. Then the integral

(A.1) / / s’V a? + 02 M\/(s2 +1/2—a)?+ v2_K\/(s2 +1—a—sc)?+ UZ_jdvds,
0 —00

converges provided J —2K —2j < —1 and J —2K —25+1—2M < —2.

C(k)

A.2. Estimates for Section [dl In this subsection, we collect the proofs of the key lemmas in
our homotopy arguments which are essentially nonunital variations of proofs appearing in [17].

The first result we prove is the analogue of [I5, Lemma 7.2], needed to prove that the expecta-
tions used to define our various cochains are well-defined and holomorphic.

A.2.1. Proof of Lemmal[4.3 Most of the proof relies on the same algebraic arguments and norm
estimates as in [I5, Lemma 7.2]. We just need to adapt the arguments which use some trace
norm estimates. To simplify the notations for 0 < ¢ < 1, we use the shorthand

R:=R,, A\ =(\—(t+s+D%))",
as in Equation (A.I]). We first remark that we can always assume Ay € OPg, at the price that
Ay will be in OP*** 5o that the global degree |k| remains unchanged. Indeed, we can write
AyRA/R---RA, R=Ay(1+D?)™2R(1+4+D*"24 R---RA,, R,
and this remark follows from the change
Ay € OPE i Ag(1 +D?*) /2 € OP), A, € OPM s (1 + D*)k0/2A, € OPMoThL,

From LemmalA.3l we know that for any L € N, there exists a regular pseudodifferential operator
Py, of order (at most) |k| — 2m — L — 3 (i.e. Pp,, € OP¥=2m=L=3) "qych that

L
(A.2) AgRAIR---RA,R="_ C(n)Ag A" -  Alr) Rttt 4 Ay Pp .
[n|=0

Regarding the remainder term Py, ,,, by Lemma[A.4lwe know that it satisfies the norm inequality

HRs’t(A)—m—L/2—3/2+|k\/2 PL,mH S C,
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where the constant C' is uniform in s and A. (Here the complex square root function is defined
with its principal branch.) Using Lemma 242 and A, € OPJ, we obtain the trace norm bound

||A0 PL,mHl < CHAORs,t(A)m+L/2+3/2_‘kI/2||1 < Cl((82 —l—CL)2 _'_U2)—m/2—L/4—3/4+\k|/4+(p+a)/4.

Thus, the corresponding s-integral of the trace-norm of B, ,(s) is bounded by

o)
0

< C/OO e /OO (CL2 + ,U2)—p/4—§R(r)/2((S2 + a)2 + ,U2)—m/2—L/4—3/4+\k|/4+(p+€)/4d,uds’
0 —00

/ NPT Ay Py ds < / s / A7 A Prmll1|dA|ds
¢ 0 ¢

where £ is the vertical line £ = {a + v : v € R} with 0 < a < p?/2. By Lemma [A.5] the latter
integral is finite for L > |k| + o + p + & — 2 — 2m, which can always be arranged. To perform

the Cauchy integrals

1
% /)\_p/2_TA()A§n1) - Asgvn)RM-i-l—i-‘Md)\’
l

we refer to [I5, Lemma 7.2] for the precise justifications. This gives a multiple of
A AT o A (4 2 D)2l
By Lemmas 234 and B30, we see that AgA™) ... A ¢ OPF 5o that
B = AgA™) ... Atm)| DIk ¢ OPY.
(Remember that in this setting we assume D to be invertible). Thus for € > 0, Equation (2.10)
gives
HAoAi’“) A (4§ D2)—p/2—r—m—|n\H1 _ }}B|D|'"‘+"“‘(t + 82+ D2)—p/2—r—m—|n\H1
< ||B(t+ 5% + Dz)—p/2—r—m—|n\/2+|k\/2H1H DKl (¢ 4 52 4 pz)—m\/z—wvzH
< O(p)2 + 82) RO —m=lnl/2+]k/2+e/2,

In particular, the constant C' is uniform in s. The worst term being that with |n| = 0, we
obtain that the corresponding s-integral is convergent for R(r) > —m + (|k| +a+1)/2 +¢e. O

A.2.2. Proof of Lemmal[f.4 We give the proof for the expectation (Ao, ..., Ap)myrs- The proof
for ((Ao, ..., Am))m.rss is similar with suitable modification of the domain of the parameters.
From Lemma 3] we first see that each term of the equality is well defined, provided 2%(r) >
1+ a+ |k| —2m, and since 2m + 2 > a > 0, Lemma [4.3] also shows that ((Ag, ..., Amn))mrst
vanishes at s = 0 and s = co. All we have to do is to show that the map [s — (Ao, ..., Am)mrst)
is differentiable, with derivative given by

25 Z<A07 L 7Al7 17 Al—l—h tety Am)m—l—l,r,s,tv
=0
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since then the result will follow by integrating between 0 and +oco the following total derivative

d
ESQ<AO, e ,Am>m7r,s,t

= Sa_l<A0, ceey Am)m,r,s,t + 2 Z Sa+1<A0, e ,Al, 1, Al—i—la ceey Am)m—i—l,r,s,t-

=0

As 2(Rypet(A) = Rot(N)) = —Roiet(N)(25+€) Ry (N), we see that the resolvent is continuously
norm-differentiable in the s-parameter, with norm derivative given by 2sR;;(\)%. We then write

27”% ((AOa sy Am)m,r,s-‘,—a,t - <AO> s aAm>m,r,s,t)
= Z T(’y/)\_P/2—T’Ao Rs-i—a‘,t()\) Y Rs+€,t()\)(2$ + E)R&t()\) Apq ... R&t()\) A, R&t()\) d)\)’
1=0 ¢
where ¢ is the vertical line £ = {a +iv : v € R} with 0 < a < p?/2. This leads to

%((AOa sy Am)m,r,s-‘,—a,t - <AO> cee aAm>m,r,s,t,0) —2s Z(AOa sy Al, ]-7 Al+1> cee aAm>m+1,r,s,t
=0

c m
= > 7<7 / AP AG Ryt y(N) -+ Ap Ry (N Ay - Rt (A) Ay Rt (N) dA)
l

2
=0
256 /o
+ 5= Z 7-(7 /)‘ p/2 AO Rs-i—a,t()\) e Ak Rs—i—a,t()\) (28 + g, O)R&t()\) Al-i—k cee
T o ¢

X A R t(M\)?Aip1 -+ Roy(N) Ay Ro (M) d>\>-

We now proceed as in Lemma We write each integrand (of the first or second type) as

M
(A3)  AgRAIR---RAu jR=>" Clk)Ag A" - AL Rttt o Ag Py,

m-+J
[n|=0
where j € {1,2} depending the type of term we are looking at, the A;’s have been redefined
and now R stands for Rg;(\) or Rei.:(A). To treat the non-remainder terms, before applying
the Cauchy formula, one needs to perform a resolvent expansion

M
RoreaN) = (225 + ) Ryu(N)! + (—2(25 + )M Ry )M Rysea(N).
1=0
We can always choose M big enough so that the integrand associated with the remainder term in
the resolvent expansion is integrable in trace norm, by Lemma 3l Provided R(r)+m—|k|/2 >
0, one sees with the same estimates as in Lemma [4.3] that the corresponding term in the
difference-quotient goes to zero with €. For the non-remainder terms of the resolvent expansion,
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we can use the Cauchy formula as in Lemma [£.3, and obtain the same conclusion. All that is
left is to treat the remainder term in ([A.3). The main difference with the corresponding term in
Lemma is that Py 4 is now e-dependent. But the e-dependence only occurs in Ry, 4(N)
and since the estimate of Lemma is uniform in s, we still have

[ R (N) M3 Py < €

where the constant is uniform in s, A and ¢.

This is enough (see again the proof of Lemma [L3) to show that the corresponding term in the
difference-quotient goes to zero with ¢, provided R(r) +m —|k[/2 > 0. Thus (Ao, ..., An)mrst
is differentiable in s, concluding the proof. U

A.2.3. Proof of Lemma[{.10 According to our assumptions, one first notes from Lemma [1.3]
that all the terms involved in the equalities above are well defined. From

%(R&t()\ + 5) — Rs,t(k)) + Rs,t(>\)2 = 5Rs,t(>\ -+ 5)Rs,t(>\)27

we readily conclude that the map A — Rg(\) is norm-continuously differentiable, with norm
derivatives given by —R,,;(A)?. We deduce that for 4; € OP*  the map A — AR, (\) is
continuously differentiable for the topology of OP* =2 with derivative given by — AR (N2
Thus AgR - -+ A,,R is continuously differentiable for the topology of Ong‘_zm, with derivative
given by

m

= AgRoy(A) -+ A Roy(N)? Apsy -+ Ay Roy(N).

1=0
We thus arrive at the identity in OPJ1=":

d
= (A‘q/2"‘A0 RN A Rs,t(x)) = —(p/2 = P)N"VTTTIAG R (N) -+ Ay Ryt (V)

— SN AG R (A) -+ A RtV A -+ Ay Roa(N)
=0
= —(p/2 = )N AG R (V) - Ay Rey (V)

- Z )‘_q/z_TAO Rs,t(A) e Al Rs,t(A) 1 Rs,t()‘> Al—l—l e Am Rs,t()‘>’
=0

By Lemma [4.3] the A-integral of the right hand side of the former equality is well defined as
a trace class operator for 2R(r) > |k| — 2m. Performing the integration gives the result, since
((Ao, ..., An))mart1.s+ vanishes at the endpoints of integration. O

We now present the proof of the trace norm differentiability result, Lemma [£.26] needed to
complete the homotopy to the Chern character.
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A.2.4. Proof of Lemma [{.26 Recall that our assumptions are that ao,...,ay € A~ so that
da;, 6(a;) € OPY for i = 0,..., M. This means we can use the result of Lemma 241 We first
assume p > 2. We start from the identity,

du(a) = [Dy,a] = [F|D|'™",a] = F[|D|'™",a] + (da — Fi(a))[D| ™",

and we note that da — F'§(a) € OP). Applying Lemma 41 to [|D|'™, a] now shows that
d,(a) = b|D|~* for some b € OP}. Next, we find that

Ryu(N\) = (A= = D)7 = [D|?0ID(A - s* = D)~ = D27 B(u),
where B(u) is uniformly bounded in u € [0,1]. Then Lemma shows that
du(a;))Rsu(N) € LYN,7), forall ¢>p/(2—u)>p/2>1 and i=0,...,,14+2,..., M,

while

Rou(MN)Y2dy(a101)Reu(N) € LYN,7)  forall ¢>2 with (3—2u)g > p.
The worst case is u = 1 for which we find ¢ > p > 2, allowing us to use the first and simplest case
of LemmaZA0 Since T} »;(u) contains M terms d,,(a;) Ry (\), one term R, ,(\)Y2d,(a;41) Rs.u(N)
and one bounded term D, R,.,(\)'/2, the Holder inequality gives

Texi(u) € LYN,7), forall ¢>p/(M(2—u)+ (3—2u))=p/(2M +3 —u(M +2)).
Since u € [0, 1] and M > p — 1, we obtain
p/(2M +3 —u(M+2)) <p/(M+1) <1,
that is Ty (u) € LY(N, 7). The proof then proceeds by showing that
[u— dy(a;)Rsu(N)] € CH([0,1], 9N, 7)), g>p/(2—u), i=0,...,L,1+2,..., M,
and
[ DyResN) dya21) Re (V] € CH([0,11, LYN, 7)), q > p/(3— 2u),
with derivatives given respectively by
[Dus @] Rsu(A) + 2du(a5) Rou( N DuDuRsu(N),
and
DuRou(N) dul@r1) Rou(A) + 2Dy R u(N) DuDu R (N) du(a14:1) R (V)
+ Dy RN [Dus 11 Rou (V) + 2Dy Ry u(A) du(@11) R u (N Du Do R (M)
This will eventually imply the statement of the lemma.

We only treat the first term, the arguments for the second term being similar but algebraically
more involved. We write,

(A.4) E_I(du-i-e(ai)Rs,u—i-a()‘) - du(ai)Rs,u()‘)) - [Dua ai]RS,u()‘) - 2du(ai)R&u()‘)DuDuR&u()‘)
= (7 (dusel@) = du(@)) = [Py 0] Rus(N) + (duse(@) = du(@))e™ (Rusc (V) = BuaN)
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#0u(0) (7 (RuseN) = RuuN) = 2Ru MDD Reu(N)).
The first term of Equation ([A.4]) is the most involved. We start by writing
e (dure(a) = dul@)) = [Bu @ = |7 (Duse = D) + Dulog D, o
- [F|D|1—" (g—l(m\—f — 1) +log \D\),al}

- F[|D|1—" (5—1(|D|—€ “ 1) +log |D|),a,} + (da; — Fo(ay)) |D|—“(g—1(|p|—€ “ 1) +log |z>|).

We are seeking convergence for the Schatten norm || - ||, with ¢ > p/(2 — u). So, let p > 0, be
such that for A € OP}, A|D|~2*"*+? ¢ L9(N, 7). Thus, the last term of the previous expression,
multiplied by R;,()\) can be estimated in g-norm by:

| (4 = Fo(a)) DI (=141 = 1) +log | DI) Ryu ()

q

< ||(da; = Fa(a))[DI*+]| 1D Ry (V)|

(e—l(\p\—f —1) +log \D\)D‘P

Y

which treats this term since the last operator norm goes to zero with €. We now show that
(A5) IDI(s™(IDI ™ = 1) + log D)) ai].

converges to zero in g-norm (for the same values of ¢ as before). We first remark that we can
assume u > 0. Indeed, when u = 0, we can use (as before) the little room left between ¢ and
p/2, find p > 0 such that a|D|"* € LYN,7) and write

1D1(=7(1D17 = 1) + Log|D] ). as | [D]
= [l (= (D1 = 1) +10g DI}, ai] = D"~ (7P| — 1) + log D) [IDI¥, ] D] .

and use an estimate of the previous type plus the content of Lemma 2411

To take care of the term (A.H]) (for v > 0), we use the integral formula for fractional powers.
After some rearrangements, this gives the following expression for ([A.D):

/000 A“_l(wa)_l{(sin 7T(l—u—¢)—sinm(l —u))(A\°—1)+sinm(l —u)(A°—1—clog )

+ ((me) M sinm(1 — w = £) = sinm(1 = w)) + cos w(1 — ) ) (1 + A|D])~8(ai) (1 + AID|) " dx.
The last term can be recombined as
((Wa)_l(sinﬁ(l —u—e) —sinm(l — u)) + cos (1 — u))w(sinﬁ(l —w) [P, ],

and one concludes (for this term) using Lemma [2.4T] together with an (ordinary) Taylor expan-
sion for the pre-factor.
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Since D? > p? > 0, the first term (multiplied by R;,(\)) is estimated (up to a constant) in
g-norm by

|sin7(l —u—¢e)—sinm(l - u)“‘5(ai)R57u()\)“q /°° NI 1) (1 4+ A )72 ),
0

which goes to zero with ¢, as seen by a Taylor expansion of the prefactor and since (A\° —1)/e
is uniformly bounded in ¢ for A € [0, 1], while between 1 in oo, we use

/ )\u—lg—l()\a N 1)(1 + )\U1/2)_2 d) < (,ug)—lf ()\u—?»—i-a _ )\u—3) d\
1 1

= (2 =) < (L — )

For the middle term, we obtain instead the bound (up to a constant depending only on u)
[6(ai) Rs (V)] / AT — 1 — elog(M\) (1 + A pl/?) 72 d),
0

and one concludes using the same kind of arguments as employed previously.

Similar (and easier) arguments show that the two other terms in (A4]) converge to zero in
g-norm. That the derivative of T ;(u) is continuous for the trace norm topology follows from
analogous arguments.

Now we consider the case 1 < p < 2. In this case M = 1 in the odd case and M = 2 in the
even case. For the odd case we have two terms to consider,

Ts,)\,O (u) - du(a'O)Rs,u()‘)DuRs,u()‘)du(al)Rs,u()‘)7

and
Ts,)\,l (u> - du (QO)Rs,u()‘>du(a1)Rs,u()\>DuRs,u()\> .

We write T 5 0(u) as

du(a0)|D|_%(l_u) RS,u()‘)DuR&u()‘)|D|3(1_u) |D|_%(l_u)du(al)RS,u(>‘)'

7

g

A B c
Now the operator B is uniformly bounded in u € [0, 1], while Lemma shows that both A
and C'lie in L9(N, 7) for all ¢ > p. Since 1 > p/2, the Holder inequality now shows that 7T, o(u)
lies in LYW, 7) for each u € [0,1]. Now the strict inequality 1 > p/2 allows us to handle the
difference quotients as in the p > 2 case above to obtain the trace norm differentiability of
T57 )M()(u).

For T 5 1(u) we write

d, (CLO)Rs,u()‘> |D|_2(1_u) flU(U(l_u)/2 (a1)) |D|_2(1_u) Rs,u(A)DuRs,u(AZ .

J

-~

A B
Applying Lemma 240 and the Holder inequality again shows that Ty y(u) € LY(N,7). The
strict inequality 1 > p/2 again allows us to prove trace norm differentiability.
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For the even case where M = 2 we have more terms to consider, but the pattern is now clear.
We break up T » j(u) into a product of terms whose Schatten norms we can control, and obtain
a strict inequality allowing us to control the logarithms arising in the formal derivative. This
completes the proof. O
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