# Amphicheiral links with special properties, II 

Teruhisa KADOKAMI

July 11, 2011


#### Abstract

We determine prime amphicheiral links with at least 2 components and up to 11 crossings. There are 27 such links. We check also special amphicheiralities. Most of prime links with up to 11 crossings are detected not to be amphicheiral by a condition on the Jones polynomial. For the rest links, we applied conditions from the Alexander polynomial. We added new necessary conditions for a special case.


## 1 Introduction

Let $L=K_{1} \cup \cdots \cup K_{r}$ be an oriented $r$-component link in $S^{3}$ with $r \geq 1$. For an oriented knot $K$, we denote the orientation-reversed knot by $-K$. If $\varphi$ is an orientation-reversing (orientation-preserving, respectively) homeomorphism of $S^{3}$ so that $\varphi\left(K_{i}\right)=\varepsilon_{\sigma(i)} K_{\sigma(i)}$ for all $i=1, \ldots, r$ where $\varepsilon_{i}=+$ or - , and $\sigma$ is a permutation of $\{1,2, \ldots, r\}$, then $L$ is said an $\left(\varepsilon_{1}, \ldots, \varepsilon_{r} ; \sigma\right)$-amphicheiral link (an $\left(\varepsilon_{1}, \ldots, \varepsilon_{r} ; \sigma\right)$-invertible link, respectively). A term "amphicheiral link" is used as a general term for an $\left(\varepsilon_{1}, \ldots, \varepsilon_{r} ; \sigma\right)$-amphicheiral link. A link is said an interchangeable link if it is an $\left(\varepsilon_{1}, \ldots, \varepsilon_{r} ; \sigma\right)$-invertible link such that $\sigma$ is not the identity. An $\left(\varepsilon_{1}, \ldots, \varepsilon_{r} ; \sigma\right)$-invertible link is said an invertible link simply if there exists $1 \leq i \leq r$ such that $\varepsilon_{i}=-$. If $\sigma$ is the identity, then an amphicheiral link is said a component-preservingly amphicheiral link, and $\sigma$ may be omitted from the notation. If every $\varepsilon_{i}=\varepsilon$ is identical for all $i=1, \ldots, r$ (including the case that $\sigma$ is not the identity), then an $\left(\varepsilon_{1}, \ldots, \varepsilon_{r} ; \sigma\right)$-amphicheiral link (an $\left(\varepsilon_{1}, \ldots, \varepsilon_{r} ; \sigma\right)$-invertible link, respectively) is said an $(\varepsilon)$-amphicheiral link (an $(\varepsilon)$-invertible link, respectively). We use the notations $+=+1=1$ and $-=-1$. A link $L$ with at least 2 -component is said an algebraically split link if the linking number of every 2 -component sublink of $L$ is zero. We note that a component-preservingly $(\varepsilon)$-amphicheiral link is an algebraically split link.

Necessary conditions for the Alexander polynomials of amphicheiral knots are studied by R. Hartley [4], R. Hartley and A. Kawauchi [6], and A. Kawauchi [13] (cf. Lemma 2.2). In [13], non-invertibility of $8_{17}$ is firstly proved by the conditions. On the other

[^0]hand, T. Sakai [21] proved that any one-variable Laurent polynomial $f(t)$ over $\mathbb{Z}$ such that $f(t)=f\left(t^{-1}\right)$ and $f(1)=1$ is realized by the Alexander polynomial of a strongly invertible knot in $S^{3}$. B. Jiang, X. Lin, Shicheng Wang and Y. Wu [8] showed that (1) a twisted Whitehead doubled knot is amphicheiral if and only if it is the unknot or the figure eight knot, and (2) a prime link with at least 2 components and up to 9 crossings is component-preservingly ( + )-amphicheiral if and only if it is the Borromean rings. They used S. Kojima and M. Yamasaki's $\eta$-function [15]. Shida Wang [26] determined prime component-preservingly (+)-amphicheiral links with at least 2 components and with up to 11 crossings by the same method as [8]. There are four such links (cf. Theorem 1.3 (3)). For geometric studies of symmetries of arborescent knots, see F. Bonahon and L. C. Siebenmann [2]. The author [10] studied necessary conditions for the Alexander polynomials of algebraically split component-preservingly amphicheiral links by computing the Reidemeister torsions of surgered manifolds along the link (cf. Lemma 3.5). The author and A. Kawauchi [11] obtained necessary conditions by invariants deduced from the quadratic forms of a link [12, 14], and by using the conditions they showed that the Alexander polynomial of an algebraically split component-preservingly $(\varepsilon)$ amphicheiral link with even components is zero (cf. Conjecture 4.1) and determined amphicheiral links with up to 9 crossings (cf. Lemma 3.6).

We determine prime amphicheiral links with at least 2 components and up to 11 crossings. For a link with the crossing number up to 9 , we use the notation of D. Rolfsen's book [20], and for a link with the crossing number 10 or 11 , we use a slightly modified notation from M. Thistlethwaite's table on D. Bar-Natan and S. Morrison's website [1] (see Section 3). In the present paper, we used information of the Jones polynomial and the multi-variable Alexander polynomial for the class on the website [1]. For prime links with up to 10 and 11 crossings, firstly we checked a condition on the Jones polynomial (cf. Lemma 3.1). Most of them are ruled out by the condition. For the rest links, we applied the same conditions on the Alexander polynomial as in [11] (cf. Lemma 3.2, Lemma 3.3, Lemma 3.4, Lemma 3.5 and Lemma 3.6). $10_{a 51}^{2}$ and $11_{n 127}^{2}$ could not be detected not to be amphicheiral by the conditions and the HOMFLY polynomial (see Figure 4). Thus we made the following condition for a special case (cf. Lemma 1.1) which is inspired by the method in [8], and the result of $[6,13]$ on the Alexander polynomials of amphicheiral knots. The conditions would be useful in determining the link-symmetric group of a link (cf. [7, 9, 27]).

For an $r$-component link $L=K_{1} \cup \ldots \cup K_{r}$, let $\Delta_{L}\left(t_{1}, \ldots, t_{r}\right)$ be the $r$-variable Alexander polynomial of $L$ which is an element of the $r$-variable Laurent polynomial ring $\mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{r}^{ \pm 1}\right]$ over $\mathbb{Z}$ where $t_{i}(i=1, \ldots, r)$ is a variable corresponding to a meridian of $K_{i}$. For two elements $A$ and $B$ in $\mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{r}^{ \pm 1}\right]\left((\mathbb{Z} / 2 \mathbb{Z})\left[t_{1}^{ \pm 1}, \ldots, t_{r}^{ \pm 1}\right]\right.$, respectively $)$, we denote by $A \doteq B\left(A \doteq_{2} B\right.$, respectively) if they are equal up to multiplications of trivial units. A one variable Laurent polynomial $r(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$ is of type $X$ if there are integers $n \geq 0$ and $\lambda \geq 3$ with $\lambda$ odd, and $f_{i}(t) \in \mathbb{Z}\left[t, t^{-1}\right](i=0,1, \ldots, n)$ such that $f_{i}(t) \doteq f_{i}\left(t^{-1}\right),\left|f_{i}(1)\right|=1$, and for $i>0, f_{i}(t) \dot{=}_{2} f_{0}(t)^{2^{i}} p_{\lambda}(t)^{2^{i-1}}$ where
$p_{\lambda}(t)=\left(t^{\lambda}-1\right) /(t-1)$, and

$$
r(t) \doteq \begin{cases}f_{0}(t)^{2} & (n=0) \\ f_{0}(t)^{2} f_{1}(t) \cdots f_{n}(t) & (n \geq 1)\end{cases}
$$

Lemma 1.1 Let $L=K_{1} \cup K_{2}$ be an oriented 2-component link in $S^{3}$ such that the linking number $\ell$ of $L$ is not zero, and $K_{2}$ is the trivial knot. Let $\tilde{K}$ be the lifted knot of $K_{1}$ in the $p$-fold branched covering over $K_{2}$ where $p \geq 2$ is coprime to $\ell$.
(1) If $L$ is component-preservingly amphicheiral, then $\tilde{K}$ is an amphicheiral knot.
(2) If $L$ is component-preservingly $(-,+)$-amphicheiral, then $\tilde{K}$ is a $(-)$-amphicheiral $k n o t$, and there is an element $f(t) \in \mathbb{Z}\left[t, t^{-1}\right]$ such that $|f(1)|=1, f\left(t^{-1}\right) \doteq f(-t)$, and

$$
\Delta_{\tilde{K}}\left(t^{2}\right) \doteq \prod_{i=1}^{p-1} \Delta_{L}\left(t^{2}, \zeta_{p}^{i}\right) \doteq f(t) f\left(t^{-1}\right)
$$

where $\zeta_{p}$ is a primitive $p$-th root of unity.
(3) If $L$ is component-preservingly $(+,-)$-amphicheiral, then $\tilde{K}$ is a $(+)$-amphicheiral $k n o t$, and there are $r_{j}(t) \in \mathbb{Z}\left[t, t^{-1}\right]$ of type $X$ and an odd number $\alpha_{j}(j=1, \ldots, m)$ such that

$$
\Delta_{\tilde{K}}(t) \doteq \prod_{i=1}^{p-1} \Delta_{L}\left(t, \zeta_{p}^{i}\right) \doteq \prod_{j=1}^{m} r_{j}\left(t^{\alpha_{j}}\right)
$$

where $\zeta_{p}$ is a primitive $p$-th root of unity. In particular, if $\tilde{K}$ is hyperbolic, then we can take $m=1$ and $\alpha_{1}=1$.

Corollary 1.2 Under the same setting as Lemma 1.1, if L is $(-,+)$-amphicheiral, then in the prime factorization of $\left|\Delta_{\tilde{K}}(-1)\right|$, the power of a prime which is congruent to 3 modulo 4 is even. In particular, if $\ell$ is odd, then $\left|\Delta_{L}(-1,-1)\right|$ satisfies the condition.

Let $\mathcal{A}_{n}\left(\mathcal{C}_{n}\right.$, respectively) be the set of prime amphicheiral links (component-preservingly amphicheiral links, respectively) with at least 2 components and up to $n$ crossings, and $\mathcal{A}_{n}^{\varepsilon}$ the subset of $\mathcal{A}_{n}$ consisting of $(\varepsilon)$-amphicheiral links ( $\mathcal{C}_{n}^{\varepsilon}$ the subset of $\mathcal{C}_{n}$ consisting of component-preservingly ( $\varepsilon$ )-amphicheiral links, respectively) where $\varepsilon=+$ or - . It is clear that $\mathcal{A}_{n} \supset \mathcal{C}_{n}, \mathcal{A}_{n}^{ \pm} \supset \mathcal{C}_{n}^{ \pm}, \mathcal{A}_{n} \supset \mathcal{A}_{n}^{ \pm}$and $\mathcal{C}_{n} \supset \mathcal{C}_{n}^{ \pm}$.

Theorem 1.3 Under the setting above, we have the following:
(1) $\mathcal{C}_{11}=\left\{2_{1}^{2}, 6_{2}^{2}, 6_{2}^{3}, 8_{8}^{2}, 8_{6}^{3}, 8_{3}^{4}\right.$,

$$
\begin{aligned}
& 10_{a 56}^{2}, 10_{a 81}^{2}, 10_{a 83}^{2}, 10_{a 86}^{2}, 10_{a 116}^{2}, 10_{a 120}^{2}, 10_{a 121}^{2}, 10_{a 136}^{3}, 10_{a 140}^{3}, 10_{a 169}^{4}, \\
& \left.10_{n 36}^{2}, 10_{n 46}^{2}, 10_{n 107}^{4}\right\} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } \mathcal{A}_{11} \backslash \mathcal{C}_{11}=\left\{8_{4}^{3}, 9_{61}^{2}, 10_{a 151}^{3}, 10_{a 156}^{3}, 10_{a 158}^{3}, 10_{n 59}^{2}, 10_{n 105}^{4}, 11_{n 247}^{2}\right\} . \\
& \text { (3) } \mathcal{C}_{11}^{+}=\left\{6_{2}^{3}, 10_{a 140}^{3}, 10_{n 36}^{2}, 10_{n 107}^{4}\right\}, \mathcal{C}_{11}^{-}=\left\{10_{n 36}^{2}\right\} . \\
& \text { (4) } \mathcal{A}_{11}^{+} \backslash \mathcal{C}_{11}^{+}=\left\{8_{4}^{3}, 8_{6}^{3}, 8_{3}^{4}, 10_{a 151}^{3}, 10_{n 59}^{2}, 11_{n 247}^{2}\right\}, \\
& \\
& \text { } \mathcal{A}_{11}^{-} \backslash \mathcal{C}_{11}^{-}=\left\{6_{2}^{3}, 8_{4}^{3}, 8_{6}^{3}, 8_{3}^{4}, 10_{a 140}^{3}, 10_{a 151}^{3}, 10_{n 59}^{2}, 10_{n 107}^{4}, 11_{n 247}^{2}\right\} .
\end{aligned}
$$

We remark that Theorem 1.3 (3) corresponds to the theorem of Shida Wang [26].
The following would also be useful if we determine prime amphicheiral links with the crossing number greater than 11 in the future (see also Conjecture 4.2 in Section 4).

Lemma 1.4 The minimal crossing number of an alternating amphicheiral link is even.
In Section 2, we prove Lemma 1.1, Corollary 1.2 and Lemma 1.4. In Section 3, we prove Theorem 1.3. In Section 4, we give some remarks related to our previous results [10].

## 2 Proof of Lemma 1.1, Corollary 1.2 and Lemma 1.4

To show Lemma 1.1, we need two results.
K. Murasugi [18] gave a formula of the Alexander polynomial of a periodic knot in $S^{3}$, M. Sakuma [22] extended it to the case of periodic links, and V. G. Turaev [25] extended them for more general settings. In the present paper, we use only the case of periodic knots in $S^{3}$.

Lemma 2.1 (Murasugi [18]; Sakuma [22]; Turaev [25]) Let $L=K_{1} \cup \ldots \cup K_{r} \cup K_{r+1}$ be an $(r+1)$-component link in $S^{3}$ such that $r \geq 1$ and $K_{r+1}$ is the trivial knot. Let $\tilde{L}=\tilde{L}_{1} \cup \ldots \cup \tilde{L}_{r}$ be the lifted link in the $p$-fold branched covering over $K_{r+1}$ where $p \geq 2$ and $\tilde{L}_{i}$ is the lifted link of $K_{i}(i=1, \ldots, r)$. Then $\tilde{L}$ is a p-periodic link in $S^{3}$, and we have

$$
\Delta_{\tilde{L}}\left(t_{1}, \ldots, t_{r}\right) \doteq \prod_{i=1}^{p-1} \Delta_{L}\left(t_{1}, \ldots, t_{r}, \zeta_{p}^{i}\right)
$$

where $\zeta_{p}$ is a primitive $p$-th root of unity.
R. Hartley [4], R. Hartley and A. Kawauchi [6], and A. Kawauchi [13] gave necessary conditions on the Alexander polynomials of amphicheiral knots.

Lemma 2.2 (Hartley [4]; Hartley and Kawauchi [6]; Kawauchi [13])
(1) Let $K$ be a (-)-amphicheiral knot. Then there is an element $f(t) \in \mathbb{Z}\left[t, t^{-1}\right]$ such that $|f(1)|=1, f\left(t^{-1}\right) \doteq f(-t)$, and

$$
\Delta_{K}\left(t^{2}\right) \doteq f(t) f\left(t^{-1}\right)
$$

(2) Let $K$ be a (+)-amphicheiral knot. Then there are $r_{j}(t) \in \mathbb{Z}\left[t, t^{-1}\right]$ of type $X$ (cf. Section 1) and an odd number $\alpha_{j}(j=1, \ldots, m)$ such that

$$
\Delta_{K}(t) \doteq \prod_{j=1}^{m} r_{j}\left(t^{\alpha_{j}}\right)
$$

In particular, if $K$ is hyperbolic, then we can take $m=1$ and $\alpha_{1}=1$.
Proof of Lemma 1.1 Let $L=K_{1} \cup K_{2}$ be an oriented 2-component componentpreservingly amphicheiral link in $S^{3}$ with the linking number $\ell \neq 0$. Since the exterior of $L$ is orienation-preserving homeomorphic to that of the mirror image $L^{*}$ of $L$ with preserving boundary components (which may not preserve orientations), $\tilde{K}$ is amphicheiral for every $p$ which shows (1). Suppose that $L$ is $(-,+)$-amphicheiral. Then it is easy to see that $\tilde{K}$ is a $(-)$-amphicheiral knot, and the condition of the Alexander polynomial is obtained from Lemma 2.1 and Lemma 2.2 (1). Suppose that $L$ is $(+,-)$-amphicheiral. Then it is easy to see that $\tilde{K}$ is a $(+)$-amphicheiral knot, and the condition of the Alexander polynomial is obtained from Lemma 2.1 and Lemma 2.2 (2).

Proof of Corollary 1.2 By substituting $t=\sqrt{-1}$ in the equation in Lemma 1.1 (2) (or Lemma $2.2(1)$ ), and a result from elementary number theory on primes in $\mathbb{Z}[\sqrt{-1}]$, we have the result.

To show Lemma 1.4, we need two results.
Let $D=D_{1} \cup \ldots \cup D_{r}$ be an oriented link diagram for an $r$-component link $L=$ $K_{1} \cup \ldots \cup K_{r}, w(D)$ the writhe of $D$ which is the sum of the signs of the crossings, and $c(D)$ the the crossing number of $D$.

Lemma 2.3 In the situation above, let $D^{\prime}$ be an oriented diagram obtained from $D$ by reversing the orientation of the $i$-th component $D_{i}$. Then we have

$$
w\left(D^{\prime}\right)=w(D)-4 \sum_{\substack{1 \leq j \leq r \\ j \neq i}} \operatorname{lk}\left(K_{i}, K_{j}\right)
$$

where $\mathrm{lk}\left(K_{i}, K_{j}\right)$ is the linking number of $K_{i}$ and $K_{j}$, and $w(D)(\bmod 4)$ does not depend on the orientation of $D$.
W. Menasco and M. Thistlethwaite [16] gave the affirmative answer for Tait's flyping conjecture. For an alternating link $L$, a reduced diagram of $L$ is a diagram of $L$ which is an alternating diagram without nugatory crossings. A flyping is an operation on a link diagram.

Lemma 2.4 (Menasco and Thistlethwaite [16]) Let L be an oriented prime alternating link. Let $D$ and $D^{\prime}$ be two reduced diagrams of $L$. Then $D$ and $D^{\prime}$ are related by a finite sequence of flypings. As consequences, we have $w(D)=w\left(D^{\prime}\right)$, and $c(D)=c\left(D^{\prime}\right)$ which is the minimal crossing number of $L$.

Proof of Lemma 1.4 Let $L$ be an oriented prime alternating link, and $D$ a reduced diagram of $L$. By Lemma 2.4, w( $D$ ) is an invariant of $L$. By Lemma 2.3, $w(D)(\bmod 4)$ is an invariant of $L$ as an unoriented link. Let $D^{*}$ be the mirror image diagram of $D$. Suppose that $L$ is amphicheiral. Then we have $w\left(D^{*}\right)=-w(D) \equiv w(D)(\bmod 4)$, and hence $2 w(D) \equiv 0(\bmod 4)$. It implies that the crossing number of $L$ is even. Since a reduced diagram for a non-prime alternating link is realized by connected sums of reduced diagrams of the prime factors (see [19]), we have the result.

## 3 Amphicheiral links with up to 11 crossings

In this section, we determine prime amphicheiral links with at least 2 components and up to 11 crossings. For a link with the crossing number up to 9 , we use the notation of D. Rolfsen's book [20], and for a link with the crossing number 10 or 11 , we use a slightly modified notation from M. Thistlethwaite's table on D. Bar-Natan and S. Morrison's website [1] below. In Rolfsen's table [20], an $r$-component link such that $r \geq 2$ and the crossing number $c$ is denoted by $c_{k}^{r}$ where $k$ is the ordering of the link in the table. In Thistlethwaite's table [1], an $r$-component link such that $r \geq 2$ and the crossing number $c$ is denoted by Lcak or Lcnk where ' $a$ ' implies that the link is alternating, ' $n$ ' implies that the link is non-alternating, and $k$ is the ordering of the link in the table. We modify the notations L $c a k$ and $\mathrm{L} c n k$ into $c_{a k}^{r}$ and $c_{n k}^{r}$, respectively.

We raise some conditions on the Jones polynomial and the Alexander polynomial of an amphicheiral link without proofs. For an oriented $r$-component link $L=K_{1} \cup \ldots \cup K_{r}$, let $V_{L}(t)$ be the Jones polynomial of $L$ with one variable $t$, and $P_{L}(m, l)$ the HOMFLY polynomial of $L$ with two variables $m$ and $l$. Then $V_{L}(t)$ is an element of $\mathbb{Z}\left[t^{ \pm \frac{1}{2}}\right]$, and $P_{L}(m, l)$ is an element of $\mathbb{Z}\left[m^{ \pm 1}, l^{ \pm 1}\right]$. Let $L_{\varepsilon_{1}, \ldots, \varepsilon_{r}}=\varepsilon_{1} K_{1} \cup \ldots \cup \varepsilon_{r} K_{r}$ be an oriented link obtained from $L$ by changing the oriented $i$-th component $K_{i}$ into $\varepsilon_{i} K_{i}(i=1, \ldots, r)$ where $\varepsilon_{i}=+$ or - , and $-L=L_{-, \ldots,,}$. Let $L^{*}=K_{1}^{*} \cup \ldots \cup K_{r}^{*}$ be the mirror image of $L$ with the induced orientation.

Lemma 3.1 Under the settings above, we have the following:
(1) $V_{L}(t) \in t^{\frac{r+1}{2}} \cdot \mathbb{Z}\left[t^{ \pm 1}\right], V_{-L}(t)=V_{L}(t)$, and $V_{L^{*}}(t)=V_{L}\left(t^{-1}\right)$.
(2) $V_{L_{\varepsilon_{1}, \ldots, \varepsilon_{r}}}(t)=t^{a} \cdot V_{L}(t)$ where $a=\frac{3}{2} \sum_{1 \leq i<j \leq r}\left(1-\varepsilon_{i} \varepsilon_{j}\right) \operatorname{lk}\left(K_{i}, K_{j}\right)$ if $r \geq 2$, and $a=0$ if $r=1$.
(3) If $L$ is $\left(\varepsilon_{1}, \ldots, \varepsilon_{r} ; \sigma\right)$-amphicheiral, then we have $V_{L}\left(t^{-1}\right)=t^{a} \cdot V_{L}(t)$ where $a$ is the same as in (2).
(4) If $L$ is amphicheiral, then $V_{L}\left(t^{-1}\right)$ is equal to $V_{L}(t)$ up to multiplication of $t^{k}$ $(k \in \mathbb{Z})$ (i.e. the coefficients of $V_{L}(t)$ are symmetric).
(5) $P_{L}(m, l) \in(m l)^{r+1} \cdot \mathbb{Z}\left[m^{ \pm 2}, l^{ \pm 2}\right], P_{-L}(m, l)=P_{L}(m, l)$, and $P_{L^{*}}(m, l)=P_{L}\left(m, l^{-1}\right)$.
(6) If $L$ is $\left(\varepsilon_{1}, \ldots, \varepsilon_{r} ; \sigma\right)$-amphicheiral, then we have $P_{L_{\varepsilon_{1}, \ldots, \varepsilon_{r}}}(m, l)=P_{L}\left(m, l^{-1}\right)$.
(7) $V_{L}(t)=P_{L}\left(\sqrt{-1}\left(t^{\frac{1}{2}}-t^{-\frac{1}{2}}\right), \sqrt{-1} t\right)$.

Lemma 3.1 (1), (2), (5) and (7) are basic properties. It is easy to see that (3) and (4) are deduced by (1) and (2), and (6) is deduced by (5). Let $L_{+}, L_{-}$and $L_{0}$ be three oriented links such that they are identical except the local parts as in Figure 1.


Figure 1: $L_{+}, L_{-}$and $L_{0}$

We computed the HOMFLY polynomial of a link by the following skein relation.

$$
l P_{L_{+}}(m, l)+l^{-1} P_{L_{-}}(m, l)+m P_{L_{0}}(m, l)=0, \quad P_{U}(m, l)=1
$$

where $U$ implies the trivial knot.
Lemma 3.2 ([10, Lemma 2.5]) Let $L=K_{1} \cup \cdots \cup K_{r}$ be an $r$-component $\left(\varepsilon_{1}, \ldots, \varepsilon_{r} ; \sigma\right)$ amphicheiral link where $\varepsilon_{i}=+$ or $-(i=1, \ldots, r)$, and $\sigma$ is a permutation of $\{1,2, \ldots, r\}$. Then we have

$$
\Delta_{L}\left(t_{1}, \ldots, t_{r}\right) \doteq \Delta_{L}\left(t_{\sigma(1)}^{\varepsilon_{\sigma(1)}}, \ldots, t_{\sigma(r)}^{\varepsilon_{\sigma(r)}}\right)
$$

Lemma 3.3 ([10, Lemma 3.1], [11, Lemma 4.2]) Let $L=K_{1} \cup \cdots \cup K_{r}$ be an oriented $r$-component link.
(1) If $L$ is an $\left(\varepsilon_{1}, \ldots, \varepsilon_{r} ; \sigma\right)$-amphicheiral link, then a sublink $L^{\prime}=K_{i_{1}} \cup \cdots \cup K_{i_{s}}$ $\left(1 \leq i_{1}<\cdots<i_{s} \leq r\right)$ is an $\left(\varepsilon_{i_{1}}, \ldots, \varepsilon_{i_{s}} ; \rho\right)$-amphicheiral link where $\sigma$ is a permutation of $\{1,2, \ldots, r\}$, and $\rho$ is a permutation of $\left\{i_{1}, i_{2}, \ldots, i_{s}\right\}$ induced by $\sigma$.
(2) If $r \geq 3$ is odd, and $\ell_{1,2} \cdot \ell_{2,3} \cdots \ell_{r-1, r} \cdot \ell_{r, 1} \neq 0$ where $\ell_{p, q}$ is the linking number of $K_{p}$ and $K_{q}$, then $L$ is not component-preservingly amphicheiral.
(3) If $\ell_{1,2} \cdot \ell_{2,3} \cdot \ell_{3,1} \neq 0$ where $\ell_{p, q}$ is the linking number of $K_{p}$ and $K_{q}$, then $L$ is not amphicheiral.

Lemma 3.4 Let $L=K_{1} \cup K_{2}$ be a 2 -component link with non-zero even linking number $e$. Then we have the following:
(1) (Hartley [4], [10, Lemma 3.2]) $L$ is not component-preservingly amphicheiral.
(2) $([11$, Lemma 4.3]) If $e \equiv 2(\bmod 4)$, then $L$ is $\operatorname{not}(土, \mp ;(12))$-amphicheiral where (12) is the non-trivial permutation of $\{1,2\}$.

Lemma 3.5 ([10, Corollary 1.4]) If $L=K_{1} \cup K_{2}$ is an algebraically split componentpreservingly amphicheiral link, then $\Delta_{L}\left(t_{1}, t_{2}\right)$ is divisible by $\left(t_{1}-1\right)^{2}\left(t_{2}-1\right)^{2}$.

Lemma 3.6 ([11, Corollary 1.2]) Let $L=K_{1} \cup \ldots \cup K_{r}$ be an r-component amphicheiral link such that $r+\ell(L)$ is even where $\ell(L)$ is the total linking number. Then we have

$$
\Delta_{L}(-1, \ldots,-1)=0
$$

In particular, if $L$ is an $(\varepsilon)$-amphicheiral link where $\varepsilon=+$ or - , and $r$ is even, then we have

$$
\Delta_{L}(t, \ldots, t)=0
$$

Prime links with up to 9 crossings have been determined in [11] (cf. Figure 2). From now on, we restrict the case that a link is prime with the crossing number 10 or 11 .


Figure 2: Prime amphicheiral links with up to 9 crossings


Figure 3: Prime amphicheiral links with 10 or 11 crossings 1


Figure 4: Prime amphicheiral links with 10 or 11 crossings 2

Firstly, we determine which links are amphicheiral, and whether they are in $\mathcal{C}_{11}$, $\mathcal{A}_{11} \backslash \mathcal{C}_{11}, \mathcal{C}_{11}^{ \pm}$, or $\mathcal{A}_{11}^{ \pm} \backslash \mathcal{C}_{11}^{ \pm}$. By Figure 3 and Figure $4,10_{a 56}^{2}, 10_{a 81}^{2}, 10_{a 83}^{2}, 10_{a 86}^{2}, 10_{a 116}^{2}$, $10_{a 120}^{2}, 10_{a 121}^{2}, 10_{a 136}^{3}, 10_{a 140}^{3}, 10_{a 151}^{3}, 10_{a 156}^{3}, 10_{a 158}^{3}, 10_{a 169}^{4}, 10_{n 36}^{2}, 10_{n 46}^{2}, 10_{n 59}^{2}, 10_{n 105}^{4}$, $10_{n 107}^{4}$ and $11_{n 247}^{2}$ are amphicheiral. The reader can check by the figures whether they are in $\mathcal{C}_{11}$ or $\mathcal{C}_{11}^{ \pm}$. Suppose that $10_{a 140}^{3}$ is $(-,-,-)$-amphicheiral. Then Milnor's $\bar{\mu}^{-}$ invariant $\bar{\mu}(123)$ should be zero. However since

$$
\Delta_{10_{a 140}^{3}}\left(t_{1}, t_{2}, t_{3}\right) \doteq\left(t_{1}-1\right)\left(t_{2}-1\right)\left(t_{3}-1\right)\left(t_{2} t_{3}+1\right)^{2}
$$

we have $\bar{\mu}(123)= \pm 2$ (cf. [3]), and hence $10_{a 140}^{3} \notin \mathcal{C}_{11}^{-}$. Since $10_{n 107}^{4}$ has a 3-component sublink which is equivalent to $6_{2}^{3}$, it cannot be component-preservingly ( - )-amphicheiral by Lemma 3.3 (1). However both $10_{a 140}^{3}$ and $10_{n 107}^{4}$ are in $\mathcal{A}_{11}^{-} \backslash \mathcal{C}_{11}^{-}$by suitable orientations. The 2 -component sublinks of $10_{a 151}^{3}$ are the 2 -component trivial link, the positive Whitehead link and the negative Whitehead link. Since the Whitehead link is not amphicheiral, $10_{a 151}^{3} \in \mathcal{A}_{11} \backslash \mathcal{C}_{11}$, and it is in $\mathcal{A}_{11}^{+} \backslash \mathcal{C}_{11}^{+}$and $\mathcal{A}_{11}^{-} \backslash \mathcal{C}_{11}^{-}$by suitable orientations. Let $L=K_{1} \cup K_{2} \cup K_{3}$ be $10_{a 156}^{3}$ or $10_{a 158}^{3}$. Then the 2 -component sublinks of $L$ are the 2-component trivial link $K_{1} \cup K_{2}$, the positive Hopf link $K_{1} \cup K_{3}$ and the negative Hopf link $K_{2} \cup K_{3}$ by a suitable orientation. Suppose that $L$ is component-preservingly amphicheiral. Then

$$
\Delta_{L}\left(t_{1}, t_{2}, t_{3}\right) \doteq \Delta_{L}\left(t_{1}, t_{2}, t_{3}^{-1}\right)
$$

should be satisfied by Lemma 3.2. Since

$$
\begin{aligned}
\Delta_{10_{a 156}^{3}}\left(t_{1}, t_{2}, t_{3}\right) \doteq & \left(t_{3}-1\right)\left(t_{1} t_{2} t_{3}-t_{1} t_{2}+t_{1}+t_{2}-1\right)\left(t_{1} t_{2} t_{3}-t_{1} t_{3}-t_{2} t_{3}+t_{3}-1\right), \\
\Delta_{10_{a 158}^{3}}\left(t_{1}, t_{2}, t_{3}\right) \doteq & \left(t_{3}-1\right)\left(t_{1}^{2} t_{2}^{2}+t_{1}^{2} t_{2} t_{3}-t_{1}^{2} t_{2}-t_{1}^{2} t_{3}+t_{1} t_{2}^{2} t_{3}-t_{1} t_{2}^{2}+t_{1} t_{2} t_{3}^{2}\right. \\
& \left.-3 t_{1} t_{2} t_{3}+t_{1} t_{2}-t_{1} t_{3}^{2}+t_{1} t_{3}-t_{2}^{2} t_{3}-t_{2} t_{3}^{2}+t_{2} t_{3}+t_{3}^{2}\right),
\end{aligned}
$$

$10_{a 156}^{3}$ and $10_{a 158}^{3}$ are not component-preservingly amphicheiral. Suppose that $10_{n 105}^{4}$ is component-preservingly amphicheiral. Then

$$
\Delta_{10_{n 105}^{4}}\left(t_{1}, t_{2}, t_{3}, t_{4}\right) \doteq \Delta_{10_{n 105}^{4}}\left(t_{1}, t_{2}, t_{3}^{-1}, t_{4}^{-1}\right)
$$

should be satisfied by Lemma 3.2. Since

$$
\Delta_{10_{n 105}^{4}}\left(t_{1}, t_{2}, t_{3}, t_{4}\right) \doteq t_{1} t_{2} t_{3} t_{4}-t_{1} t_{2} t_{3}+t_{1} t_{3}^{2} t_{4}-t_{1} t_{3} t_{4}-t_{2} t_{3} t_{4}+t_{2} t_{4}-t_{3}^{2} t_{4}+t_{3} t_{4}
$$

$10_{n 105}^{4}$ is not component-preservingly amphicheiral. There is one essential torus $T$ in the exterior of $11_{n 247}^{2}$. The torus $T$ is trivial as a torus in $S^{3}$, and we denote the core of the separated solid torus by $l_{i}(i=1,2)$ where $l_{i}$ is in the same connected component of $K_{i}$. Suppose that $11_{n 247}^{2}$ is component-preservingly amphicheiral. Then two links $K_{1} \cup l_{2}$ and $K_{2} \cup l_{1}$ are amphicheiral. However since they are the positive Hopf link and the negative Hopf link, respectively, and they are not amphicheiral, $11_{n 247}^{2}$ is not component-preservingly amphicheiral.

By applying Lemma 3.1 (4) for the rest links, we can see non-amphicheirality of them except $10_{a 51}^{2}, 10_{a 57}^{2}, 10_{a 171}^{4}, 10_{n 49}^{2}, 10_{n 93}^{3}, 10_{n 108}^{4}, 11_{n 127}^{2}, 11_{n 158}^{2}, 11_{n 162}^{2}, 11_{n 205}^{2}, 11_{n 423}^{3}$,


Figure 5: $10_{a 51}^{2}$ and $11_{n 127}^{2}$
$11_{n 432}^{3}$ and $11_{n 437}^{3}$. By Lemma 3.2, Lemma 3.3, Lemma 3.4, Lemma 3.5 and Lemma 3.6 (cf. [11, Example 4.5 and Example 4.6]), we can see non-amphicheirality of the links above except $10_{a 51}^{2}$ and $11_{n 127}^{2}$.

Let $L=K_{1} \cup K_{2}$ be an oriented $10_{a 51}^{2}$ or $11_{n 127}^{2}$ as in Figure 5, and $L^{\prime}=\left(-K_{1}\right) \cup K_{2}$. The HOMFLY polynomials of $10_{a 51}^{2}$ and $11_{n 127}^{2}$ are

$$
\begin{aligned}
P_{10_{a 51}^{2}}(m, l)= & P_{\left(10_{a 51}^{2}\right)^{\prime}}\left(m, l^{-1}\right) \\
= & -m^{7} l^{-1}+m^{5}\left(l+4 l^{-1}+2 l^{-3}\right)-m^{3}\left(2 l+6 l^{-1}+5 l^{-3}+l^{-5}\right) \\
& +m\left(l+2 l^{-1}+3 l^{-3}+l^{-5}\right)+m^{-1}\left(l^{-1}+l^{-3}\right) \\
P_{11_{n 127}^{2}}(m, l)= & P_{\left(11_{n 127}^{2}\right)^{\prime}}\left(m, l^{-1}\right) \\
= & m^{5} l-m^{3}\left(2 l^{3}+4 l+l^{-1}\right)+m\left(l^{5}+5 l^{3}+5 l+2 l^{-1}\right) \\
& -m^{-1}\left(l^{5}+2 l^{3}+2 l+l^{-1}\right) .
\end{aligned}
$$

By Lemma 3.1 (6), we cannot show they are not amphicheiral by the HOMFLY polynomials.

The components of $10_{a 51}^{2}$ consist of two trivial knots, and the linking number of it is 1 . Since the Alexander polynomial of it is

$$
\Delta_{10_{a 51}^{2}}\left(t_{1}, t_{2}\right) \doteq\left(t_{1} t_{2}^{2}-2 t_{1} t_{2}+t_{1}-t_{2}^{2}+t_{2}-1\right)\left(t_{1} t_{2}^{2}-t_{1} t_{2}+t_{1}-t_{2}^{2}+2 t_{2}-1\right),
$$

$10_{a 51}^{2}$ is component-preservingly amphicheiral by Lemma 3.2 if it is amphicheiral. Since we have

$$
\Delta_{10_{a 51}^{2}}(t,-1)=(4 t-3)(3 t-4),
$$

$10_{a 51}^{2}$ is not amphicheiral by Lemma 1.1 (2) and (3).
The components of $11_{n 127}^{2}$ consist of one trivial knot and one figure eight knot, and the linking number of it is 1 . It is component-preservingly amphicheiral by Lemma 3.3 (1) if it is amphicheiral. Since the Jones polynomial and the HOMFLY polynomial of $\tilde{K}$ which is the lifted knot of $K_{1}$ in the 2-fold branched covering over $K_{2}$ (cf. Figure 6) are

$$
\begin{aligned}
V_{\tilde{K}}(t) & =-2 t^{6}+4 t^{5}-6 t^{4}+9 t^{3}-9 t^{2}+9 t-7+5 t^{-1}-3 t^{-2}+t^{-3} \\
P_{\tilde{K}}(m, l) & =m^{4}\left(2 l^{2}-1\right)-m^{2}\left(4 l^{4}+3 l^{2}-l^{-2}\right)+\left(2 l^{6}+4 l^{4}+2 l^{2}+1\right)
\end{aligned}
$$

$11_{n 127}^{2}$ is not amphicheiral by Lemma 1.1 (1), Lemma 3.1 (3) and (6).


Figure 6: The lifted knot $\tilde{K}$ of $K_{1}$ in the 2-fold branched covering over $K_{2}$

We remark that we cannot complete the proof only by using the Alexander polynomial. Since the Alexander polynomial of $11_{n 127}^{2}$ is

$$
\begin{align*}
\Delta_{11_{n 127}^{2}}\left(t_{1}, t_{2}\right) & \doteq t_{1}^{2} t_{2}^{2}-t_{1}^{2} t_{2}+t_{1}^{2}-2 t_{1} t_{2}^{2}+t_{1} t_{2}-2 t_{1}+t_{2}^{2}-t_{2}+1  \tag{3.1}\\
& \doteq\left\{\left(t_{1}+t_{1}^{-1}\right)-2\right\}\left\{\left(t_{2}+t_{2}^{-1}\right)-1\right\}-1
\end{align*}
$$

we have

$$
\left|\Delta_{11_{n 127}^{2}}(-1,-1)\right|=11 \not \equiv 1 \quad(\bmod 4),
$$

and hence $11_{n 127}^{2}$ is not $(-,+)$-amphicheiral by Corollary 1.2 . Let $\zeta_{p}$ be a primitive $p$-th root of unity for $p \geq 2$. Then there exists $f(t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$ such that

$$
\Delta_{\tilde{K}}(t) \doteq \prod_{i=1}^{p-1} \Delta_{11_{n 127}^{2}}\left(t, \zeta_{p}^{i}\right) \doteq \begin{cases}(f(t))^{2}\left(3 t^{2}-5 t+3\right) & (p \text { is even }) \\ (f(t))^{2} & (p \text { is odd })\end{cases}
$$

where

$$
f(t) \doteq \prod_{1 \leq i<\frac{p}{2}} \Delta_{11_{n 127}^{2}}\left(t, \zeta_{p}^{i}\right) \in \mathbb{Z}\left[t^{ \pm 1}\right](\text { by }(3.1))
$$

Hence we cannot prove that $11_{n 127}^{2}$ is not $(+,-)$-amphicheiral by Lemma 1.1 (2).

## 4 Further remarks

(1) In [10], the author raised a conjecture:

Conjecture 4.1 ([10, Conjecture 1.1]) For an $r$-component algebraically split componentpreservingly amphicheiral link $L$ with $r$ even, we have $\Delta_{L}\left(t_{1}, \ldots, t_{r}\right)=0$.

We gave a partial affirmative answer in [11, Theorem 1.3] for the case that $L$ is an algebraically split component-preservingly ( $\varepsilon$ )-amphicheiral link with even components. In the prime links with up to 11 crossings, only $10_{n 36}^{2}$ and $10_{n 107}^{4}$ are algebraically split component-preservingly amphicheiral links with even components. They
are also component-preservingly $\left(+\right.$ )-amphicheiral links (i.e. $10_{n 36}^{2}, 10_{n 107}^{4} \in \mathcal{C}_{11}^{+}$). We can confirm that the Alexander polynomials of them are 0 . The condition "componentpreservingly" is needed. $10_{a 151}^{3}, 10_{n 59}^{2}$ and $11_{n 247}^{2}$ are algebraically split amphicheiral links in $\mathcal{A}_{11} \backslash \mathcal{C}_{11}$ and $\mathcal{A}_{11}^{ \pm} \backslash \mathcal{C}_{11}^{ \pm}$whose Alexander polynomials are

$$
\begin{aligned}
\Delta_{10_{a 151}^{3}}\left(t_{1}, t_{2}, t_{3}\right) & \doteq\left(t_{1}-1\right)\left(t_{2}-1\right)\left(t_{3}-1\right)\left(t_{3}^{2}-3 t_{3}+1\right) \\
\Delta_{10_{n 59}^{2}}\left(t_{1}, t_{2}\right) & \doteq\left(t_{1}-1\right)\left(t_{2}-1\right)\left(t_{1}-t_{2}\right)\left(t_{1} t_{2}-1\right) \\
\Delta_{11_{n 247}^{2}}\left(t_{1}, t_{2}\right) & =0 .
\end{aligned}
$$

$\Delta_{10_{n 59}^{2}}\left(t_{1}, t_{2}\right)$ satisfies the condition

$$
\Delta_{10_{n 59}^{2}}(t, t)=\Delta_{10_{n 59}^{2}}\left(t, t^{-1}\right)=0
$$

in Lemma 3.6. We can find examples of $\lambda$-component algebraically split links in $\mathcal{C}_{n} \backslash \mathcal{C}_{n}^{ \pm}$ with $\lambda \geq 4$ even in the Milnor links (see Figure 7). The Alexander polynomials of them are 0 (cf. [10, Example 6.1 (1)]).


Figure 7: $\lambda$-component Milnor link $M_{\lambda}$
(2) In A. Stoimenow [23], the following conjecture is raised as Tait's conjecture IV.

Conjecture 4.2 ([23, Conjecture 2.4]) The minimal crossing number of an amphicheiral knot is even.

If there are counterexamples, then the knots are not alternating by Lemma 1.4. A. Stoimenow [24] found prime amphicheiral knots with the odd minimal crossing number $c$ for every $c \geq 15$. He points out that if $c \leq 13$, then Conjecture 4.2 is affirmative. We have already found counterexamples $9_{61}^{2}$ and $11_{n 247}^{2}$ for the case of links. However they are not component-preservingly amphicheiral. Recently Y. Kobatake found an example of a 2 -component prime component-preservingly amphicheiral link with the minimal crossing number 21 and with the linking number 3 , whose components consist of the unknot and an amphicheiral knot $15_{224980}$ in the table of [5].

Acknowledgements The author would like to express gratitude to Akio Kawauchi for giving him useful comments.

## References

[1] D. Bar-Natan and S. Morrison, Knot Atlas, http://katlas.math.toronto.edu/wiki/Main_Page
[2] F. Bonahon and L. C. Siebenmann, New geometric splittings of classical knots and the classification and symmetries of arborescent knots, http://www-bcf.usc.edu/ fbonahon/Research/Preprints/BonSieb.pdf
[3] T. D. Cochran, Concordance invariance of coefficients of Conway's link polynomial, Invent. Math. 82 (1985), 527-541.
[4] R. Hartley, Invertible amphicheiral knots, Math. Ann., 252 (1980), 103-109.
[5] J. Hoste, M. Thistlethwaite and J. Weeks, The first 1, 701, 936 Knots, Math. Intelligencer, 21 (1998), 33-48.
[6] R. Hartley and A. Kawauchi, Polynomials of amphicheiral knots, Math. Ann., 243 (1979), 63-70.
[7] J. Hillman, Symmetries of knots and links, and invariants of abelian coverings (Part I), Kobe J. Math., 3 (1986), 7-27.
[8] B. Jiang, X. Lin, Shicheng Wang and Y. Wu, Achirality of knots and links, Top. Appl., 119 (2002), 185-208.
[9] T. Kadokami, The link-symmetric groups of 2-bridge links, to appear in Jounal of Knot Theory and its Ramifications.
[10] T. Kadokami, Amphicheiral links with special properties, $I$, to appear in Jounal of Knot Theory and its Ramifications, arXiv math.GT/1107.0377
[11] T. Kadokami and A. Kawauchi, Amphicheirality of links and Alexander invariants, to appear in SCIENCE CHINA Mathematics.
[12] A. Kawauchi, On quadratic forms of 3-manifolds, Invent. Math., 43 (1977), 177-198.
[13] A. Kawauchi, The invertibility problem on amphicheiral excellent knots, Proc. Japan Acad., Ser. A, Math. Sci., 55 (1979), 399-402.
[14] A. Kawauchi, The quadratic form of a link, in: Proc. of Low Dimensional Topology, Contemp. Math., 233 (1999), 97-116.
[15] S. Kojima and M. Yamasaki, Some new invariants of links, Invent. Math., 54 (1979), 213-228.
[16] W. Menasco and M. Thistlethwaite, The classification of alternating links, Ann. of Math., Second Series, 138 (1993), 113-171.
[17] J. W. Milnor, Link groups, Ann. of Math. (2) 59 (1954), 177-195.
[18] K. Murasugi, On periodic knots, Comment. Math. Helvetici, 46 (1971), 162-174.
[19] K. Murasugi, Jones polynomials and classical conjectures in knot theory, Topology, 26 (1987), 187-194.
[20] D. Rolfsen, Knots and Links, Publish or Perish, Inc. (1976).
[21] T. Sakai, Polynomials of invertible knots, Math. Ann., 266 (1983), 229-232.
[22] M. Sakuma, On the polynomials of periodic links, Math. Ann., 257 (1981), 487-494.
[23] A. Stoimenow, Tait's conjectures and odd crossing number of amphicheiral knots, Bull. Amer. Math. Soc., 45 (2008), 285-291.
[24] A. Stoimenow, Non-triviality of the Jones polynomial and the crossing number of amphicheiral knots, arXiv math.GT/0606255
[25] V. G. Turaev, Reidemeister torsion in knot theory, Russian Math. Surveys, 41-1 (1986), 119-182.
[26] Shida Wang, Strict achirality of prime links up to 11-crossings, Acta Math. Sinica, 24 (2008), 997-1004.
[27] W. Whitten, Symmetries of links, Trans. Amer. Math. Soc., 135 (1969), 213-222.

Teruhisa KADOKAMI
Department of Mathematics, East China Normal University, Dongchuan-lu 500, Shanghai, 200241, China
mshj@math.ecnu.edu.cn
kadokami2007@yahoo.co.jp


[^0]:    2010 Mathematics Subject Classification: 57M25, 57M27.
    Keywords: amphicheiral link; Jones polynomial; HOMFLY polynomial; Alexander polynomial.

