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1. INTRODUCTION

Let (Q2, F, P) be a probability space and (W});>0 a Brownian motion on this space.
Let F' be a random variable defined on 2 which is differentiable in the sense of the
Malliavin calculus. Then using the so-called Stein’s method introduced by Nourdin
and Peccati in [8] (see also [9] and [I0]), it is possible to measure the distance
between the law of F' and the standard normal law N(0,1). This distance can be
defined in several ways, such as the Kolmogorov distance, the Wasserstein distance,
the total variation distance or the Fortet-Mourier distance. More precisely we have,
if L(F) denotes the law of F

d(L(F),N(0,1)) < c\/E (1= (DF,D(~L)~'F)2o.p) .

Here D denotes the Malliavin derivative with respect to W, and L is the generator
of the Ornstein-Uhlenbeck semigroup. We will explain in the next section how these
operators are defined. The constant ¢ is equal to 1 in the case of the Kolmogorov
distance as well as in the case of the Wasserstein distance, ¢ = 2 for the total
variation distance and ¢ = 4 in the case of the Fortet-Mourier distance.

Our purpose is to apply these techniques to self-normalized sums. Let us recall
some basic facts on this topic. We refer to [5] and the references therein for a
more detailed exposition. Let Xi, Xo,--- be independent random variables. Set
Sp=>1" X,and VZ=>"" X2 Then f,—: converges in distribution as n — oo to
the standard normal law N(0, 1) if and only if E(X) = 0 and X is in the domain of
attraction of the standard normal law (see [5], Theorem 4.1). The “if” part of the
theorem has been known for a long time (it appears in [7]) while the “only if” part
remained open until its proof in [6]. The Berry-Esséen theorem for self-normalized
sums has been also widely studied. We refer to [2] and [12] (see also [IJ, [3] for the
situation where the random variables X; are non i.i.d. ). These results say that the
Kolmogorov distance between the law of ‘S,—: and the standard normal law is less
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than

i=1 i=1

where B, = Y | E(X?) and C is an absolute constant. We mention that, as
far as we know, these results only exist for the Kolmogorov distance. To use our
techniques based on the Malliavin calculus and multiple stochastic integrals, we will
put ourselves on a Gaussian space where we will consider the following particular
case: the random variables X; are the increments of the Wiener process X; =
W; — W;_1. The Berry-Esséen bound from above reduces to (see [5], page 53): for
2<p<3

N N
C (1952 Y E(X{lgx>p.) + B.? Y E (Xi31<xi>Bn>)>

sup [P(F, < z) — &(2)| < 25E (|2]")n'~% (1)
z€R
where Z is a standard normal random variable and ® is its repartition function. In
particular for p = 3 we get

sup [P(Fy < 2) = ®(2)| < 25E (21°) n 3 (2)

l\)

We will compare our result with the above relation (). The basic idea is as follows:
we are able to ﬁnd the chaos expansion into multiple Wiener-It6 integrals of the
random variable " for every n > 2 and to compute its Malliavin derivative. Note

that the random Varlable z has a decomposition into an infinite sum of multiple
integrals in contrast to the examples provided in the papers [], [8], [9]. Then we

compute the Berry-Esséen bound given by \/E (1—(DF, D(—L)*1F>Lz([o)1])) by
using properties of multiple stochastic integrals Of course, we cannot expect to
obtain a rate of convergence better than c—= f’ but we have an explicit (although

complicated) expression of the constant appearing in this bound and our method
is available for several distances between the laws of random variables (not limited
to the Kolmogorov distance). This aspect of the problem seems to be new. This
computation of the Berry-Esséen bound is also interesting in and of itself as it brings
to light original relations involving Gaussian measure and Hermite polynomials. It
gives an exact expression of the chaos expansion of the self normalized sum and it
also shows that the convergence to the normal law of f,—: is uniform with respect to

the chaos, in the sense that every chaos of ‘S/—" is convergent to the standard normal
law and that the rate is the same for every chaos.

We have organized our paper as follows: Section 2 contains the elements of the
Malliavin calculus needed in the paper and in Section 3 we discuss the chaos de-
composition of self-normalized sums as well as study the asymptotic behavior of
the coefficients appearing in this expansion. Section 4 contains the computation of
the Berry-Esséen bound given in terms of the Malliavin calculus.

2. PRELIMINARIES

We will begin by describing the basic tools of multiple Wiener-It6 integrals and
Malliavin calculus that will be needed in our paper. Let (W;);cp0,7] be a classical
Wiener process on a standard Wiener space (0, F,P). If f € L?*([0,T]") with
n > 1 integer, we introduce the multiple Wiener-1to integral of f with respect to
W. We refer to [11] for a detailed exposition of the construction and the properties
of multiple Wiener-Ito integrals.
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Let f € S,,, which means that there exists n > 1 integers such that
f = Z Ciy,oonin 1Ai1 XX Ay,
1;11... 71;77'
where the coefficients satisfy ¢;, ... s, = 0 if two indices 4; and 4, are equal and the
sets A; € B([0,T)) are disjoints. For a such step function f we define

L(f):= > e inW(AL) - W(A;)
i1, yin
where we put W([a,b]) = W), — W,. It can be seen that the application I,, con-
structed above from S,, equipped with the scaled norm \/%H Nlz2(jo, 777y to L2(2)
is an isometry on Sy, i.e. for m,n positive integers,

E(I.(/)Im(9)) = n{f.9)r2q0rn) fm=n,
E(I.(f)Im(9)) = 0 ifm#n.
It also holds that
L(f) = (/)
where f denotes the symmetrization of f defined by

1
f(xla"' 7x1) = E Z f(xcr(l)u"' wrcr(n))-

’ gES),

Since the set S, is dense in L%([0,T|") for every n > 2, the mapping I,, can be
extended to an isometry from L2([0,7]") to L?(Q2) and the above properties hold
true for this extension. Note also that I,, can be viewed as an iterated stochastic
integral (this follows e.g. by Itd’s formula)

1 tn to
In(f):n!/ / o [ f(t ) AW, - AW,
0 JO 0

We recall the product for two multiple integrals (see [I1]): if f € L%*([0,7]") and
g € L?([0,T]™) are symmetric, then it holds that

mAn

L(N)In(g) = 3 OCLCE Lsn2e(f @0 9) (3)
=0

where the contraction f ®; g belongs to L2([0, T]™*t"~%) for £ = 0,1,--- ,m An
and is given by

(f ®f g)(sla 7Sn—f7t17"' 7tm—€)

- /[ ]e f(Sl,'.' 7Sn755u17"' 7ue)g(t1)'.' 7tm7£7u1,'.' )ul)dul "'duf'
0,7

We recall that any square integrable random variable that is measurable with re-
spect to the o-algebra generated by W can be expanded into an orthogonal sum of
multiple stochastic integrals
F =23 IL(fa) (4)
n>0
where f,, € L?([0,1]") are (uniquely determined) symmetric functions and In(fo) =
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Let L be the Ornstein-Uhlenbeck operator

LF ==Y nly(f,) and L7'F = = %In(f")

n>0 n>1

if F'is given by ). We denote by D the Malliavin derivative operator that acts
on smooth functionals of the form F = g(W(¢1),- -+, W(p,)) where g is a smooth
function with compact support and ¢; € L?([0,1]). For i = 1,--- ,n, the derivative
operator is defined by

DF = Z gj (B((pl)v T uB((Pn))(pi-

The operator D can be extended to the closure DP? of smooth functionals with
respect to the norm

P
IFIZo =B (F%) + > E (ID'Fl3 0 )
i=1
where the i*" order Malliavin derivative D? is defined iteratively.
Let us recall how this derivative acts for random variables in a finite chaos. If
f € L*([0, 7)) is a symmetric function, we will use the following rule to differentiate
in the Malliavin sense

Dilo(f) = nln1(f(- 1), teR.

Let us also recall how the distances between the laws of random variables are
defined. We have

A(L(X),£(V)) = sup (B (1(X)) ~ B (h(Y))
where A denotes a set of functions. When A = {h : |||z > 1} (here || - ||z is the
Lipschitz norm) we obtain the Wasserstein distance, when A = {h : ||h||gr > 1}
(with || - [l =1z + || - |lc) We get the Fortet-Mourier distance, when A is the
set of indicator functions of Borel sets we obtain the total variation distance, and
when A is the set of indicator functions of the form 1_, .y with 2z € R, we obtain
the Kolmogorov distance that has been presented above.

3. CHAOS DECOMPOSITION OF SELF-NORMALIZED SUMS

The tools of the Malliavin calculus presented above can be successfully applied in
order to study self-normalized sums. Because of the nature of Malliavin calculus,
we put ourselves in a Gaussian setting and we consider X; = W; — W,_1 to be the
increments of a classical Wiener process W. We then consider the sums

S, = Zn:Xi and V?= zn:Xf
i=1 =1

as well as the self-normalized sum F,, defined by

po= S W . (5)

1

Vi (S0 (Wi — W3)?)?
Let us now concentrate our efforts on finding the chaotic decomposition of the
random variable F,,. This will be the key to computing Berry-Esséen bounds for
the distance between the law of F;, and the standard normal law in the next section.
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Lemma 1. Let F,, be given by () and let f : R™ — R be given by
flar, o an) = %
@+ a2}
Then for every n > 2, we have

n

1
F, = Z i Z Wiy I (i ® -+ ® i)
E>0 g1, ip=1
with
def < akf

Ay e iy = E({——+——
a‘rﬁu”' 7xik

(Wign),- - ,W@an))) |

Proof: We use the so-called Stroock’s formula (see [11]). The Wiener chaos

(7)

ex-

pansion of a smooth (in the sense of Malliavin calculus) random variable F is given

by

F= kz %Ik (E (DFF))

(8)

where D¥ denotes the k™ iterated Malliavin derivative. Note that F,, can be written

as
F,=f (W(Spl)v e 7W((pn))

where
Yi = 1[1-_171-], 1= 1, e, N

The chain rule for the Malliavin derivative (with D, W (¢) = ¢(s)) yields

DF, = w v Wieon)) @i
;:1 oz, (Wlen) (on)) @
and proceeding recursively leads to the formula

prr= Y L W W e o e
i ie=1 TTi T i

Thus we obtain

I(E(D'F,)) = ) E (ﬁ (W (1), aW(SDn))) Ik (i, ®
i1, yip=1 1 Mg
= Z ail,"',ik‘[k ((ph ®"'®(pik)
in,eip=1

where a;, ... ;, are defined by (7). Thus from (®) it follows that,

n

k>0 g ig=1

Remark 1. The coefficients a;, ... s,
in order to simplify the presentation.

O

also depend on n. We omit n in their notation
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3.1. Computing the coefficients in the chaos expansion. In this subsection,
we explicitly compute the coefficients a, ... ;, appearing in Lemma [Il Let H, ()
denote the n'" Hermite polynomial:

dn
Hn(,f) _ (_1)n612/2dx_nefzz/2'

Define
W, = W(p1) +Wi(p2)+--+ W(pn)

o (Lwer)”
i=1

Let us first give the following lemma that can be proved using integration by parts.

Lemma 2. For every 1 < iy,.,4; < n, let a;, ..., be as defined in (0). Let
d.,1 < r < n denote the number of times the integer r appears in the sequence
{i1,49, -+ ,ix} with 22:1 d, = k. Then we have

Ay oovgyy = E <% H HdT (W(SDT))> .
=1

Proof: If X ~ N(0,1), then for any g € C™(R) with g and its derivatives having
polynomial growth at infinity, we have the Gaussian integration by parts formula

E(g™ (X)) = E(g(X)Ha (X))

where ¢(™ (z) o Cgc—nng(:zr).
Notice that the function f defined in (@) satisfies |f(z)| < C|z|,Vz € R™ for a
constant C', and thus applying the above integration by parts formula recursively

yields

1 o* f 2 a2
gy i = — B B — L1, T e 2 ---e 2dxy--dr,
e (V27T)n \/l;" <8I(1117 ;I;iln>( ' ) !

1 oFf _=1 _zh
- i L Gy e e B e E e R

»Yn—1
1 n o2 22
= W f(xl7"'7:En)HHdT(x’I‘)6_T"'e_Td‘rl"'dxn
R r=1
W, 1
= E (7 HHdT (W(%))> -
=1
This concludes the proof of the Lemma. 1

The next step in the calculation of the coefficient is to notice that a;, ....;, = 0 when
k is even. This is the object of the following Lemma.

Lemma 3. If k is even, then

dz,,
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Proof: Let k be an even number and dy,ds, - - - ,d, be as defined in Lemma[2 By
Lemma [2, we have

%W“:Xﬁ(ﬂyﬁllﬂﬂw@m>. 9)
u=1 n r=1

Note that the product [T"_; Hg, (W (r)) is an even function of (W (1), W (p2), -+, W (en)).
Indeed, since k is even and Y "'_; d, = k, either all of the integers d,,r < n are even

or there is an even number of odd integers in d,.,r < n. In either case the prod-

uct T, Ha, (W(p,)) is an even function of (W(p1), W(p2), -+, W(p,)), since

H,,(z) = H,,(—z) for all even m € N and H,,,(x) = —H,,,(—z) for all odd m € N.

Thus for each u < n, the expression % [T Hy, (W(g,)) is an odd function of

W () and thus has expectation zero since W (¢, ) is a standard Gaussian random
variable. The fact that (@) is a sum of such expectations concludes the proof. [

As a consequence of Lemma [B] we have

1 n
Fo=d Girm 2 Gaeimentan (pn @ ®0n,). (10)

k>0 i1, iok41=1

This implies that in order to compute the coefficients a;, ...;, , it suffices to focus on
the case where k is odd. Before stating the first result in this direction, let us give
the following technical lemma.

Lemma 4. Let k > 0 be a positive integer and let d,.,1 < r < n denote the number
of times the integer r appears in the sequence {i1, i, -+ ,iok41} with Y i dp =
2k + 1. Then, if there is more than one odd integer in the sequence d.,1 <r <n,
for each 1 < i <n,

B | oW (o1 B, (W (1)) H, (W (2)) -+ H, (W ()| = 0.
n

Proof: Note that the equality >, d, = 2k + 1 implies that there can only be an
odd number of odd integers in the sequence d,., otherwise the sum »."_, d, could
not be odd. Therefore, more than one odd integer in the sequence d,, means that
there are at least three of them. We will prove the Lemma for this particular case
of three odd integers in the sequence d, for the sake of readability of the proof, as
the other cases follow with the exact same arguments. Hence, assume that there
are three odd integers d;, di and d; in the sequence d,,1 < r < n. We will first
consider the case where i is different than j, k,l. Then,

B | - W ()L, O (1)) Hay OV (), (W )

n

_ 1 / xiHg, (ajl) ---Hg, (xn)e,é(for...Jrzi)dIl e dzy,
(2n)2 Jpn a3 4+l
1

= / xiHg, (3:1) ce de71 (ijl) de+1 ($j+1) ---Hg, (xn)
Rn—1

Hy, (2, = 15N
4, (%) —2d:cj> exp _529”5 dry---drjadrjiy - - dy.
p=1

—F—€
R+ +ad

X

VR

P#j
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. . . Ha (o;) 5 .

d; beeing odd, Hy; is an odd function of x; and x; \/ﬁe 2 is also an

. Hyj () %5
odd function of a;. Thus, [, \/ﬁe 2 dr; = 0 and finally

1

E |- W(pi)Ha, (W(p1)) Ha, (W(p2)) - Ha, (W(pn))| = 0.
The other cases one could encounter is when ¢ = j or ¢ = k or ¢ = [ and the proof
follows based on the exact same argument. 0

We can now state the following key result that will allow us to perform further
calculations in order to explicitly determine the coefficients a;, ,...;, .

Lemma 5. For every k > 0 and for every 1 < iy, --- yiogy1 < n, let df,1 <r <n
be the number of times the integer r appears in the sequence {i1,--- ,iox+1}. Then,

1
A1y, Jiggyr — E V_W((Pl)Hd{ (W((pl)) Hd§ (W(QPQ)) T I_Id,*z (W((pn)) (11)
if there is only one odd integer in the sequence dy,1 < r < n. If there is more than

one odd integer in the sequence dy,1 < r <mn, we have ay, ... vioes1 = 0.

Remark 2. Note that in (), it might be understood that d} is always the only
odd integer in d},1 < r < n. This is obviously not always the case and if df is not
the odd integer but let’s say, df with 1 < i < n is, one can use the equality in law
between W (y;) and W (1) to perform an index swap (i +> 1) and the equality (]
remains unchanged.

Remark 3. If one is in the case where a1, ... 45, ,
as 2d; + 1,2da, - - - ,2d,, and finally rewrite (1)) as

# 0, one can rewrite dj, d5, - -+ ,d},
1
A1y, yigggr = E |:VW(<P1)H2d1+1 (W(Qﬁl)) H2d2 (W((p2)) ce H2dn (W(<Pn)):|
(12)

Proof: Since Y."_, df = 2k + 1, there is an odd number of odd integers in the
sequence df, 1 < r < n. Recall that by Lemma 2] we have

Aiyyoviopyy — ZE <W‘(/<Pu) HHd: (W(S&J))
n r=1

u=1

|
=

LW (3 B (W (1)) Bl OV 22) B, (W )|
1

OB [ W (o By (W (1)) By (W) - Hyg <W<son>>}

LY

+ E _Viwwn)Hd; (W(e1)) Ha; (W(2)) - Hay <W<%>>} (13)

Because of Lemma [ for each i, the term

B [ 7 (0Bl (W (o) B (W(52) - Hl <W<<pn>>]
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is non null if and only if d} is the only odd integer in df,1 < r < n. Thus,
a1y, iy, 7 0 if there is only one odd integer in dy,1 < r < n. Let df with
1 < i < n be this only odd integer. Then, if j # i, by Lemma [l

1
B | - W (6 Bl (W (o0)) By (W ) - L (W) = .
Thus, using ([3)) yields

1
Vo
if there is only one odd integer in the sequence dy,1 < r < n and ay, ... i, ., = 0
if there is more than one odd integer in the sequence df,1 < r < n. Using the

equality in law between W (ip;) and W (1), one can perform an index swap (i <> 1)
to finally obtain the desired result. O

G iy = B [ W (o) Eas (W (1)) gy (W (a) -+ Hiys <W<son>>}

In the following lemma, we compute the L? norm of F,,. This technical result will
be needed in the next section.

Lemma 6. Let a;, ... i,., be as given in [I0). Then, for every n € N, we have

n

2 B 1 2 _
IFal 7oy =D o Y @ig, = L

k>0 i1,y iopp1=1

Proof: Firstly, using the isometry of multiple stochastic integrals and the orthog-
onality of the kernels ;, one can write
n

1 2
E(F,f) = Z(m) (2]€+1)' Z Qiy oo viggg1 Qe jarsn

k>0 01,0 ylokp1=1
Jis s J2k+1=1

<(Pi1 ®-® Pizrt1> P Q- SDjzk+1>

X

L2([0,1]2%)

1
Z(2k+1)!_ IR -

kZO 21, ,i2k+1:1
Secondly, using the fact that F? = V‘[//—g, we have
ce. 2
E(F2) - 1 ] / (w14 +xp) b g e
" 2m)% Jpn @4+ a2
2 2
_ 1 _ / (E1++$ne—%(m§++mi)d$1d$n:1
CF Juw B+t ad
because the mixed terms vanish as in the proof of Lemma O

Recall that if X is a Chi-squared random variable with n degrees of freedom (de-
noted by x?2) then for any m > 0,

I'(m+ %)
I'(3)

where I'(+) denotes the standard Gamma function.

E(X™) =2"
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When k£ = 0, the coefficients a;, ... ,,., can be easily computed. Indeed, notic-

ing that V,? has a x?2 distribution, we obtain

- 1 ) TR+ )
=B (Y oWt | =E((v)) =2t =22
S -n (3 gwiar) - m (021 -2
Since a1 = as = -+ - = a, we obtain that for every i =1,..,n
L 2TG+)
‘ n F(%) '

The following lemma is the second key result in our goal of calculating the coeffi-
cients. It will be used repeatedly in the sequel.

Lemma 7. Let {a1,as2,---a,} be non-negative numbers. Then it holds that

E (W(salf“lW<¢2>2“2~»W<w>2an )

n

= 1 gutetatrpt Hlotere s 1. 1
= (2ﬂ)%2a1 an+"5 T(ar+tant3) F(a1+ 2) F(an—i— 2),

Proof: By definition, we have
E (W(%)Z’“IW(%)Q““’ - W(somn)

Vi
2a1 2a 2a,
_ ( 1)n \/x12 1;[;222 SR iy 6_%(1?+w§+...+1i)dxldx2 L dwn
2m)z2 Rn $1+$2++(E%
1
=——1.
(2m)?

To compute the above integral I, we introduce n-dimensional polar coordinates.
Set

r1 = rcosby
j—1
Z; :rcosﬁszinﬁr, j=2,--- ,n—2

r=1
n—2 n—2
xn,lzrsinwnsinﬁr, xn:rcoswnsinﬁr
r=1 r=1

; < mand 0 < ¢ < 27. It can be easily verified that
r=. The Jacobian of the above transformation is given by

n—2
J ="t H sin® 6,,_1_p .
k=1
Therefore our integral denoted by I becomes

[e%s} 2 27
/ r2(a1+"'+a")+"*2677dr/ (sin ¢)2an=1720n (cos 4h) 2 da)
0 0

n—1 T
H/ (Sinen_k)Zan+2an71+~~-+2an7k+1+k71(Cosgn_k)hnfkdgn_k'
k=20
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Let us compute the first integral with respect to dr. Using the change of variables
5 =y, we get

o0 2 o0
/ plaittan)tn=2,—% 1. _ 2a1+~'+an+%71—1 / dyya1+---+an+n771—le—y
0 0

gttty oI (al totan ; 1) .

Let us now compute the integral with respect to diyp. We use the following formula:
for every a,b € Z, it holds that

2
/ (sin@)*(cos0)°dd =28 (<E, L1 if m and n are even
0

=0, if m or n are odd.

This implies that

27
1 1
/ (sin4p)?@n=1120n (cog4)) 2% dop = 23 (an + 32 0n-1 + 5) .
0

Finally, we deal with the integral with respect to df; for ¢ = 1 to n — 2. Using the
fact that, for a,b > —1, it holds that

s

5 1 1 b+l
/02(sin9)a(cos9)bd9 L <““2L %)

yields

Smgn k 2an+2an 1+ +2an gp1t+k— 1(0059 _k)2an *

_ / Sln@n k 2an+2an 1+ t+2an—gyr1tk— 1((3089 7k)2an *d0,,
0

+/ (Smgn k)2an+2an—1+"'+2an7k+1+k71(COSen_k})2anfkd9n_k
5

k 1
an"’ +an k+1+2an7k+§

sm ek + 2))2an+2an 1+ +2an k1 tk— l(COS(Hn e+ 2))2% kd9n i
0
1

p
k
- ﬂ an+"'+anfk+l+§7anfk+§
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because sin( + 5) = cosf and cos(f + ) = —sin(f). By gathering the above
calculations, the integral I becomes
n— -1 1 1
] = 2a1+-..+an+TIF <a1 + - Fa, + nT) Ié; (an + §7an71 + 5)

n—1
k 1

P 1N T ant BT (a1 + 3
2 (an+ an-1+1)

— 2a1+...+an+n7711" (al ++an+

) n bt + )T (a4 )
[ (an +an—1+ "+ ap_p + )

= gt tan +n11"(a1+ +an+nTl)F<a1+1)--~F<an+l).
ICEE )

This concludes the proof. 0
The following result gives the asymptotic behavior of the coefficients when n — oo.

Lemma 8. For every 1 < il, <Ll < n, let ag, .. be as defined in ([0). As

V2K 41
in (I3), let 2d; +1,2ds,- -+ ,2d,.,- -+ ,2d, denote the number of times the integer r
appears in the sequence {21, io,+++ iokt1} with > dr = k. Then when n — oo,
1 (2d1 + DI(2d2)! - - - (2d,)!
iy o yiggepr ™ k! (2k )

(d1!d2! ceedp!)?
1
—2k(

where

A = {2d1 + 1, 2d2, e ,2dn} \ {0, 1}
and |A| 1is the cardinal of A.
Proof: We recall the following explicit formula for the Hermite polynomials

(5]

_1\!
Hd(l’) =d! Z %l’d_%. (15)
=0

Using ([I3) and ([I2)) we can write

iy, ingys = B [V%W(%)szﬁl (W (1)) Haa, (W(p2)) - - Haa, (W(pn))

di - do 1)ltHatetin
= (2d1 +1)!(2d2)! -~ (2dy) Z Z Z 211+12+ Flaly 1)
11=0102=0

E [V%W(%)QdﬁzmlW((pz)zdrzb o W(%l)zdnlen}

. (2dy + 1 — 215)1(2ds — 215)!- - (2d,, — 20,,)!

At this point, we use Lemma [7 to rewrite the expectation in the last equation.
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E | W (1) Hay 1 (W(01) Hagy (W(g2)) - Hag, (W(gn))

Va
di - d» 1)btlat
= (2di + 1)!(2do)! - - (2dn) Z Z Z 211+z2+ Flaly LI
1i=01=0  1,=0

9d1+14dz++tdn— (I Hat - +1n )+ 25+
“(@m)F (2dy + 1 — 209)/(2dz — 202)1 - (2d,, — 21,)!
D(di+1+de+-+dy—(lh+la+ - +1)+ 252)
D(di+1+dot - +dy—(Li+lat-+1y)+2)

1 1 1
T'(d 1-1 — T (dy —1 —---T'(d, =1, +=
<1+ 1+2> <2 2+2) ( +2>

di - d2 1)t tin
= (2d1 +1)1(2d2)! -~ (2dy) Z Z Z 92( l1+l2+ F) !
1L=015=0  1,=0

2d1+1+d2+ ernfg
“ T3 (2d) -1 = 202)!(2ds — 20a)! - (2dy, — 20,,)!
D(di+1+de+-+dy— (L +la+ - +1)+ 252)
T(dy+14dat tdn—(g+lattln)+2)

1 1 1
XF(d1+1—ll+§>F<d2—12+§)"'F(dn—ln+§>.

We claim that for any integers d > [,

(1) 1 272d(—1)!
5 M1(2d — )1 (d S 5) =V Ca (16)

Recall the relation satisfied by the Gamma function: for every z > 0,
1
['(z 4 1) = 2T'(2) and T'(2)I'(z + 5) = /T2 7?71 (22). (17)

Then
! 1 _ 1
g (11 3) — raa
—1)! I'(2d — 21 +2) 1-2(d—1+1
B 2—2115(211)—21)! T(d—1+1) Va2 ey
1) _
- \/;2_%“(2(6[ i)m)! d —(QZC)Z!(2CQIZ—+2?4!— 1)
—2d/_1\!
- VA CE! !

and (@) is proved. In the same way, using only the second relation in ([IT), we
obtain

Ca

27172d1 (_l)ll

i cl. (18)

( 1)l1 F d —|— 1 l + 1 = \/_71
_ Z ) =
2_2l111!(2d1 +1- 211)' ! ! 2
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Putting together (I8) and (I8]) we find

E V%W(%)szlﬂ (W (1)) Haa, (W(p2)) - - - Haa, (W(%ﬁn))}

o (2dy +1)1(2d)! - - - (an) —(dattdn)— 1 & 1)aHat ot ol In
- dyldy! - d,] ' ZZ ZZ Z o Cd, - Ca,
1=015=0

XF(d1+1+d2+-~-+dn—(ll+lz+-~-+ln)+"71)
D(di+1+de+-+dy—(h+lat+1)+2)
By Stirling’s formula, when n goes to infinity, we have
P(di+14dpt-tdn—(htlbt -+l)+25) 1
D(di+1+do+-+dy—(h+la++h)+5) Ve 1I-—(+ +h)+

Therefore we need to study the behavior of the sequence

|3

dy do 1
=33 - Z 1)ttt gh Ol
11=01=0  1,=0 ' "\/k+1_(ll+"'+ln)+%
as n — co. We can write ) )
th = —V2g(—
\/ﬁ\/— 9(=)
where
1 2 1
-5 5 Sy |
11=015=0 ' "V2k+2— (it )+ 1
Since for every d > 1
d
Y (=nici=0
1=0
we clearly have g(0) = 0. The ¢** derivative of g at zero is
2 1
9 @(0) = (~1)7 (‘JT) 2k +2— (I + -+ 1))
Repeatedly using the relation C* = %Cs } we can prove that
d
> (=nichie =0
1=0
for every ¢ = 0,1,---,d — 1. Therefore the first non-zero term in the Taylor

decomposition of the function g around zero is

di da
l1+l2+~~~+ln Iy ln 7d1 dn
E E E ch ...l

11=012=0 =0

which appears when we take the derivative of order d; + dy + - - - 4+ d,,. We obtain
that, for = close to zero,

(2(d1 +---+d,)— 1! . L od;
gla) ~ (=1)hF 22 2di T Tdn [ (D4c i <Hdy, - dy)al?
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where

A={dy, - ,d,} \ {0} ={2d1 + 1,2ds,--- ,2d,} \ {0,1}
and H(dy, - ,d,) is the coefficient of {{*-..1% in the expansion of (I; + --- +
l,)%1t+dn That is

dp—1 (dl + e + dn)!

d
% Oy g = T

d
H(dy, - ,d,)=C%" i,

di+-+dn

We finally have

(2d1 + 1)'(2d2)' A (2dn)!2—(d1+---+dn)(_1)d1+---+dn (2(d1 + st + dn) - 1)”

iy e igppr = (dﬂdg! ~ 'dn!)2 9di++-+dn
n dj
(T > Ci)lj il d THA|
—01.—0 1 n n
J=Vl;=
n dj
= K(2k—1)! A 272k(—1) H (—D)4Cy
j=01;=0
(2d1 +1)!(2ds)! -+ (2dn)!, o, o [ T 1
= k! — 1 _ A
kl(2k — 1)l CAT ARSI (—1) jl;[ot(dg) 7l
with fori =1,--- ,n
d;
t(d;) = Z(_l)l] Gty (19)
1;=0
O
4. COMPUTATION OF THE BERRY-ESSEEN BOUND
Let us first recall the following result (see [5], page 53): for 2 < p < 3,
sup |P(F, < z) — ®(z)| < 25E (|Z|[")n'~% (20)

z€R
where Z is a standard normal random variable and ® is its repartition function. In
particular for p = 3 we get

sup |P(F, < z) — ®(z)| < 25E (|Z]*) n" .

z€R
We now compute the Berry-Essen bound obtained via Malliavin calculus in order
to compare it with (20). Formula ([IQ) yields

2k +1 - N
Do Fn = Zm Z ail,"',i2k+112k ((Soil ®"'®90i2k:1) )('7a) (21)
k>0 Cin,e zkgs1=1

(here (i, ®- - ®@4,,_, )~ denotes the symmetrization of the function ¢;, ®- - ®v;,
with respect to its k variables) and

n

_ 1 ~
Da(_L) 1Fn - ; m . Z ai17"'7i2k+112/€ ((Spil X ® Spizk+1) ) ('7 O‘)'

i1, i2kp 41 =1
(22)
It is now possible to calculate the quantity

E (1 (DF,, D(~L)"'F,))*
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more explicitly by using the product formula [B) and the isometry of multiple
stochastic integrals.

Lemma 9. For every n > 2,

E (1— (DF,,D(—=L)'F,))?

B Z:l(%n)!. Zﬂ Z:H(Qm—k)!zﬁ%n—k—i-r—i—l Z B
m> U1, lom = k=0 r>0 UL, Upgp1=1

2
1,u2, sUr4-1,21, stk 1,u2, sUr+41,1k41, s12m

Proof: Using ([2I) and ([22), we can calculate the following quantity.

1 1 n n
—1
<DFn7D(_L) Fn> = E (2I€)' (2[—|— 1)' E Qg e ingot1 E Ay, jorga
k>0 i1, iok41=1 Jiysg2i41=1

X /O dalag ((0i, @+ @ @igr)”) ()l ((95, @+ ® 0y y)™) ()

1 1 n n n
= Z (Q—k)'mz Z auﬁih...ﬁi% Z auyjh...yjzt
k,1>0 u=1141, ,igr=1 Jisgar=1

X Iog ((9011 Q@ Sﬁ’m)) Iy ((S"jl X ® Piaj )) .
The product formula (@) applied to the last equality yields

n n
E Qu iy, iy § QAu,jy,-- ,jzzI2/€ ((9011 Q@ ® (pi2k:)) Iy (((pjl R Pia; ))
i1, G2 =1 J1s =1
(2k)A(2D) n n n
— r r . . . .
- E T!OQkOQl E E E Ay, iz, yiok—p Qu,us, - U j1, o jar—r
r=0 U,y Up =141, iog—pr=171, Jor—r=1

X Iogt21-2r (9iy ® - @ Piny_, @ Pj; @+ @ @jy_,)
and therefore we obtain

(DF,,D(—L)"'F,)

) L emnen
= Z e 1C5,.C5,
1 1 Z aslagl
o (2k)! (20 + 1)! —
n n n
x Z Z Z Quyyug, - uptyin, e siop—r Qurug, s upgn, g1, s j2r—r
Uiy U1 =101, o =1 j1, Jor—r=1
XI2k+2l—2T ((pil QO Pigy , D @+ @ spjzzfr) . (23)

Remark 4. The chaos of order zero in the above expression is obtained for k = [
and r = 2k. It is therefore equal to

1 1 n )
Z (2k)! (2k 4+ 1)! (2k)! Z @iy iggga

k>0 i1, yiagp41=1
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which is also equal to 1 as follows from Lemma Therefore it will vanish when
we consider the difference 1 — (DF,,, D(—L)~'F,). This difference will have only
chaoses of even orders.

By changing the order of summation and by using the changes of indices 2k —r = k’
and 2l —r = [I’, we can write

(DF,,D(-L)"'F, >

_Z ZZ 2k: 2l+1) i

r>0  2k>r2l>r

n
X E E E Quyug, o upg 1,01, yiok—p QUi e, Ur 1,01, 21—
U, Upp1 =141, Jiog—r=1j1, " J2r—r=1

X Iogt21—2r (%1 ® @ Pig_, ®P;, O Qi)

1
= 22 (k—i—r) T Gl

r>0k,[>0

X E E E Quy ug, - Upg1,in, i Qur,ug, o ey 1,41, 01

U, Upp1 =141, i =1 g1, 51 =1

XIopq21—2r (P, ® - @ @4, @ s, ® - @ pj,)

1 1
= !
Z Z k + ,,.) (l L+ 1) Ck+7‘Cl+r

k,0>07r>0

X E E E Quy ug, ot g1,in, i Qur,ug, o Ue g 1,41, 01

U,y Upp1 =141, i =1 g1, 51 =1

XIiti (i, ® - Q@ i, ® sy ® -+ @ pj) -

Once again using a change of indices (k + 1 = m), we obtain
<DFn,D(—L)*1F )

N ZZZ'kJrr (m— k—f—r—l—l)ck” ek

m>0k=0r>0

X E E E Quy,ug, g 1,in, i Qui,ug, - Ur 1,01, Jm—k

ULy U1 =141, g =1 g1, Jm k=1

"®<Pik®<ﬂj1®"'®<ﬂjm k)

(‘Pn
- Zk—mzﬂm e lDY Z

Uty Upp1 =111, iy =1

KOy s,y g 1,01, 50 QU oy e U1, Tgp 15 7imIm (‘Pil Q- Q@i & Pirt1 Q@ @im)

3

where at the end we renamed the indices 1, -, Jm—m @S tg41, - ,%m. We obtain

<DFn7D(_L)71Fn> - Z Im(hsg))
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where

m n n
W (eI rrersaa S VDY
m k! (m — k)! rlm—k+r+1

k=0 r>0 UL, Up g1 =141, iy, =1

Ay g, g1yt i QU ug, o Ur g1 i1, im

Spld®"'®90ik®90ik+1®"'®(pim (24)

Let us make some comments about this result before going any further. These
remarks will simplify the expression that we have just obtained. As follows from
Lemma 2 the coefficients a;, ... ;, are zero if k is even. Therefore, the numbers
r4+ 14k and r+1+m — k must be odd. This implies that m must be even and this
is coherent with our previous observation (see Remark [ that the chaos expansion
of (DF,, D(—L)~'F,) only contains chaoses of even orders. The second comment
concerns the chaos of order zero. If m = 0 then £ = 0 and we obtain

BO=% i S ZN >ooal -

r>0uy, - Upp1=1 r>1 Up e Up=1
Thus, because the summand ET>1 2wy 1 Gy oo, — L 18 zero by using
Lemma [6]
1 n
SR O 5L D SIS B SP L
r>1 'ul,»»»,ur:1 m>1
Y B
m>1

with hézz given by (24)).

Using the isometry formula of multiple integrals in order to compute the L? norm

of the above expression and noticing that the function hg:g is symmetric, we find
that

E (((DFn,D(—L)*lFrJ - 1)2) = Y @m)UhS, hSm) o2

m>1
2m
2(2 ) 11 1 Z 1 1
= m)! ——
k!l!(2m—k'(2m—l' r'q'2m k+r+12m—1+q+1

m>1 k=0

n n n
x> > X

Ui, Urp1 =101, g1 =111, Jiom =1

KOy g, 1,01, i Gy g o U1 g 150 si2m QU1Lv2, 0 Vg1, 51k QU102 Vg1 ik,

n n

U 1 1
= D emt ) ZH(2m—k)!§ﬁzm—k+r+1 2.

m>1 1,0 ylom =1 k=0 r> UL, Upgp1=1
2
Quy g, Urg1,01,00 0k Qur s, Up 1,01, -,izm) )
which is the desired result. ]

Before proving our main result, let us discuss a particular case as an exemple
in order to better understand the general phenomenon. This is both useful and

yi2m
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important in order to have a good overview of the functioning of a simple case.
Assume that k£ = 0 and [ = 1. The corresponding summand in (23) reduces to

1 n n
30 Z y Z Qujr g2 12 (95 @ ©55) -
Tu=1 J1,J2=1
Its L?-norm is
1 n n 2 1 n n 2
3 Z < auau,jl,j2> = 3 Z (Z auau,jl,j1>
Ji,j2=1 \u=1 ji=1 \u=1

because ay j, j, = 0 if j1 # jo. Using (I4), it reduces to a quantity equivalent to

1
g(m%a%,m +n((n —1)ara1,1,2)°)

which, using (I4)) again, is of order

() () ()

The following theorem, which gathers all of the previous results of the paper, is the
general equivalent of the toy exemple presented above.

Theorem. For any integer n > 2,

E (((DFn,D(—L)‘an) - 1)2) < %0

with
2
= 1 1 1
= 2m)! — k 25
o D em > 55 (2m — 2k)! 2 @i zm sk icmnm | (29)
m>1 k=0 >0
) 2
<! 1 1 1
k
* ];) 2k + 1)! (2m — 2k — 1) Z% o1 zm 2oy m)
and where c(k,r,m) is given by (28).
Proof: Observe that the integers »+ 1+ k and r + 1+ 2m — k both have to be odd
numbers (otherwise the coefficients @u, uy, .. jupi1,i1, i A0 Quy s, cwpgrinsr o sizm
vanish). This implies two cases: either r is even and k is even or r is odd and k is
odd. Thus, we can write
E (((DFn, D(~L)"'E,) — 1)2)
= 2m)! —
2emt > | X g (2m — 2k)! 2 @) 2m — 2k + 2r + 1 2
m>1 i1, lam =1 \ k=0 r>0 Uy, U2pgp1=1
2
Quy g, uary i1, o, Qu,ug, o Uorg okt 7i2m)
ICUIED DN DY D 2
| — —1)! —1)! —
= o e 2k + 1) (2m — 2k — 1)! = 2r—1)!2m—2k+2r+1 S

2
Quy g, ugr ity ioptr Qur,ug, o uorisggo, -,izm) . (26)
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Let us treat the first part of the sum (26]). Assume that the number of common num-

bers occurring in the sets {uy, -, u9,+1} and {1, -+ ,i2; } is ¢ and and the number
of common numbers occurring in the sets {uq, -+, u2,+1} and {iog41,- -, t2m—2k}
is y. This can be formally written as
Hut, - uzepn } O {{in, - i} =2
and
Hut, - uzrg1} N {iory1, - iom—ok}| = ¥

It is clear that
x<(2r+1)A2kand y < (2r +1) A 2m — 2k.

This also implies x + y < 2m. According to the definitions of x and vy, it can be
observed that x and y must be even. We will denote them by 2z and 2y from now
on.

The next step in the proof is to determine how many distinct sequences of numbers
can occur in the set

{ur, - yugegr,in, oo dok )

We can have sequences of lengths (all of the lengths that we consider from now
on are greater or equal to one) 2¢y,2c¢g, - -+ ,2¢;, with 2(¢; + -+ 4 ¢;) = 2 in the
set {uy, - ,ugpq1} N {1, - ,i2r} but also sequences of lengths 2dq,2ds, - -, 2d;,
with 2(dy + - - +d,) = 2k — 2z in the set {i1, -+ ,i25} \ {v1, -+, u2r41} as well as
sequences of lengths 2e; + 1, 2e9, - -+ ,2¢;, with 1 4+2(e;+---+¢€;,) =2r+1—2zin

the set {u1,- -+ ,u2r41} \ {#1, - ,%2x}. In this last sequence we have one (and only
one) length equal to 1 (because we are allowed to choose only one odd number in
the set {u1,- -+ ,u2rq1} \ {i1, - ,i2r}). We will have, if we have a configuration as
above,

a it inn ey C e)n_%_ll_lr“’
UL, U2,y U2r 41,21, 502k — -

where
(2¢1)! -+ (2¢)(2e1 + 1)!(2e2)! - - - (2e45)!

c(r, e, e) =rl(2r—1)!
( ) ( ) (cr!---eler! e, 1)?

UCIRRICHLCIERICH

(27)
and the constants ¢ are given by ([I9).

In the same way, assuming that we have sequences of lengths 2f1,2fa, -+ ,2f;, with
2(fi+ -+ fi,) = 2m — 2k — 2y in the set {iogt1, - ,i2m} \ {v1, - ,u241} and
sequences of lengths 2g; + 1,22, -+ ,2¢g;; with 1 +2(g1 +---4+¢5) =2r+1 -2y
in the set {ul, cee ,’U,27«+1} \ {i2k+1, ce ,igm}. We will obtain

Ll 541
) . 1—la—ls
Ay ug, o Uorg1,i2k41, " Hizn < c(k,c, d)n 2

with ¢(k, ¢, d) defined as in [27)). The sum over uy, -+ , uy41 from 1 to n reduces to
a sum of [; + I3 + l5 — 1 distinct indices from 1 to n. Therefore we get
n
E Quy,ug, - ugrg1,in, o iok Qui,ue, - Uz 1,iok 41, i2n
UL, U2ep1 =1

< c(k,r, m)n*ll*b*l4

with

c(k,rym) = Z Z Z Z c(rye,e)e(k,c,d).  (28)

r+y=2mci+-+cyy =r di+-Fdi, =y ert+- ey =r—w
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We need to consider the sum iy, --- ,i9,, from 1 to n. It reduces to a sum over
lo + 14 distinct indices. Thus

> |\ X @ @i >
i1, yi2m =1 \ k=0 2k! (2m - 2k)! r>0 (2r)t2m — 2k +2r +1 Uy, g1 =1 U1, g1 =1
2
Quy ug, o Uorg,i1,00 5iokr Gurus, - uorg1,iokg1, 7i2m)
1 2 2m 1 1 1 1
< platla L i
=" <n211+l2+l4> ;2/& (2m — 2k)! ;) (2r)! 2m—2/€+2r+1c( 7y )
2 B 2
1 1 1 1 1

= 2t 511 k

2t kz_o 2k! (2m — 2k)! ;) @riam ok par g1 m)

Note that either Iy + 13 > 1 or I3 + l4 > 1 (this is true because m > 1). Then this
term is at most of order of n=!.

Let us now look at the second part of the sum in ([26). Suppose that in the
sets {wr, -, uor N {1, - yiokga by {01, fonpr f \{uwa, - uark, {ua, oo uen b\
{i1, - Jiong1}, {iokro, - s lam—ak \{ur, - uar by {ur, - uge P\ {d2ky2, -+ i2m—2k}
we have sequences with lengths

P1, P2, P3, P4, Ps

respectively (the analogous of Iy, - - ,l5 above). Then the behavior with respect to
n of
n
E Quyug, sugryin, - siokg1 Qui,ug, - uzpiskya, - izm
Up,e u2r=1

is of order of np1+p3m. Therefore the behavior with respect to n of the

second sum in (28] is of order
2
np2t1l+patl 1 — 1 )
nl + 2p1 + po + pa n2p1+p2+pa

Again, since either p; + p2 > 1 or p; + py > 1, the behavior of the term is at most
of order n~!. Therefore

E (((DFn,D(—L)‘an) - 1)2) <&

n

where the constant ¢g is given by ([23). The fact that the sum over m is finite is
a consequence of the following argument: (DF,,, D(—L)~'F,) belongs to D>2(Q)
(which is true based on the derivation rule - Exercise 1.2.13 in [II]- and since
F,, belongs to D>*? as a consequence of Proposition 1.2.3 in [I1]), this implies
that > m!mth%’)H% < oo for every k where A s given by (24]). Therefore, the
constant ¢(m, k, r) defined in (28] behaves at most as a power function with respect
to m. (]

Corollary 1. Let J,,(F,) denotes the projection on the m™ Wiener chaos of the
random variable F,,. Then for every m > 1 the sequence J,(F,) converges as
n — oo to a standard normal random variable.

Proof: The proof is a consequence of the proof of Theorem [4] O
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