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Abstract

In this paper, we construct a vast collection of maximal numerically Calabi-Yau or-
ders utilising a noncommutative analogue of the well-known commutative cyclic cover-
ing trick. Such orders play an integral role in the Mori program for orders on projective
surfaces and although we know a substantial amount about them, there are relatively
few known examples.

In the following, unless explicitly stated otherwise, all schemes are integral, normal and
of finite type over an algebraically closed field k, char(k) = 0. A curve (respectively surface)
is a scheme of dimension 1 (respectively 2) over k.

1 Introduction

M. Artin has famously conjectured in [Art97] that noncommutative surfaces will fall into
one of two birational classes: those which are finite over their centre and those birationally
ruled. Here we are primarily concerned with the former, “orders over commutative surfaces”,
which are not only of interest to noncommutative algebraic geometers, but have also been
used with success in commutative algebraic geometry, for example in Artin and Mumford’s
construction of a unirational variety which is not rational [AM72]. A great deal is known
about orders. For example, both del Pezzo and numerically Calabi-Yau have been classified
using their ramification data ([CK03], [CK05]). However, relatively few explicit examples
have been realised. It is to this goal that we dedicate our project: the explicit construction
of orders on surfaces.

Chan introduced the noncommutative cyclic covering trick in [Cha05] and utilised it in
constructing a body of examples of del Pezzo orders, which are noncommutative analogues of
del Pezzo surfaces. In a sense, these were the easy examples and the project contained herein
of constructing numerically Calabi-Yau orders, noncommutative analogues of surfaces with
Kodaira dimension 0, is far more difficult.

Given ramification data for an order on a surface Z, the noncommutative cyclic covering
trick, in essence, entails finding (1) a commutative cyclic cover π : Y → Z with the same
ramification data and (2) a line bundle on Y satisfying both a particular equation and
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the overlap condition. The former is usually relatively straightforward and the latter very
difficult, if tractable at all. Given ramification data for an order, we know via the Artin-
Mumford sequence [AM72, Section 3, Theorem 1] whether or not such an order exists but
we do not know whether it is constructible via the noncommutative cyclic cover. In fact,
the vast majority of orders do not arise in this form. This, along with the fact that thay are
so easy to compute, is why the noncommutative cyclic covers are so special and interesting.
For example, via the Artin-Mumford sequence, we know there exist rank 4 order on P2
ramified on a sextic S but this is nonconstructive. Utilising the noncommutative cyclic
covering trick, along with implementations of the “surjectivity of the period map”, Nikulin
theory and the Strong Torelli theorem for K3 surfaces, in Theorem 3.18, we construct, for
any given n ∈ {3, . . . , 18}, 2n−2− 1 distinct orders on P2 ramified on a sextic. These orders
are of the form A = OY ⊕L, where Y is a K3 double cover of P2 ramified on the sextic. In
Section 4, we achieve similar results constructing numerically Calabi-Yau orders on P1×P1
and F2. We demonstrate that those constructed on the former are birational to a certain
class of orders on P2 which are also constructible using the same trick. We then construct
orders on surfaces ruled over elliptic curves and rational surfaces equipped with elliptic
fibrations.

In Section 2, we recall the construction of Chan’s noncommutative cyclic covering trick.
In Section 3, we recall certain facts concerning the geometry of K3 surfaces and construct
numerically Calabi-Yau orders on P2, utilising the “surjectivity of the period map”, the
Strong Torelli theorem and Nikulin theory in the process. In Sections 4 and 5 respectively,
we use the noncommutative cyclic covering trick to construct numerically Calabi-Yau orders
on ruled surfaces and rational surfaces equipped with an elliptic fibration.

2 Background

Definition 2.1. An order A on a scheme Z is a coherent sheaf of OZ-algebras such that

(i) A is torsion free and

(ii) K(A) := A⊗OZ
K(Z) is a central simple K(Z)−algebra.

Remark 2.2. The set of orders on Z contained in K(A) is a partially ordered set with
respect to inclusion. We call an order maximal if it is maximal in this poset. We deal
primarily with maximal orders since they are noncommutative analogues of normal schemes.

One way of studying the geometry of orders is by looking at ramification data, which is
defined for a normal order over a surface Z. The definition of normality for an order can be
found in [CI05, Def. 2.3], while ramification data is defined in [CI05, Section 2.2]. Note that
we see in [CI05] that any maximal order is normal. In [CK05], Chan and Kulkarni classify
numerically Calabi-Yau orders on surfaces, which are the noncommutative analogues of
surfaces of Kodaira dimension zero and which we now define here.
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Definition 2.3. [CK05] Let A be a maximal order on a surface Z with ramification curves
Di and corresponding ramification indices ei. Then the canonical divisor KA ∈ DivZ is
defined by

KA := KZ +
∑(

1− 1

ei

)
Di

We say an order A is numerically Calabi-Yau if KA is numerically trivial.

2.1 The Noncommutative Cyclic Covering Trick

Chan’s noncommutative cyclic covering trick is both a noncommutative generalisation of the
cyclic covering trick [BPVdV84] and an algebro-geometric generalisation of the construction
of cyclic algebras. The latter are classical objects of noncommutative algebra, which Lam
describes as providing a rich source of examples of rings which exhibit different “left” and
“right” behaviour ([Lam98]).

In order to perform the noncommutative cyclic covering trick, we first need a noncom-
mutative analogue of a line bundle: recall that in [VdB01] Van den Bergh constructs a
monoidal category of quasi-coherent OY -bimodules, where Y is a scheme. The invertible
objects have the form Lσ where L ∈ PicY and σ ∈ AutY . One may think of this intu-
itively as the OY -module L where the right module structure is skewed through by σ so
that OY

L ' L and LOY
' σ∗L (this “intuitive” description is taken pretty much verbatim

from [CK09]). For a rigorous definition, see [Cha05] or go straight to the source [AVdB90].
We can tensor two invertible bimodules according to the following formula which we may
take as definition:

Lσ ⊗Mτ ' (L⊗ σ∗M)τσ

In the following, we use invertible bimodules to construct orders on surfaces. We now
describe the cyclic covering trick: let Y be a scheme, σ : Y −→ Y an automorphism of
order n, G = 〈σ|σn = 1〉 and L ∈ PicY . Let C be an effective Cartier divisor and suppose
there exists an isomorphism of invertible bimodules

φ : Lnσ
∼−→ OY (−C)

for some integer n. We also write φ for the composite morphism Lnσ
∼−→OY (−C) ↪→ OY

and consider it a relation on the tensor algebra

T (Y ;Lσ) :=
⊕
i≥0

Liσ.

There is a technical condition we shall need: we say the relation φ satisfies the overlap
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condition if the following diagram commutes:

Lσ ⊗Y Ln−1σ ⊗Y Lσ
φ⊗1 //

1⊗φ
��

OY ⊗Y Lσ
o

��
Lσ ⊗Y OY

∼ // Lσ

We set A(Y ;Lσ, φ) := T (Y ;Lσ)/(φ), that is, the quotient of T (Y ;Lσ) by the relation
(φ). Note that, by [Cha05, Prop. 3.2], if the relation φ : Lnσ −→ OY satisfies the overlap
condition then

A(Y ;Lσ, φ) =
n−1⊕
i=0

Liσ.

This is the noncommutative cyclic cover and A := (Y ;Lσ, φ) is known as a cyclic algebra.
If the relation φ is clear, we write A = A(Y ;Lσ).

Chan’s first example [Cha05, Example 3.3] tells us what these noncommutative cyclic
covers look like generically:

K(A) ' K(Y )[z;σ]

(zn − α)
,whereα ∈ K(Z).

It follows from this that Y is a “maximal commutative quotient scheme” of A. One of
the reasons these cyclic covers are so interesting is that one can determine their geometric
properties such as the ramification with relative ease. The following results inform us
that these cyclic covers are normal orders and describe the ramification in the case where
Lnσ ' OY and Y is a surface. For the remainder of the chapter π : Y → Z will be a cyclic
cover.

Theorem 2.4. [Cha05, Theorem 3.6] Let Y,Z be quasi-projective surfaces, π : Y → Z an
n : 1 cover. Let A = A(Y ;Lσ, φ) be a cyclic algebra arising from a relation of the form
φ : Lnσ ' OY . Assuming φ satisfies the overlap condition, then A is a normal order and for
C ∈ Z1, the ramification index of A at C is precisely the ramification index of π above C.

Theorem 2.5. [Cha05, Thm 3.6 and Prop. 4.5] Suppose that Y,Z are smooth quasi-
projective surfaces and that the n : 1 quotient map π : Y → Z is totally ramified at D ⊂ Y .
Consider the cyclic algebra A = A(Y ;Lσ) arising from a relation of the form Lnσ ' OY .
Then the ramification of A along π(D) is the cyclic cover of D defined by the n-torsion line
bundle L|D.
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Remark 2.6. To see that the line bundle L|D ∈ PicD is n−torsion, notice that since π is
totally ramified at D, D is fixed by σ and hence σ∗(L|D) ' L|D. Moreover, since Lnσ ' OY ,
(L|D)nσ ' OD, which in turn means that L|D ⊗ σ∗(L|D) ⊗ . . . ⊗ (σ∗)n−1(L|D) ' OD. We
conclude that (L|D)n ' OD.

Chan only deals with cyclic covers π : Y → Z which are totally ramified and so Theorem
2.5 suffices for his purposes. We shall require an analogous result concerning ramification
when π is not totally ramified.

Lemma 2.7. Assume Y, Z to be smooth surfaces and that π : Y → Z is ramified at D ⊂ Y ,
where D := π−1(D′), the reduced inverse image of D′ ⊂ Z. We also assume that D =∐d
i=1D

′
i such that the ramification index at each D′i is m, where m = n

d . Consider the cyclic
algebra A = A(Y ;Lσ) arising from a relation Lnσ ' OY . Then the ramification of A along
D′ is the cyclic cover of D′ defined by the m-torsion line bundle (L⊗ σ∗L⊗ . . .⊗ σ∗dL)|D′

i
,

for any i ∈ {1, . . . , d}.

Proof. The proof is the same method as in that of Theorem 2.5 and can be found in [BA,
Lemma 2.10].

The following lemma will allow us to verify when the cyclic covering trick produces
maximal orders.

Lemma 2.8. A cyclic algebra A on Z is maximal if for all irreducible components Di of
the ramification locus D, the cyclic cover corresponding to L|Di

is irreducible.

Proof. See [BA, Lemma 2.11].

To construct these cyclic algebras, we are interested in finding invertible bimodules
Lσ such that Lnσ ' OY (−C). In this paper, we are interested in relations of the form
Lnσ

∼−→OY , to which end we define Relio to be the set of all (isomorphism classes of)
relations φ : Lnσ

∼−→OY which are isomorphisms and satisfy the overlap condition. The
tensor product endows Relio with an abelian group structure as follows: given two relations
φ : Lnσ → OY , ψ : Mn

σ → OY , we define their product to be the relation

φ⊗ ψ : (L⊗OY
M)nσ

∼−→Lnσ ⊗Mn
σ
φ⊗ψ−→OY ⊗OY = OY

There exists a subgroup E of Relio which will soon play an important role. Its definition
is technical and we need not state it here. It suffices to say that elements of Relio in the
same coset of E result in Morita equivalent cyclic algebras, that is, cyclic algebras with
equivalent module categories. We refer the reader to the discussion following Corollary 3.4
of [Cha05].
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Remark 2.9. From the discussion preceding [Cha05, Lemma 3.5], we see that relations of
the form Lnσ ' OY can be classified using cohomology. We consider PicY as a G−set and
recall that since G is cyclic, the group cohomology of any G−set M can be computed as
the cohomology of the periodic sequence

. . .
N−→M

D−→M
N−→M

D−→ . . .

where N = (1 + σ + . . . σn−1) and D = (1 − σ). Thus 1-cocycles of the G-set PicY are
precisely invertible bimodules Lσ such that Lnσ ' OY . Moreover, from [Cha05, Lemma
3.5], we have a group homomorphism f : Relio/E → H1(G,PicY ) which sends a relations
φ : Lnσ ' OY to the class λ ∈ H1(G,PicY ) of the 1-cocycle L.

The following proposition allows us to verify easily in certain cases that relations satisfy
the overlap condition.

Proposition 2.10. [Cha05, Prop. 4.1] Suppose that Y is smooth and quasi-projective,
π : Y → Z is n : 1 and O(Y )∗ = k∗ (this last condition holds, for example, if Y is a projective
variety), and the lowest common multiple of the ramification indices of π : Y → Z is n. Then
all relations constructed from elements of H1(G,PicY ) satisfy the overlap condition.

The following remark will ensure that many of the orders constructed herein are non-
trivial in Br(K(Z)).

Remark 2.11. [Cha05, Cor 4.4] Assuming Y to be smooth and projective, if π : Y → Z is
totally ramified at an irreducible divisor D ⊂ Y , we have an embedding

Ψ: H1(G,PicY ) ↪→ Br(K(Y )/K(Z))

given by the following: let L ∈ PicY represent a 1-cocycle, φ the corresponding re-
lation, which is unique up to scalar multiplication. Then Ψ(L) := K(A(Y ;Lσ, φ)) ∈
Br(K(Y )/K(Z)).

3 Numerically Calabi-Yau Orders on P2

In this section, unless explicitly stated otherwise, all schemes are defined over C and all sheaf
cohomology is complex analytic. In the following, we construct examples of numerically
Calabi-Yau orders on rational surfaces, beginning with P2.

The first interesting numerically Calabi-Yau orders on P2 are those ramified on a smooth
sextic with ramification index 2. In the following, we construct quaternion orders (orders
of rank 4) on P2 with the desired ramification.
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3.1 Constructing orders ramified on a sextic

We wish to construct quaternion orders on P2 ramified on a sextic C. In [Cha05, Example
9.2], Chan does this using a K3 double cover of P2 ramified on C and we wish to take
the same approach. However, our plan of attack is to reverse engineer the K3 surface.
We first construct a K3 surface Y with a desired Picard lattice and then construct an
automorphism τ of PicY which we show is induced by an automorphism σ of Y. We shall
make our choices such that H1(G,PicY ) is non-trivial, where G = 〈σ|σ2 = 1〉, and this will
allow us to construct orders on Y/G, which by construction will be the projective plane. In
contrast to Chan’s approach, we shall be able to explicitly compute H1(G,PicY ) by giving
1−cocycles which generate the group. To this end, we necessarily digress on the K3 lattice
Λ and related phenomena.

3.1.1 K3 surfaces

The following results concerning K3 surfaces can be found in [BPVdV84], unless stated
otherwise. Recall that a K3 surface Y is defined to be a smooth, projective surface with
trivial canonical bundle such that h1(Y,OY ) = 0. Triviality of the canonical bundle implies
there exists a nowhere vanishing holomorphic 2−form ωY , unique up to multiplication by
a scalar and known as the period of Y . We are interested in the K3 lattice Λ, which we
now define.

Definition 3.1. For any K3 surface Y , H2(Y,Z) ' Z22 and, equipped with the cup product,
is a lattice isomorphic to

Λ := E ⊥ E ⊥ H ⊥ H ⊥ H,

where E ' Z8 with bilinear form given by the matrix

−2 1
−2 1
1 −2 1

1 1 −2 1
1 −2 1

1 −2 1
1 −2 1

1 −2


and H ' Z2 with bilinear form given by(

0 1
1 0

)
.

We call Λ the K3 lattice, H the hyperbolic plane. In the following, we let {λ1, . . . , λ8}
and {λ′1, . . . , λ′8} generate the first and second copies of E ⊂ Λ respectively. We also let

7



{µ1, µ2} be generators for the first copy of H, {µ′1, µ′2} generators of the second and {µ′′1, µ′′2}
generators of the third.

The fact that KY is trivial for a K3 surface Y makes studying the geometry of K3
surfaces far simpler than would otherwise be. The following results, concerning line bundles
and curves on K3 surfaces, demonstrate this and will be made use of shortly.

Proposition 3.2. Let L be a line bundle on a K3 surface Y such that L · L ≥ −2. Then
either L or L−1 is an effective class, that is, either h0(L) > 0 or h0(L−1) > 0. Moreover,
if L · L = −2 and h0(L) ≥ 0, there is a unique effective divisor D such that L ' OY (D).

Proof. This is [BPVdV84, Chap. VIII, Prop 3.6].

Remark 3.3. For an irreducible smooth curve C on a K3 surface, the adjunction formula
for curves on a surface yields g(C) = C2/2 + 1. Thus C2 ≥ −2 and if C2 = −2, C is
necessarily rational. In this case we call C a nodal curve since we can blow it down, but
only at the expense of creating a nodal singularity.

The following result, which is a formulation of the "surjectivity of period map"(see
[BPVdV84, Chap. VIII, Sec. 14]), will allow us to construct K3 surfaces with our desired
Picard lattices:

Proposition 3.4. [Mor84, Cor. 1.9] Let S↪−→Λ be a primitive sublattice with signature
(1, ρ−1), where ρ = rank(S). Then there exists a K3 surface Y and an isometry PicY ' S.

Remark 3.5. If S is a direct summand of Λ, then S is a primitive sublattice. This obser-
vation will prove invaluable in applying the above Proposition 3.4 to verify the existence of
certain K3 surfaces.

Example 3.6. Set S = Z3 = 〈s1, s2, s3〉 with bilinear form given by −2 3 0
3 −2 1
0 1 −2

 .

We can embed S in Λ via

γ : S↪−→Λ

s1 7−→ λ1 + µ1

s2 7−→ λ2 + 3µ2

s3 7−→ λ3.

Since {γ(s1), γ(s2), γ(s3), λ4, . . . , λ8, λ
′
1, . . . , λ

′
8, µ1, µ2, µ

′
1, µ
′
2, µ
′′
1, µ
′′
2} is a basis for Λ, γ is a

primitive embedding by Remark 3.5. Moreover, the signature of S is (1, 2) (Maple performed
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this calculation), implying by Proposition 3.4 that there exists a K3 surface Y and an
isometry PicY ' S. Since s2i = −2, Proposition 3.2 tells us that for each i, either si is an
effective class or −si is. We assume without loss of generality that s1 is effective. Then
since s1 · s2 = 3 and s2 · s3 = 1, s2 and s3 are necessarily effective classes. Similarly,
(s1 + s2 − s3)2 = −2 and one can deduce that s1 + s2 − s3 is an effective class. We shall
soon see in Remark 3.19 that Y is a double cover of P2 ramified on a sextic C with two
tritangents.

Notation 3.7. For the rest of this chapter, given a class of line bundles si on a surface Y ,
we shall abuse notation by using si to mean a representative line bundle of this class. For
an effective class si, we shall also let Si be an effective divisor such that si ' OY (Si).

We shall need to retrieve an ample line bundle on Y and the following lemma will allow
us to do so.

Lemma 3.8. Let Y be a K3 surface and PicY = 〈s1, . . . , sn〉, where the si are effective
classes. Let s ∈ PicY be an effective class such that h0(s− si) > 0, for all i. Assume that
s2 > 0 and for all i, the following hold: s · si > 0 and s · (s− si) > 0. Then s is ample.

Proof. By the Nakai-Moishezon criterion [Har97, Chap. V, Thm 1.10], s is ample if and
only if both s2 > 0 and s · C > 0 for all irreducible curves C on Y . The first condition
is one of our hypotheses so we need only verify the second. Since we have assumed that
s · si > 0 and s · (s − si) > 0 for all i, we need only show that s · C > 0 for C � si and
C � (s− si). Such a C is an effective class distinct from the effective classes si and s− si,
implying C · (s−si) ≥ 0 and C ·si ≥ 0 for all i. Moreover, since the si generate PicY , there
exists a j such that C · sj > 0 (otherwise C · D = 0 for all D ∈ PicY , implying C ∼ 0).
Then

C · s = C · sj + C · (s− sj)
> 0.

By the Nakai-Moishezon criterion, s is an ample class.

Remark 3.9. We now return to the setting of Example 3.6: for i ∈ {1, 2, 3}, each Si is
unique by Proposition 3.2. We now show that each Si is nodal: since s = s1 + s2 satisfies
the conditions of Lemma 3.8, s is ample. Moreover, since s · si = 1, for all i, given the fact
that an ample divisor will intersect an effective class strictly positively, each Si is irreducible
and thus nodal. Similarly S4 ' S1 + S2 − S3 is a nodal class.

Example 3.10. Example 3.6 is a specific instance of the following: for n ∈ {3, . . . , 18},
there exists a K3 surface Y with Picard lattice isomorphic to S = Zn = 〈s1, . . . , sn〉, the
intersection form given by the n× n submatrix M which is formed by the first n rows and
the first n columns of
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Q =



−2 3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 −2 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 −2 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 1 −2 1 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −2 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2


We see this below in Theorem 3.18.

Now given a K3 surface with such a Picard lattice, we may assume that the all the si are
effective just as in Example 3.6. We now show that s1+s2 is ample: firstly, (s1+s2)

2 = 2 > 0
and elementary computations yield that for all i, (s1+s2)·si = 1, (s1+s2)·(s1+s2−si) = 1
and h0(s− si) > 0. Thus s1 + s2 satisfies the conditions of Lemma 3.8 and is consequently
ample. The same argument as in Remark 3.9 implies that the si are all effective nodal
classes, as are the s1 + s2 − si.

Given a surface Y as in Example 3.10, we would like to construct an automorphism of
Y by giving an isometry of H2(Y,Z) and thus the question we need to answer is: given
an isometry H2(Y,Z) −→ H2(Y,Z), how can we tell if it is induced by an automorphism
σ : Y −→ Y ? The Strong Torelli theorem aids us in this. Before we introduce the Strong
Torelli theorem, we need to define an effective Hodge isometry. To this end, recall that
there is a Hodge decomposition of H2(Y,C):

H2(Y,C) ' H0,2(Y )⊕H1,1(Y )⊕H2,0(Y ),

where Hp,q(Y ) ' Hq(Y,Ωp). Note that PicY = H2(Y,Z) ∩ H1,1(Y ) (this is a classical
theorem of Lefschetz; see [Bar85, Sec. 1.3] for details) and that ωY ∈ H2,0(Y ) ⊂ TY .

Definition 3.11. Let Y, Y ′ be surfaces. An isometry of lattices

H2(Y,Z) −→ H2(Y ′,Z)
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is called an effective Hodge isometry if its C−linear extension

1. sends H2,0(Y ) to H2,0(Y ′) and

2. maps the class of some ample divisor on Y to the class of an ample divisor on Y ′.

This definition is not entirely standard but it is an equivalent formulation and can be
found in [LP81, Introduction]. We use it because it suits our purposes nicely. We are now
able to state the Strong Torelli theorem [BPVdV84, Ch. VIII, Thm 11.1].

Theorem 3.12 (Strong Torelli theorem). Let Y and Y ′ be two K3 surfaces such that there
exists an effective Hodge isometry φ : H2(Y,Z) → H2(Y ′,Z). Then there also exists a
unique biholomorphic σ : Y ′ −→ Y such that φ = σ∗.

We would also like to determine the quotients of K3 surfaces by certain involutions. To
this end, we shall require the following definition and proposition, which form part of what
is now known as Nikulin theory).

Definition 3.13. An involution ψ on a K3 surface Y is called symplectic if ψ∗(ωY ) = ωY .
It is called anti-symplectic if ψ∗(ωY ) = −ωY .

Proposition 3.14. [Fra08, Prop.1.11] Let π : Y → Y/G be the quotient of a K3 surface by
an anti-symplectic involution σ. If FixY (σ) 6= ∅, then FixY (σ) is a disjoint union of smooth
curves and Y/G is a smooth, projective rational surface. Furthermore, FixY (σ) = ∅ if and
only if Y/G is an Enriques surface.

Remark 3.15. From [Fra08, Theorem 1.12], if Y/G in Proposition 3.14 is rational, then
either

1. Fix(σ) = ∪iRi ∪ Dg (where the Ri are smooth disjoint nodal curves and Dg is a
smooth curve of genus g) or

2. Fix(σ) = D′ ∪D′′ (where D′, D′′ are linearly equivalent elliptic curves).

In case (2), Y/G is both rational and elliptically fibred over P1 (this is from the proof of
[Fra08, Theorem 1.12]).

Finally, we would like to determine the structure of the Picard group of Y/G. We do
so in the following lemma.

Lemma 3.16. Let π : Y → Z be a double cover of a smooth, projective rational surface.
Then π∗ : PicZ → PicY is an injection. Moreover, if the ramification locus of D ⊂ Y is
irreducible, π∗ surjects onto (PicY )G.

Proof. This is [BA, Lemma 3.20].
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Corollary 3.17. Let π : Y → Z be as above and Y a K3 surface. Then there is an isometry
of lattices PicZ ' 1

2(PicY )G.

Proof. Firstly, we know that PicZ ' (PicY )G. Then from [Bea96, Prop. I.8(ii)], we see
that for any L1, L2 ∈ PicZ, π∗L1 · π∗L2 = 2(L1 · L2) and the result follows directly.

We have now developed the theory necessary to construct our orders.

Theorem 3.18. Let n ∈ {3, . . . , 18}. Then

i) there exists a K3 surface Y with Picard lattice isomorphic to S ' Zn = 〈s1, . . . , sn〉, the
intersection form given by the n×n submatrixM which is formed by the first n rows and
the first n columns of the matrix Q in Example 3.10. Further, there exists an involution
σ : Y → Y such that the corresponding quotient morphism π : Y → Z := Y/G is the
double cover of P2 ramified on a smooth sextic C;

ii) H1(G,PicY ) ' (Z/2Z)n−2, generated by Li = s1 − si, for i ∈ {3, . . . , n}, and all
relations satisfy the overlap condition. Then, for mi ∈ {0, 1} (not all zero), the corre-
sponding 2n−2 − 1 orders A(Y ; (⊗ni=3L

mi
i )σ) = OY ⊕ (⊗ni=3L

mi
i )σ are maximal orders

on P2 ramified on C, distinct in Br(K(Z)).

Proof. i) Ignoring terms sj with j > n, we embed S = 〈s1, . . . , sn〉 in Λ via

γ : s1 7→ λ1 + µ1, s2 7→ λ2 + 3µ2, s3 7→ λ3,

s4 7→ λ4, s5 7→ λ5 + µ2, s6 7→ λ6 + µ2,

s7 7→ λ7 + µ2, s8 7→ λ8 + µ2, s9 7→ λ′1 + µ2,

s10 7→ λ′2 + µ2, s11 7→ λ′3 + µ2, s12 7→ λ′4 + µ2,

s13 7→ λ′5 + µ2, s14 7→ λ′6 + µ2, s15 7→ λ′7 + µ2,

s16 7→ λ′8 + µ2, s17 7→ µ2 + µ′1 − µ′2, s18 7→ µ2 + µ′′1 − µ′′2.

Since {γ(s1), . . . , γ(s18), µ1, µ2, µ
′
1, µ
′′
1} is a basis of Λ, by Remark 3.5, γ is a primitive

embedding. Also, S has signature (1, n−1) (this calculation was performed by Maple).
By Proposition 3.4, there is a K3 surface Y and an isometry PicY ' S. We define
an isometry φ on TY ⊕ PicY as follows: for t ∈ TY , φ(t) = −t; on PicY, φ(si) =
s1 + s2 − si, i ∈ {1, . . . , n}. This φ extends to an isometry on Λ if and only if it
preserves the integral lattice. MATLAB verifies that this is so (the MATLAB code for
this can be found in [BA, Appendix B]), implying that φ extends to an isometry of
H2(Y,Z), which we also denote φ. Now we show that φ is an effective Hodge isometry:
firstly, H2,0(Y ) ⊂ TY and φ(t) = −t, for all t ∈ TY , imply that φ preserves H2,0(Y ).
Since s1 + s2 is both fixed by φ and ample (the latter fact demonstrated in Example
3.10), φ is an effective Hodge isometry and there exists an involution σ : Y → Y such
that φ = σ∗ by the Strong Torelli theorem. Since ωY ∈ TY and σ(t) = −t for all t ∈ TY ,

12



σ is antisymplectic. Thus Z = Y/G (here G = 〈σ|σ2 = 1〉) is a smooth rational surface
or an Enriques surface by Proposition 3.14. Recalling that Si is the divisor such that
si ' OY (Si), π|S1∪S2

is the double cover of P1 by two copies of P1 intersecting in three
points. Thus FixY (σ) 6= ∅ and by Proposition 3.14, Z is a smooth rational surface.
By Lemma 3.16, π∗ : PicZ → (PicY )G ' Z(s1 + s2) is injective, implying PicZ ' Z,
from which we conclude that Z ' P2. The Hurwitz formula ωY = π∗(ωZ)⊗OY (R),
where R is the ramification divisor, along with the fact that ωY ' OY imply that π is
ramified on a sextic C. By Proposition 3.14, C is smooth and thus irreducible.

ii) We now compute H1(G,PicY ). The kernel of 1 + σ is generated by s1 − si, for
i ∈ {2, . . . , n}, while the image of 1 − σ is generated by s1 − s2 and 2(s1 − si), for
i ∈ {3, . . . , n}. Thus H1(G,PicY ) ' (Z/2Z)n−2. Moreover, all relations satisfy the
overlap condition by Proposition 2.10. By Remark 2.11, for mi ∈ {0, 1} not all zero,
the corresponding A := OY ⊕ (⊗ni=3L

mi
i )σ are maximal orders on P2 ramified on C,

distinct in Br(K(Z)).
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Figure 1: The double cover π : Y → P2 in the n = 3 case.

Remark 3.19. Since C is smooth and irreducible, by Lemma 3.16, π∗ is an isomorphism
onto (PicY )G ' Z(s1 + s2), implying π∗H = s1 + s2, where H is a line on Z. Then for all
i, Si + φ(Si) ∼ S1 + S2 is the inverse image of a line on P2. Since Si and φ(Si) are distinct
rational curves, there are (n − 1) lines Hi ⊂ P2 such that π−1(Hi) = Si + φ(Si). Noting
that for all i, Si · φ(Si) = 3, this then implies that C has n− 1 tritangents H1, . . . ,Hn−1.

4 The construction of orders on ruled surfaces

We now construct orders on ruled surfaces, to which end we make the following definition.

Definition 4.1. A surface Z is (geometrically) ruled if there exists a smooth curve C
and a morphism p : Z → C such that, for all c ∈ C, the fibre Zc ' P1.
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Given a ruled surface ρ : Z → C, we know that Z = PC(E) the projectivisation of a
rank 2 vector bundle E on C (see [Bea96, Prop. III.7]).

Proposition 4.2. [Bea96, Proposition III.18] The Picard group of a ruled surface Z with
ruling p : Z → C is given by

PicZ = p∗ PicC ⊕ ZC0.

Moreover, C2
0 = deg(E), F 2 = 0, C0 · F = 1 and KZ ≡ −2C0 − (deg(E) + 2g(C) − 2)F,

where F is a fibre of p.

Example 4.3. The nth Hirzebruch surface, Fn := PP1(OP1 ⊕OP1(−n)), is ruled over P1.
In fact, these are all the ruled surfaces over the projective line (up to isomorphism) [Bea96,
Prop.III.7].

Remark 4.4. The Picard lattice of Fn is given by PicFn ' Z2 with intersection form(
−n 1
1 0

)
If n is even, this Picard lattice is isometric to

H =

(
0 1
1 0

)
with respect to the generators C0 + n

2F, F of PicFn. If n is odd, PicFn is not isometric to
H since C2

0 = −n and H is an even lattice.

Lemma 4.5. Let n > 0. The only Hirzebruch surface with an irreducible divisor C0 such
that C2

0 = −n is Fn.

Proof. Assume there exists an irreducible curve C ⊂ Fm such that C2 = −n, where n 6= m.
We know that there exists a C0 ⊂ Fm such that C2

0 = −m. Since C is linearly equivalent to
neither C0 nor F , by [Har97, Chap. V, Cor. 2.18], C ∼ aC0 + bF ,where a, b > 0. However,
since C is irreducible, C · C0 ≥ 0 and C · F ≥ 0, implying C2 = C · (aC0 + bF ) ≥ 0,
contradicting the existence of such a curve C.

4.1 Orders on P1 × P1

To demonstrate the versatility of the construction introduced in Section 3.1, we now perform
the same trick to construct orders on the quadric surface P1 × P1 with ramification locus
a (4, 4)−divisor D. As before, we begin by constructing a K3 surface Y which we shall
eventually show to be a double cover of the quadric.
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Proposition 4.6. Let S = Z4 = 〈s1, s2, s3, s4〉 with bilinear form given by
0 1 1 1
1 −2 2 0
1 2 −2 0
1 0 0 −2


Then there exists a K3 surface Y such that PicY ' S. Moreover, s2, s3, s4 and s5 =
s2 +s3−s4 are effective nodal classes while the general member of s1 is an irreducible curve
of arithmetic genus 1.

Proof. We embed S in Λ via

γ : s1 7→ µ1 + µ′1, s2 7→ λ1 + µ2 + µ′′1,

s3 7→ λ4 + µ2 + µ′′2, s4 7→ λ2 + µ2.

Since {γ(s1), . . . , γ(s4), λ1, . . . , λ8, λ
′
1, . . . , λ

′
8, µ1, µ

′
2} is a basis for Λ, by Remark 3.5 γ is

a primitive embedding. Since S also has signature (1, 3) (this calculation was performed
by Maple), there exists a K3 surface Y such that PicY ' S by Proposition 3.4. We may
once again assume that the si and s5 := s2 + s3 − s4 are effective classes. Then explicit
elementary computations demonstrate that s = s1 + s2 + s3 satisfies the conditions of
Lemma 3.8, implying that s is an ample class. For i ∈ {2, 3, 4, 5}, s · si = 1 implying that
each Si, for i ∈ {2, 3, 4, 5}, is irreducible and thus a nodal curve.

We now show that the generic member of |s1| is irreducible: since s is ample and
s ·s1 = 2, any member of |s1| has at most two components. By [SD74, Prop. 2.6], if |s1| has
no fixed components, then every member of |s1| can be written as a finite sum E1+ . . .+En
where Ei ∼ E for all i and E an irreducible curve of arithmetic genus 1. Then s1 · s2 is a
multiple of n. This, along with the fact that s1 · s2 = 1, implies that n = 1. From [SD74,
Discussion (2.7.3)], |s1| has fixed components if and only if the generic member of |s1| is
E ∪ R, where E is an irreducible curve of arithmetic genus 1 and R is both a nodal curve
and a fixed component of |s1|.

We know the following: E + R ∈ |s1|, R2 = −2, E2 = 0, and s21 = 0; it follows that
E · R = 1 and R · S1 = −1. Then the intersection theory on Y yields that R 6∼ Si for
i ∈ {2, 3, 4}. Then R · S4 ≥ 0 and E · S4 ≥ 0. From [SD74, discussion preceding Prop.
2.6], the curve E defines a base-point free pencil of genus 1 curves on Y and S4 is not a
component of any fibres, implying that E · S4 = 1 and thus R · S4 = 0. Similarly we see
that R · S2 = R · S3 = 0. Letting R ∼

∑4
i=1 aiSi,

R · S2 = a1 − 2a2 + 2a3 (1)
R · S3 = a1 + 2a2 − 2a3 (2)
R · S4 = a1 − 2a4. (3)
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Since R · Si = 0, for i ∈ {2, 3, 4}, (1)+(2) yields a1 = 0 and it follows that a2 = a3. This,
in conjunction with (3), tells us that a4 = 0. Then R ∼ a2(S2 + S3), implying R2 = 0 and
thus R cannot possibly be a nodal curve, yielding a contradiction. We conclude that |s1|
has no fixed components and its general member is an irreducible curve of arithmetic genus
1.

Proposition 4.7. Let Y be as in Proposition 4.6. Then

i) there exists an automorphism σ of Y such that Z := Y/G is P1 × P1 (where G =
〈σ|σ2 = 1〉) and π : Y → Z is a double cover ramified on a (4, 4)−divisor D;

ii) H1(G,PicY ) ' Z/2Z, generated by L ' s2 − s4. Then A:= OY ⊕ Lσ is a maximal
order on Z ramified on D.

Proof. i) As before, we first define an involution φ on PicY ⊕ TY . The action of φ on
PicY is given by the matrix 

1 0 0 0
0 0 1 1
0 1 0 1
0 0 0 −1


and φ(t) = −t, for all t ∈ TY . Once again, MATLAB verifies that φ extends to an
isometry on H2(Y,Z), also denoted φ. We now show that φ is an effective Hodge
isometry. Since H2,0(Y ) ⊂ TY , φ preserves H2,0(Y ). The ample class s = s1 + s2 + s3
(ampleness of s was demonstrated in Propostion 4.6) is preserved by φ and thus φ
is an effective Hodge isometry. We conclude from the Strong Torelli theorem that
φ is induced by a unique involution σ : Y → Y . We denote by π : Y → Z := Y/G
the corresponding quotient morphism, where G = 〈σ|σ2 = 1〉. Since π∗ : PicZ →
(PicY )G = 〈s1, s2 + s3〉 is an injection by Lemma 3.16, rk PicZ ≤ 2. The K3 double
cover of an Enriques surface has Picard rank ≥ 10, implying by Proposition 3.14 that
Z is rational and π is ramified on the disjoint union of smooth curves.
We now show that the ramification locus D′ ⊂ Y is irreducible: firstly, any component
of D′ is necessarily fixed by σ and thus linearly equivalent to aS1+b(S2+S3), implying
its self-intersection is 4ab. Thus there are no components of D′ which are nodal curves.
Moreover, since rk PicZ ≤ 2, we conclude from Remark 3.15 that D′ is irreducible.
Then by Lemma 3.16, π∗ : PicZ → (PicY )G ' Zs1 ⊕ Z(s2 + s3) is an isomorphism,
implying PicZ ' 〈t1, t2〉 (where π∗(t1) = s1, π

∗(t2) = s2 + s3). By Corollary 3.17,
PicZ has intersection form given by

H =

(
0 1
1 0

)
Since the rational surfaces with Picard rank 2 are precisely the Hirzebruch surfaces
Fn, by Remark 4.4, Z ' F2n, n ≥ 0. Assuming Z ' F2n, n > 0, there exists an
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effective divisor C such that C2 = −2n. We now show that this is impossible: such a
C is necessarily linearly equivalent at1 + bt2, where ab = −2n. Thus there exists an
effective divisor C linearly equivalent to aS1 + b(S2 + S3). Since |s1| defines a base-
point free pencil on Y , C · S1 ≥ 0. However, C · S1 = 2b and we conclude that b ≥ 0.
Moreover, since (s2 + s3)

2 = 0, |s2 + s3| is a pencil and any fixed component is either
S2 or S3, which isn’t possible since then S2 or S3 would give a pencil of curves with
no fixed component by [SD74, discussion (2.7)]. Thus |s2 + s3| defines a base-point
free pencil and C · (S2 + S3) ≥ 0, implying that a ≥ 0. Thus ab ≥ 0 6= −2n, yielding
a contradiction. Thus n = 0 and Z ' F0, that is, isomorphic to P1 × P1. Use of the
Hurwitz formula once again demonstrates that π is ramified on a (4, 4)-divisor D.

ii) The kernel of 1 + σ is generated by s2 − s3 and s2 − s4 while the image of 1 − σ
is generated by s2 − s3 and 2(s2 − s4). Thus H1(G,PicY ) ' Z/2Z, generated by
L = s2 − s4. By Proposition 2.10, the nontrivial relation satisfies overlap and by
Remark 2.11, A := OY ⊕Lσ is a nontrivial order on Z ramified on D and thus maximal.

Remark 4.8. S2 + φ(S2), S4 + φ(S4) are inverse images of fibres of the same projection
p2 : Z → P1. Thus there are two fibres F,G of p2 such that π−1(F ) = S2 + φ(S2) and
π−1(G) = S4 + φ(S4) and A ' OY ⊕OY (S2 − S4)σ. Thus F and G are both bitangent to
the ramification curve D.

18



Figure 2: The double cover π : Y → P1 × P1.

Since the centre of A is the quadric P1 × P1 and hence birational to P2, it makes sense
to ask whether A is itself birational to any of the orders on P2 constructed above. One
may expect A to be birational to an order on P2 ramified on a sextic. This, however, is not
the case. In fact, it is birational to an order A′ ramified on a singular octic, as we discover
below. First let us define what it means for two orders to be birational.
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Definition 4.9. Let A be an order on a scheme Z, A′ an order on a scheme Z ′. We say
that A and A′ are birational if there exists a birational map f : Z 99K Z ′ and an open set
U ⊂ Z on which f is regular such that there is an isomorphism f∗|U (A′) ' A|U .

This definition will suffice for our purposes. More generally, one may wish to define two
such orders to be birational if f∗|U (A′) ∼M A|U , where ∼M denotes Morita equivalence.

Now let A be the order on Z := P1 × P1 ramified on a (4, 4)−divisor D constructed
above in Proposition 4.7. We now show that A is birational to an order A′ on Z ′ ' P2
ramified on an octic with 2 quadruple points. There exists a birational map µ : Z 99K Z ′

which is obtained by blowing up a point p on Z (where p 6∈ D,F or G (F,G as defined in
Remark 4.8)) and then blowing down the horizontal and vertical fibres through that point.
For any curve C ⊂ Z, we denote its strict transform on Z ′ by C ′.

The strict transform D′ ⊂ Z ′ of D is an octic with two 4-fold points q1, q2 and there is
a double cover π′ : Y ′ → Z ′ ramified on D′ and a commutative diagram

Y
µY //___

π

��

Y ′

π′

��
Z

µ //___ Z ′

Proposition 4.10. There exists an order A′ on Z ′ ramified on D′ which is birational to
A. Moreover, A′ is constructible using the noncommutative cyclic covering trick.

Proof. Recall from Remark 4.8 that D has two bitangents F,G. Then F ′, G′ are both
bitangent to D′ and thus each splits into two components on Y ′, say F ′1, F ′2 and G′1, G

′
2.

Then A′ = OY ′ ⊕OY ′(F ′1 −G′1) is a nontrivial order ramified on D′. Letting U ⊂ Z be an
open subset of Z such that µ|U is an isomorphism, we see that A|U ' µ∗|U (A′).

4.2 Orders on F2
Using the same procedure, we now demonstrate ways to construct numerically Calabi-Yau
orders on the 2nd Hirzebruch surface F2 := PP1(OP1 ⊕OP1(−2)).

Proposition 4.11. Let S = 〈s1, s2, s3, s4, s5〉 with bilinear form given by

A =


−2 0 1 0 1
0 −2 0 1 0
1 0 −2 2 0
0 1 2 −2 0
1 0 0 0 −2


Then there exists a K3 surface Y such that PicY ' S. Moreover, si is an effective nodal
class for all i.
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Proof. We embed S in Λ via

γ : s1 7→ λ4, s2 7→ λ2 + µ1, s3 7→ λ1 + 2µ1,

s4 7→ λ7 + µ2, s5 7→ λ5.

Since {γ(s1), . . . , γ(s5), λ3, λ6, λ7, λ8, λ
′
1, . . . , λ

′
8, µ1, µ

′
1, µ
′
2, µ
′′
1, µ
′′
2} is a basis for Λ, S ↪→ Λ

is a primitive sublattice by Remark 3.5. Since S also has signature (1, 4) (this calculation
was performed by Maple), there exists a K3 surface Y such that PicY ' S by Proposition
3.4. By Proposition 3.2, we may assume that si are effective classes, as is s6 ' s3 + s4− s5.
A simple calculation verifies that s = s1 + s2 + 3s3 + 3s4 satisfies the conditions of Lemma
3.8, implying s ample and since s · si = 1 for all i, each si is an irreducible class and hence
an effective nodal class.

Proposition 4.12. Let Y be as in Proposition 4.11. Then

i) there exists an automorphism σ of Y such that Z := Y/G is F2 (where G = 〈σ|σ2 = 1〉)
and π : Y → Z is a double cover ramified on a divisor D ∼ 4C0 + 8F ;

ii) H1(G,PicY ) ' Z/2Z, generated by L = s3− s5 and A = OY ⊕Lσ is a maximal order
on Z ramified on D.

Proof. i) As before, we first define an involution φ on PicY ⊕ TY . The action of φ on
PicY is given by the matrix 

0 1 0 0 0
1 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 0 0 −1


and φ(t) = −t, for all t ∈ TY . Once again, MATLAB verifies that φ extends to an
isometry on H2(Y,Z), also denoted φ. We now show that φ is an effective Hodge
isometry. Since H2,0(Y ) ⊂ TY , φ preserves H2,0(Y ). Moreover, since φ preserves the
ample class s = s1 + s2 + 3(s3 + s4) (demonstrated to be ample in Proposition 4.11),
φ is an effective Hodge isometry.
Since π∗ : PicZ → (PicY )G = 〈s1 + s2, s3 + s4〉 is an injection by Lemma 3.16,
rank PicZ ≤ 2. The K3 double cover of an Enriques surface has Picard rank ≥
10, implying by Proposition 3.14 that Z is rational and π is ramified on the disjoint
union of smooth curves. We now show that the ramification D′ locus is irreducible:
firstly, any component of D′ is necessarily fixed by σ and thus linearly equivalent to
a(S1 + S2) + b(S3 + S4), implying its self-intersection is 4a(b− a). Thus there are no
components of D′ which are nodal curves. Moreover, since π∗ : PicZ → (PicY )G is
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an injection by Lemma 3.16, rank PicZ ≤ 2. We conclude from Remark 3.15 that D′

is irreducible.

Thus by Corollary 3.17, PicZ ' (PicY )G ' 〈s1 +s2, s3 +s4〉 with intersection product
given by (

−2 1
1 0

)
Thus Z is a Hirzebruch surface F2n, n ≥ 0. Letting T1 = π(S1), T1 is an irreducible
divisor such that T 2

1 = −2, implying by Lemma 4.5 that Z ' F2. Since Y is a K3
surface, π is ramified on a divisor D ∼ −2KF2 and thus D ∼ 4C0 + 8F .

ii) We now compute H1(G,PicY ): the kernel of 1+σ is generated by s1 − s2, s3 − s4 and
s3 − s5 while the image of 1− σ is generated by s1 − s2, s3 − s4 and 2(s3 − s5). Thus
H1(G,PicY ) ' Z/2Z, generated by s3 − s5. The construction of the maximal order
follows as in previous examples: A = OY ⊕ Lσ, where L is a representative of s3 − s5.

Remark 4.13. S3+φ(S3), S5+φ(S5) are inverse images of fibres of the projection p : F2 →
P1. Thus there are two fibres F,G of p2 such that π−1(F ) = S3 + φ(S3) and π−1(G) =
S5 + φ(S5) and A ' OY ⊕ OY (S3 − S5)σ. Thus F and G are both bitangent to the
ramification curve D.
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Figure 3: The double cover π : Y → F2.

4.3 When the surface is ruled over an elliptic curve

Up until now, our use of the Torelli theorem has required that we work over C. This
is no longer required and as such, for the remainder of this chapter, the base field is an
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arbitrary algebraically closed field k of characterstic 0. We now include a brief section on the
construction of numerically Calabi-Yau orders on surfaces ruled over elliptic curves. These
orders are of particular interest since there are such limited possibilities for ramification
data. Indeed, for this reason Chan and Kulkarni remark that they "are inclined to think
that these orders are somehow special"[CK05].

Let A be a numerically Calabi-Yau order on a surface Z which is ruled over an elliptic
curve:

p : Z −→ C

We know that Z = PC(E), the projectivisation of a rank 2 vector bundle E on C. Since Z
is the centre of a numerically Calabi-Yau order, the number of permissible E’s is finite and
easy to enumerate [CK05]:

1. if E is split, then E = OC ⊕N, where N is a−torsion for a ∈ {1, 2, 3, 4}.

2. If E is not split, it is indecomposable of degree one, that is, the non-split extension
of a degree one line bundle L by OC :

0 −→ OC −→ E −→ L −→ 0

4.3.1 Case 1: E splits

We would like to describe the possible ramification of such orders and for this reason we
first wish to describe the Picard group of Z: recall from Proposition 4.2 that PicZ =
p∗ PicC ⊕ ZC0 and C2

0 = deg(E), F 2 = 0, C0 · F = 1 and KZ ≡ −2C0 + deg(E)F .

Remark 4.14. In our case, E = OC ⊕ N, where N is a−torsion. This implies that
deg(E) = 0, C2

0 = 0 and KZ ∼ −2C0.

We see in [CK05, discussion following Lemma 2.4] that we can record ramification
data using ramification vectors: (e1, e2, . . .) where the ei are repeated with multiplicity.
In the case of an order on a ruled surface, given ramification curves Di, the multiplicity
is of the form Di · F, where F is a fibre of the ruling. In the following, by n−section
we shall mean an effective divisor D on Z (not necessarily irreducible) which does not
contain fibres of p as components and such that D · F = n for all fibres F of p : Z −→
C. From [CK05, Prop. 5.4], the possible ramification vectors in the E is split case are
(2, 2, 2, 2), (3, 3, 3), (2, 4, 4) and (2, 3, 6). We shall be dealing with the first case, that of
(2, 2, 2, 2), until mentioned otherwise.

We wish to construct examples of orders ramified on 4−sections of p, which are disjoint
unions of elliptic curves by [CK05, Prop. 4.2]. To this end, we let D be such a 4−section.
In order to use Chan’s noncommutative cyclic covering trick to construct such an order, we
would like to have a double cover of Z ramified on D:
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Proposition 4.15. Let D be a 4−section of p. Then there exists a surface Y and a 2 : 1
cover π : Y −→ Z ramified on D.

Proof. From the proof [CK05, Prop. 4.3], we see that D is numerically equivalent to 4C0.
This means that D ∼ 4C0 + p∗(L′), where L′ ∈ Pic0C. Since the 2−multiplication map
[2] : C −→ C is surjective, any element of Pic0C is 2−divisible. Hence D ∈ PicY is
2−divisible and by the cyclic covering trick, there exists a surface Y and a 2 : 1 cover
π : Y −→ Z ramified on D.

Letting G = 〈σ|σ2 = 1〉 be the Galois group of π, the following proposition tells us some
of the line bundles L ∈ PicY which satisfy L⊗2σ ' OY and thus give us noncommutative
cyclic covers. We shall require the following lemma:

Proposition 4.16. Let M ∈ (PicC)2. Then L := (pπ)∗M ∈ ker(1 + σ). Moreover, unless
D is irreducible such the the corresponding cover D → C has Galois group Z/2Z ⊕ Z/2Z,
there exists an M ∈ (PicC)2 such that AM = OY ⊕ Lσ is a maximal numerically Calabi-
Yau order on Z with ramification vector (2, 2, 2, 2).

Proof. First we note that (pπ)∗ PicC is G−invariant since any element of π∗ PicZ is
G−invariant. Thus L+σ(L) = 2L ' OY ∈ PicY and L ∈ ker(1 +σ). By Proposition 2.10,
all relations arising from elements of H1(G,PicY ) satisfy the overlap condition. We now
show that there exists at least one 2-torsion line bundle M such that AM = OY ⊕ Lσ is
maximal. We do so by showing that AM has nontrivial ramification. Let Di be the curves
where π (and thus AM ) is ramified, that is, the Di are the components of D. Since each Di

is an n-section for some n, we have a corresponding finite map πi : Di → C. Theorem 2.5
states that the ramification along π(Di) is isomorphic to the cover given by the 2−torsion
line bundle L|Di

, which is exactly π∗i (M). Thus AM has nontrivial ramification on all Di

unless π∗i (M) ' ODi for some ramification curve Di.
If Di is a section or a trisection, then all nontrivial 2−torsion line bundles on C pull

back nontrivially. If D is the disjoint union of two bisections D1 and D2 and for each i,
Mi the unique nontrivial line bundle on C such that π∗i (Mi) ' ODi , then π∗i (M1 ⊗M2)
is nontrivial if D1 and D2 are nonisomorphic. If D1 ' D2, then π∗i (M

′) is nontrivial for
all M ′ 6' M1. In the case that D = D1 is an irreducible 4−section, π1 : D → C is cyclic,
corresponding to a 4-torsion N ∈ PicC.

Then any M ′ ∈ (PicC)2 such that M ′ is not a power of N pulls back nontrivially to D.
By Lemma 2.8, AM is maximal and we are done.

The same trick can be performed for the other cases listed above: (3, 3, 3), (2, 4, 4), and
(2, 3, 6). We give the flavour of this by doing so for (3, 3, 3) and (2, 3, 6), beginning with
the former:

Proposition 4.17. Let T be a trisection of p : Z → C. Then there exists a triple cover
π : Y → Z totally ramified on T . Moreover, there exists an M ∈ (PicC)3 such that AM :=
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OY ⊕ Lσ is a maximal numerically Calabi-Yau order on Z ramified on T , where L =
(pπ)∗(M).

Proof. From the proof of [Cha05, Prop. 4.3], T ' 3C0 + p∗(L′), for L′ ∈ Pic0C. Since the
3-multiplication map [3] : C → C is surjective, any element of Pic0C is 3-divisible and thus
there exists a triple cover of π : Y → Z totally ramified on T and unramified elsewhere. The
covering group is G = 〈σ|σ3 = 1〉. Now for anyM ∈ (PicY )3, L := (pπ)∗M ∈ ker(1+σ+σ2)
and by Proposition 2.10, all relations arising from elements of H1(G,PicY ) satisfy the
overlap condition. We now show that for any T , there exists at least one M ∈ (PicC)3
such that AM := OY ⊕ Lσ is a maximal numerically Calabi-Yau order. We do this by
showing AM has nontrivial ramification. From Theorem 2.5, the ramification of AM along
each component Ti of T is p∗i (M), where pi = p|Ti . We know that (PicC)3 ' (Z/3Z)2,
generated by N1, N2. If T = T1 is irreducible, then p∗1(Nj) ∼ 0 for only one of the Ni and
if T is reducible, then Nj 6∈ ker p∗i , for j ∈ {1, 2}. Thus by Lemma 2.8 there always exists
an M ∈ (PicC)3 such that AM is maximal.

If A is a numerically Calabi Yau order with ramification vector (2, 3, 6), then Z ' C×P1
by [CK05, Prop. 4.3]. We now construct such an order.

Proposition 4.18. Let Z ' C × P1 and pi ∈ P1, i ∈ {1, 2, 3} be three points on the line.
Then there exists a 6: 1 cyclic cover π : Y → Z ramified with index 2 over Zp1 index 3 over
Zp2 and index 6 over Zp3. Then H1(G,PicY ) ' (Z/6Z)2, and for any L ∈ H1(G,PicY )
which is neither 2-torsion nor 3-torsion, A := OY ⊕Lσ⊕ . . .⊕L5

σ is a maximal numerically
Calabi-Yau orders with ramification vector (2, 3, 6).

Proof. Letting E be the elliptic curve with j(E) = 0, there exists a 6 : 1 cyclic cover
πE : E → P1 ramified at p1 with index 2, p2 with index 3 and p3 with index 6 (see the
statement and proof of [Sil86, Chap. III, theorem 10.1] for details). We form the fibred
product

Y //

��

C × P1

��
E

πE // P1

Then Y = C × E and H1(G,PicY ) ' H1(G,PicC) ⊕ H1(G,PicE). Since all ele-
ments of PicC are fixed by G, H1(G,PicC) ' (PicC)6 ' (Z/6Z)2. We now show
that H1(G,PicE) ' 0: since H1(G,PicE) ' ker(1 + σ + . . . + σ5)/ im(1 − σ) and
ker(1 + σ + . . . + σ5) ⊂ Pic0E, it suffices to show that im(1 − σ) = Pic0E. In fact,
we now show that (1 − σ) : Pic1E → Pic0E is surjective. The group homomorphism
1− σ : Pic1E → Pic0E corresponds to a scheme morphism on the relevant components of
the Picard scheme of E, Pic1E and Pic0E, which are both isomorphic to E. Since π is to-
tally ramified at p3 ∈ P1, q = π−1(p3) is fixed by σ and (1−σ)(q) = e0, the zero point of E.
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Letting q′ ∈ E be any point not fixed by σ, (1−σ)(q′) 6= e0. Then (1−σ) : Pic1E → Pic0E
is non-constant implying it is surjective by [Har97, Chap. II, Prop. 6.8].

Thus H1(G,PicE) ' 0 and it follows that H1(G,PicY ) ' (PicC)6 ' (Z/6Z)2. By
Proposition 2.10, all relations satisfy the overlap condition. Letting L = p∗1(M), for M ∈
(PicC)6, the ramification vector of A := OY ⊕ Lσ ⊕ . . . ⊕ L5

σ is (2, 3, 6) and, by Lemma
2.7, is given by M3 over Zp1 , M2 over Zp2 , and M over Zp3 . By Lemma 2.8, A is maximal
precisely when M is neither 2-torsion nor 3-torsion and the result follows.

We now look at the case when Z arises from an indecomposable vector bundle E on C.

4.3.2 Case 2: E indecomposable

Recall that in this case Z = PC(E), where E is the non-split extension of a degree one line
bundle L by OC :

0 −→ OC −→ E −→ L −→ 0

Here

PicZ = p∗ PicC ⊕ ZC0,

C2
0 = 1 and KZ ≡ −2C0 + F (from Proposition 4.2).

Theorem 4.19 ([CK05], Theorem 5.6). Let A be a numerically Calabi-Yau order on Z.
Then the ramification indices are all 2 and either

1. the ramification locus D = D1 is irreducible and D1 ≡ −2K, or

2. the ramification locus D = D1 ∪D2 splits such that Di ≡ −K.

Remark 4.20. In case 1, the divisor is an irreducible 4−section and in case 2, the disjoint
union of 2 irreducible bisections [CK05, proof of Thm 4.5].

Proposition 4.21. Let D be a divisor of the form specified in Theorem 4.19. Then we
can construct a maximal order A = OY ⊕ Lσ on Z with nontrivial ramification on each
component of D unless D is an irreducible 4−section such that the covering D → C is not
cyclic. Here π : Y → Z is the double cover ramified on D and L is the pullback to Y of a
2-torsion line bundle on the base curve C.

Proof. Let D be an effective divisor numerically equivalent to −2K. Then there exists a
surface Y and a 2 : 1 cover π : Y −→ Z ramified on D with Galois group {σ|σ2 = 1}. The
proof of this is analogous to that of Proposition 4.15. As in Proposition 4.16 above,

(pπ)∗(PicC)2 ⊂ ker(1 + σ)
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and all relations satisfy the overlap condition by Proposition 2.10. As in Proposition 4.16
letting pi : Di −→ C denote the projections of each component of D, the ramification of
A = OY ⊕ ((pπ)∗M)σ over Di is given by p∗i (M), for M ∈ (PicC)2. Now we need to verify
that there exists a 2−torsion line bundle M such that p∗i (M) is non-trivial in PicDi, for
all i. We demonstrate this for each of the possible cases. If D = D1 is irreducible, then
p1 : D1 −→ C is a 4 : 1 cyclic cover. Thus the kernel of

p∗1 : PicC −→ PicD1

is generated by some 4−torsion M1 ∈ PicC. Then p∗1 trivialises only one of the three
nontrivial 2−torsion line bundles on C. If, on the other hand, D = D1 ∪D2 is the disjoint
union of two bisections, then from the proof of [CK05, Theorem 4.5], D1 and D2 are two
non-isomorphic double covers of C. Letting Li ∈ PicC be the line bundle trivialised by
p∗i : PicC → PicDi, p

∗
i (L1 + L2) is nontrivial in PicDi for each i, implying maximality by

Lemma 2.8.

5 Orders on rational elliptic fibrations

The classical method of constructing rational elliptic fibrations is as follows: let C1, C2 be
two elliptic curves on P2 intersecting in 9 distinct points p1, . . . , p9. Letting Z be the blowup
of P2 at the 9 pi’s, we then have an elliptic fibration ϕ : Z −→ C with C ' P1. This is a
Jacobian elliptic fibration, that is, one with a section S0, which from here on in will denote
the zero section in the group of sections Φ. We wish to construct orders on Z ramified
on C1 ∪ C2, where we have abused notation by writing Ci ⊂ Z for the strict transform
of Ci ⊂ P2. These orders are examples of minimal orders (see [CK05, Example 3.4]) on
non-minimal surfaces. We first construct the double cover of π : Y −→ Z ramified on C1

and C2:

Lemma 5.1. There exists a K3 surface Y and a double cover π : Y −→ Z ramified on
C1 ∪C2 with ramification index 2. Moreover, there is a Jacobian elliptic fibration φY : Y →
P1.

Proof. Firstly, we note that for i ∈ {1, 2}, Ci is the fibre above a point pi ∈ C. Since
OC(p1 + p2) is 2-divisible in PicC, there is a double cover πC : C ′ → C ramified solely at
p1 and p2. By the Riemann-Hurwitz formula, C ′ ' P1. We form the fibred product

Y
π−→ Z

φY ↓ � ↓ φ
C ′

πC−→ C

and it follows that π : Y → Z is the double cover of Z ramified solely on C1 ∪ C2. Now Y
is a resolution of a double sextic Y ′ → P2, the sextic possessing only simple singularities.
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By [Per85, Sect. 1, discussion preceding Proposition A], Y is a K3 surface. Moreover, by
construction, Y is elliptically fibred over C ′. We now show that the pullback under π of
any section of φ is a section of φY , implying φY is a Jacobian elliptic fibration. To see this,
let S be a section of φ, F a fibre. Then π∗S · π∗F = 2. However, recalling C ' P1, we see
that π∗F ∼ 2F ′, where F ′ is a fibre of φY , implying π∗S · F ′ = 1.

In order to construct orders ramified on C1 ∪ C2, we require the existence of nontrivial
elements of H1(G,PicY ). In general, however, it is extremely difficult to even compute
PicY. There are two special cases in which we can find nontrivial 1−cocycles and thus
construct nontrivial orders.

5.1 When Φ has 2-torsion

The first is when Φ, the group of sections of φ : Z → C, has 2−torsion. There are many
examples of such rational elliptic fibrations and we refer the reader to [Per90, Section
“Torsion groups of rational elliptic surfaces”] for explicit examples.

Proposition 5.2. If Φ has a nontrivial 2−torsion section S such that S|Ci
� S0|Ci

,
i ∈ {1, 2}, then there exists a nontrivial L ∈ H1(G,PicY ) and the corresponding rela-
tion satisfies the overlap condition. The cyclic algebra A = OY ⊕ Lσ is a numerically
Calabi-Yau order ramified on C1 ∪ C2.

Proof. Since S is a 2-torsion section, 2(S − S0) ∼ αF, where F is the class of a fibre. Let
S′ = π∗S, S′0 = π∗S0, and F ′ be the class of a fibre of φY : Y → C. Then π∗F = 2F ′ and

σ∗ : PicY −→ PicY

S′ 7−→ S′

S′0 7−→ S′0

F ′ 7−→ F ′

and

S′ − S′0 − αF ′ + σ∗(S′ − S′0 − αF ′) ∼ 2(S′ − S′0)− 2αF ′

∼ π∗(2(S − S0)− αF )

∼ 0

Thus L = OY (S′ − S′0 − αF ′) ∈ H1(G,PicY ). Moreover, L is nontrivial in H1(G,PicY )
since the ramification of A = OY ⊕ Lσ above Ci is given by the 2-torsion line bundle
OCi(S

′
|Yc′

i

− S′0|Yc′
i

), which is nontrivial by assumption. Thus each C̃i is irreducible and A

is maximal by Lemma 2.8.

29



Remark 5.3. Torsion sections of elliptic fibrations seem to provide a substantial number
of examples here. We can perform the same trick for elliptically fibred K3 surfaces: such
sections are abundant and have been studied extensively by Persson and Miranda [MP91].

5.2 The second case in which we can find nontrivial 1-cocycles

The second case in which we may construct such orders is more subtle and involved, re-
quiring us to study the geometry of a general rational elliptic fibration φ : Z → P1 further.

First notice that there is an involution τ of Z which sends z 7→ −z on fibres (for details,
see [Per90, Introduction, p.3]). Setting G = 〈τ |τ2 = 1〉, we let ψ : Z → X̃ := Z/G be the
corresponding quotient morphism and note that X̃ is smooth. Blowing down exceptional
curves disjoint from ψ(S0) yields a birational morphism µ : X̃ → X and X is ruled over
C ' P1. This is because the quotient of an elliptic curve by the Z2-action z 7→ −z is P1.

Z

ρ

��

φ
''OOOOOOOOOOOOOOO

ψ // X̃

��@
@@

@@
@@
µ // X

p

��
P1

Letting ρ : Z → X denote the composite morphism µ◦ψ, S2
0 = −1 implies that ρ(S0)

2 = −2.
Thus X ' F2 and ψ is ramified on C̃0 ∪ T̃ , where C̃0 is the strict transform of the special
section C0 on F2 and T̃ the strict transform of a trisection T disjoint from C0. Thus we
see that classifying rational elliptic fibrations is equivalent to classifying trisections T on
F2 disjoint from C0 with at most simple singularities and such that C̃0 + T̃ is 2-divisible in
Pic(X̃). For any effective divisor D on X, we let D̃ denote its strict transform on X̃ with
respect to the birational morphism µ.

Theorem 5.4. If φ : Z −→ P1 corresponds to a trisection T ⊂ F2 with 2 nodes, then
we can construct a numerically Calabi-Yau order A ramified on 2 fibres of φ. The explicit
construction of A is given in the proof of the theorem.

Before we prove this theorem we require the following lemma.

Lemma 5.5. Assume there exists a section S of p : X → P1 such that S · C0 = 0 and
S′ = ψ−1(S̃) is irreducible. Then there exists an L ∈ PicY (where Y = Z ×C S′) such that
A = OY ⊕ Lσ is an order on Z ramified on Zci , where the ci are the ramification points of
πC : S′ → C.

Proof. We first note that since S is a section of p : X → C, S′ = ρ−1(S) is a bisection of
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φ : Z → C and there is a corresponding irreducible double cover πC : S′ −→ C. We form

Y
π−→ Z

ϕ′ ↓ � ↓ ϕ
S′

πC−→ C

Now π−1(S′) = S′ ×C S′ splits into 2 copies of S′, say, S1 and S2. Recalling that

PicX ' ZC0 ⊕ ZF

S ∼ C0 + nF ∈ PicX, implying

S′ := ψ−1(S̃) ∼ 2S0 + nF ′, (4)

where F ′ is the class of a fibre of φ. Let S′0 = π−1S0, the reduced inverse image of S0. Then
σ(S′0) = S′0 , σ(S1) = S2 and σ(F ′) = F ′.

Then

(1 + σ)(S1 − S′0 − nF ′) ∼ S1 + S2 − 2S′0 − 2nF ′

∼ π∗(S′ − 2S0 − nF )

∼ 0

The last linear equivalence is a result of (4). Thus L ' OY (S1−S0 +nF ′) ∈ H1(G,PicY ).
The corresponding relation satisfies the overlap condition due to Lemma 2.10. By assump-
tion S · C0 = 0 and this implies S1 · S0 = 0. We conclude that (S1 − S0)|Yc′

i

6' OYc′
i
. By

theorem 2.5, the ramification of AS = OY ⊕Lσ along Zπ(c′i) is the cyclic cover corresponding
to OYc′

i
(S1|Yc′

i

− S0|Zc′
i

), which is nontrivial. By Lemma 2.8, A is maximal.

Proof. (of theorem 5.4) To prove the theorem, first note that if S′ in Lemma 5.5 is rational,
then πC : S′ −→ C is ramified above 2 points and the order AS is ramified on 2 fibres Zci
and thus numerically Calabi-Yau (this is precisely the example Chan and Kulkarni deduce
exists via the Artin-Mumford sequence [CK05, Example 3.4]). We are thus required to
show that if φ : Z −→ C corresponds to a trisection with 2 nodes, there exists a section
S of p : X → C such that S′ := ρ−1(S) is an irreducible rational bisection of φ : Z → C.
This is equivalent to showing there exists a section S such that S̃ · (T̃ + C̃0) = 2 since then
S′ −→ S is ramified above 2 points, implying S′ rational. Now since T is a trisection of φ
disjoint from C0, the intersection theory on F2 implies that T ∼ 3C0 + 6F . We assume T
is a 2−nodal trisection with nodes at q1, q2. Since h0(OX(aC0 + bF )) = 1 − a2 + ab + b,
h0(OX(C0+2F )) = 4 and there exists a divisor S ∼ C0+2F through each qi with direction
different to T . Now S · (T + C0) = 6 implies that S̃ · (T̃ + C̃0) = 2 and we are done.
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Figure 4: The morphism µ : X̃ → X.
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