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Amphicheiral links with special properties, I
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Abstract

We provide necessary conditions for the Alexander polynomials of algebraically split

component-preservingly amphicheiral links. We raise a conjecture that the Alexander

polynomial of an algebraically split component-preservingly amphicheiral link with even

components is zero. Our necessary conditions and some examples support the conjecture.

1 Introduction

Let L = K1∪· · ·∪Kr be an oriented r-component link in S3 with r ≥ 1. For an oriented
knot K, we denote the orientation-reversed knot by −K. If ϕ is an orientation-reversing
(orientation-preserving, respectively) homeomorphism of S3 so that ϕ(Ki) = εσ(i)Kσ(i)

for all i = 1, . . . , r where εi = + or −, and σ is a permutation of {1, 2, . . . , r}, then L is
said an (ε1, . . . , εr; σ)-amphicheiral link (an (ε1, . . . , εr; σ)-invertible link, respectively).
A term “amphicheiral link” is used as a general term for an (ε1, . . . , εr; σ)-amphicheiral
link. A link is said an interchangeable link if it is an (ε1, . . . , εr; σ)-invertible link such
that σ is not the identity. An (ε1, . . . , εr; σ)-invertible link is said an invertible link sim-
ply if there exists 1 ≤ i ≤ r such that εi = −. If σ is the identity, then an amphicheiral
link is said a component-preservingly amphicheiral link, and σ may be omitted from the
notation. We mainly deal with component-preservingly amphicheiral link in the present
paper. If every εi = ε is identical for all i = 1, . . . , r (including the case that σ is not
the identity), then an (ε1, . . . , εr; σ)-amphicheiral link (an (ε1, . . . , εr; σ)-invertible link,
respectively) is said an (ε)-amphicheiral link (an (ε)-invertible link, respectively). We
use the notations + = +1 = 1 and − = −1. A link L with at least 2-component is said
an algebraically split link if the linking number of every 2-component sublink of L is
zero. We note that a component-preservingly (ε)-amphicheiral link is an algebraically
split link.

Necessary conditions for the Alexander polynomials of amphicheiral knots are stud-
ied by R. Hartley [3], R. Hartley and A. Kawauchi [4], and A. Kawauchi [14]. In
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[14], non-invertibility of 817 is firstly proved by the conditions. On the other hand,
T. Sakai [20] proved that any one-variable Laurent polynomial f(t) over Z such that
f(t) = f(t−1) and f(1) = 1 is realized by the Alexander polynomial of a strongly in-
vertible knot in S3. B. Jiang, X. Lin, Shicheng Wang and Y. Wu [6] showed that (1) a
twisted Whitehead doubled knot is amphicheiral if and only if it is the unknot or the
figure eight knot, and (2) a prime link with at least 2 components and up to 9 crossings
is component-preservingly (+)-amphicheiral if and only if it is the Borromean rings.
They used S. Kojima and M. Yamasaki’s η-function [17]. Shida Wang [23] determined
prime component-preservingly (+)-amphicheiral links with at least 2 components and
up to 11 crossings by the same method as [6]. There are four such links. For geometric
studies of symmetries of arborescent knots, see F. Bonahon and L. C. Siebenmann [2].
In [7], we determined symmetries such as invertibility, amphicheirality and interchange-
ability of 2-bridge links by the parameters such as Schubert’s normal form, Conway’s
normal form and Conway’s normal form whose entries are even integers.

In the present paper, we study necessary conditions for the Alexander polynomi-
als of algebraically split component-preservingly amphicheiral links by computing the
Reidemeister torsions of surgered manifolds along the link. The results and the tech-
niques of the present paper have been already applied to some directions. The author
and A. Kawauchi [10] obtained a necessary condition by invariants deduced from the
quadratic form of a link [13, 16], showed a partial affirmative answer for the conjec-
ture stated below, and determined prime amphicheiral links with up to 9 crossings
by combining with the present results. The author [8] developed methods to detect
component-preservingly amphicheiral links by the results in [6] and [3, 4, 14], and de-
termined prime amphicheiral links with up to 11 crossings by techniques including the
present results. There are 27 prime amphicheiral links with up to 11 crossings. The
techniques of the present paper are based on V. G. Turaev [22]. By the same tech-
niques, the following two results on Dehn surgeries are shown: In [11], the author,
N. Maruyama and M. Shimozawa determined all Dehn surgeries yieding lens spaces
(i.e. lens surgeries). In [9], we will show that the λ-component Milnor link with λ ≥ 4
does not have a lens surgery by the Reidemeister torsion and some geometric techniques.

Let ∆L = ∆L(t1, . . . , tr) be the Alexander polynomial of L which is an element of an
r-variable Laurent polynomial ring Λr := Z[t±1

1 , . . . , t±1
r ] over Z where ti (i = 1, 2, . . . , r)

is a variable corresponding to a meridian of Ki.

We raise a conjecture:

Conjecture 1.1 For an even-component algebraically split component-preservingly am-
phicheiral link L, we have ∆L = 0.

Our results stated below support the conjecture. In Section 6, we explain about
other supporting results in [8, 10]. We remark that the similar statement for the odd-
component case does not hold. For example, a link which is connected sums of copies
of the Borromean rings is a component-preservingly amphicheiral link with odd compo-
nents, and has the non-zero Alexander polynomial. For any odd number, there are such
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examples. For an algebraically split component-preservingly amphicheiral link L, if L′ is
obtained from L by taking untwisted parallels of some components, and the number of
components of L′ is strictly greater than that of L, then L′ is also an algebraically split
component-preservingly amphicheiral link, and we have ∆L′ ≡ 0. Therefore we can-
not find a counterexample for the conjecture by the construction. We raise supporting
examples in Section 6.

If L is an r-component algebraically split link with r ≥ 2, then the Alexander
polynomial of L is of the form:

∆L = ∆L(t1, . . . , tr)
.
= (t1 − 1) · · · (tr − 1)f(t1, . . . , tr)

where we can take f = f(t1, . . . , tr) ∈ Λr satisfying f(t1, . . . , tr) = f(t−1
1 , . . . , t−1

r ).
Note that f(t1, . . . , tr) is uniquely determined up to multiplication of ±1. We set
Ir = {1, 2, . . . , r}. If we take I = {i1, i2, . . . , is} ⊂ Ir, then we denote LI = Ki1∪· · ·∪Kis,
|I| = s, and ΛI = Z[t±1

i1
, . . . , t±1

is
] ∼= Λs. If s ≥ 2, then

∆LI
= ∆LI

(ti1 , . . . , tis)
.
=
∏

i∈I

(ti − 1)fI(ti1 , . . . , tis)

where we can take fI = fI(ti1 , . . . , tis) ∈ ΛI satisfying fI(ti1 , . . . , tis) = fI(t
−1
i1
, . . . , t−1

is
),

and the sign of fI is uniquely determined by (4.2) and Lemma 4.1. In particular,
f = fIr . We set u(I) = (ui)i∈Ir\I where ui ∈ {1,−1}. For J = {j1, . . . , jk} ⊃ I, we use
the following notations:

kJ(u(I)) : the number of 1 in ui (i ∈ J \ I),

ηJ(u(I)) = (−1)kJ (u(I)),

FJ(I) : the polynomial obtained by substituting ti = 1 (i ∈ J \ I) to fJ ,

F (I) = FIr(I).

We set
Seven
u(I) =

∑

J⊃I,|J\I|:even
2≤|J |≤r

ηJ(u(I))FJ(I),

and
Sodd
u(I) =

∑

J⊃I,|J\I|:odd
2≤|J |≤r

ηJ(u(I))FJ(I).

The following is our first main theorem:

Theorem 1.2 Let L = K1 ∪ · · · ∪Kr be an r-component algebraically split component-
preservingly amphicheiral link where r ≥ 2, and I ⊂ Ir. Then for any u(I), we have
the following:

(1) If |I| = 1, then Sodd
u(I) = 0.
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(2) If 2 ≤ |I| ≤ r − 1, then Seven
u(I) = 0 or Sodd

u(I) = 0.

To prove the theorem, we compute the Reidemeister torsions of the manifolds surg-
ered along L with associated coefficients to u(I). We can deduce some corollaries.

Corollary 1.3 Under the same assumption as in Theorem 1.2, we have the following:

(1) If r is even and |I| = 1, then F (I) = 0.

(2) If I = Ir \ {i} (i.e. |I| = r − 1) and ∆LI
6= 0, then f is divisible by ti − 1.

(3) If I = Ir \ {i} (i.e. |I| = r − 1) and F (I) 6= 0, then ∆LI
= 0.

In particular, if r = 2, then we have the following:

Corollary 1.4 If L = K1 ∪ K2 is an algebraically split component-preservingly am-
phicheiral link, then ∆L is divisible by (t1 − 1)2(t2 − 1)2.

The following is our second main theorem:

Theorem 1.5 If L = K1 ∪ · · · ∪Kr is an r-component algebraically split component-
preservingly (ε)-amphicheiral link with r even, and ε = + or −, then the Alexander
polynomial of L satisfies ∆L(t

η1 , . . . , tηr) = 0 where ηi ∈ {1,−1} (i = 1, . . . , r).

To prove the theorem, we span a Seifert surface on L. This method is a slightly
extended argument in [3, Theorem 2.1]. In particular, if r = 2, then we have the
following:

Corollary 1.6 If L = K1 ∪K2 is an algebraically split (ε, ε)-amphicheiral link where
ε = + or −, then ∆L is divisible by (t1 − 1)2(t2 − 1)2(t1t2 − 1)(t1 − t2).

We remark that after proving the results above, the author and A. Kawauchi
[10] showed that Conjecture 1.1 is afffirmative for even-component algebraically split
component-preservingly (ε)-amphicheiral links by invariants deduced from the quadratic
form of a link [13, 16].

In Section 2, we prepare facts on the Alexander polynomials. In Section 3, we
discuss about basic properties on amphicheiral links and invertible links. We give an
almost purely algebraic proof for a lemma due to Hartley [3]. In Section 4, we prove
Theorem 1.2 and its corollaries. In Section 5, we prove Theorem 1.5. In Section 6, we
raise some examples which support Conjecture 1.1.
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2 Alexander polynomials as Reidemeister torsions

Let X be a finite CW complex, and ψ : Z[H1(X)] → R is a ring homomorphism where
R is an integral domain. Then we denote the Reidemeister torsion of X related to ψ
by τψ(X) ∈ Q(R) where Q(R) is the quotient field of R (see [22]). The value τψ(X)
is determined up to multiplication of ±ψ(h) (h ∈ H1(X)). An equation between two
values A and B ∈ Q(R) is denoted by A

.
= B if A = ±ψ(h)B for some h ∈ H1(X).

When ψ is the identity, we denote τψ(X) by τ(X).

The Alexander polynomial is a kind of the Reidemeister torsion.

Lemma 2.1 ([19, 22]) Let L = K1 ∪ · · · ∪ Kr be an r-component link, and EL the
complement of L. Then we have

τ(EL)
.
=







∆L(t1)

t1 − 1
(r = 1),

∆L(t1, . . . , tr) (r ≥ 2).

We will use the surgery formula to show Theorem 1.1.

Lemma 2.2 (surgery formula) Let M0 be a compact 3-manifold whose boundary con-
sists of tori, V a solid torus whose core is l′, and M = M0 ∪f V is the result of Dehn
filling where f : ∂V → ∂M0 is an attaching map. Let ψ : Z[H1(M)] → R be a ring
homomorphism where R is an integral domain, and ψ0 : Z[H1(M0)] → R the induced
map from ψ. If ψ([l′]) 6= 1, then we have

τψ(M)
.
= τψ0(M0)(ψ([l

′])− 1)−1.

We raise some properties on the Alexander polynomials.

Lemma 2.3 (duality [15, 19, 21, 22]) Let L = K1 ∪ · · · ∪Kr be an r-component link.
Then we have

∆L(t1) = ta1∆L(t
−1
1 ) (r = 1)

where a is even, and

∆L(t1, . . . , tr) = (−1)rta11 · · · tarr ∆L(t
−1
1 , . . . , t−1

r ) (r ≥ 2)

where ai ≡ 1 +
∑

j 6=i lk (Ki, Kj) (mod 2) (i = 1, . . . , r).

The Torres condition is a special case of the surgery formula.

Lemma 2.4 (Torres condition [15, 21, 22]) Let L = K1∪· · ·∪Kr∪Kr+1 be an oriented
(r + 1)-compnent link, and L′ = K1 ∪ · · · ∪Kr an r-component sublink. Then we have

∆L(t1, 1)
.
=
tℓ1 − 1

t1 − 1
∆L′(t1) (r = 1)

where ℓ is the linking number of K1 and K2, and

∆L(t1, . . . , tr, 1)
.
= (tℓ11 · · · tℓrr − 1)∆L′(t1, . . . , tr) (r ≥ 2)

where ℓi is the linking number of Ki and Kr+1 (i = 1, . . . , r).
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One necessary condition for the Alexander polynomial of an amphicheiral or invert-
ible link is the following:

Lemma 2.5 Let L = K1 ∪ · · · ∪ Kr be an r-component (ε1, . . . , εr)-amphicheiral or
invertible link where εi = + or − (i = 1, . . . , r). Then we have

∆L(t1, . . . , tr)
.
= ∆L(t

ε1
1 , . . . , t

εr
r ).

3 Amphicheiral link and invertible link

We raise basic properties of amphicheiral links and invertible links.

Lemma 3.1 Let L = K1 ∪ · · · ∪Kr be an r-component link.

(1) If L is an (ε1, . . . , εr)-amphicheiral link, then a sublink L′ = Ki1 ∪ · · · ∪ Kis

(1 ≤ i1 < · · · < is ≤ r) is an (εi1 , . . . , εis)-amphicheiral link.

(2) If L′ = Ki1 ∪· · ·∪Kis (1 ≤ i1 < · · · < is ≤ r) is an s-component sublink of L such
that s ≥ 3 is odd, and ℓ1,2 · ℓ2,3 · · · ℓs−1,s · ℓs,1 6= 0 where ℓp,q is the linking number
of Kip and Kiq , then L is not component-preservingly amphicheiral.

(3) If L is an (ε1, . . . , εr)-invertible link, then a sublink L′ = Ki1 ∪ · · ·∪Kis (1 ≤ i1 <

· · · < is ≤ r) is an (εi1, . . . , εis)-invertible link.

(4) Let L = K1 ∪K2 be a 2-component link with non-zero linking number. If L is an
invertible link, then L is a (−,−)-invertible link.

The linking numbers are the first information to detect both amphicheirality and
invertibility as in Lemma 3.1 (2) and (4). By Lemma 3.1 (1) and (3), to study sub-
links is also important for the problems. Hartley [3] showed the following by the JSJ
(Jaco-Shalen-Johanson) decomposition. The result is also about relation between am-
phicheirality and the linking number. We reprove it by another way.

Lemma 3.2 (Hartley [3]) Let L = K1 ∪K2 be a 2-component link with non-zero even
linking number. Then L is not component-preservingly amphicheiral.

Proof Suppose that L is component-preservingly amphicheiral, and the linking number
of K1 and K2 is non-zero and even. By Lemma 2.3, we may assume

∆L(t1, t2) = t1t2∆L(t
−1
1 , t−1

2 ) (3.1)

By Lemma 2.5 and Lemma 3.1 (4), we may assume

∆L(t1, t2) = ηtb11 t
b2
2 ∆L(t

−1
1 , t2)

6



where η = + or −, and b1, b2 ∈ Z. By substituting t2 = 1 to (3.1), we have η = + and
b1 = 1. By substituting t1 = 1 to (3.1), we have b2 = 0, and hence we have

∆L(t1, t2) = t1∆L(t
−1
1 , t2)

By substituting t1 = −1 to the equation above, we have ∆L(−1, t2) = 0. In the similar
way, we have ∆L(t1,−1) = 0, and hence ∆L(t1, t2) is divisible by (t1 + 1)(t2 + 1). We
set ∆L(t1, t2) = (t1 + 1)(t2 + 1)g(t1, t2) where g(t1, t2) ∈ Λ2.

By substituting t2 = 1 to ∆L(t1, t2), and Lemma 2.4, we have

∆L(t1, 1) = 2(t1 − 1)g(t1, 1)
.
=
tℓ1 − 1

t1 − 1
∆K1

(t1).

Since the righthand side is not divisible by 2, we have a contradiction.

Both Lemma 3.1 and Lemma 3.2 motivate us to study amphicheirality of alge-
braically split links. We remark that our proof of Lemma 3.2 works for the case that L
is in an integral homology sphere with an orientation-reversing autohomeomorphism.

4 Proof of Theorem 1.2, Corollary 1.3 and Corol-

lary 1.4

To prove Theorem 1.2, we study the form of the Alexander polynomial of an alge-
braically split link, and compute the Reidemeister torsions of surgered manifolds along
the link.

Let L = K1 ∪ · · · ∪ Kr be an oriented r-component algebraically split link where
r ≥ 2. We add one component Kr+1 to L such that Li = Ki ∪ Kr+1 (i = 1, . . . , r) is
the connected sum of Ki and the Hopf link, where the linking number of Ki and Kr+1

is 1. Then we have
∆Li

(ti, tr+1)
.
= ∆Ki

(ti) (4.1)

We set L = L ∪Kr+1. By Lemma 2.4, we have

∆L(t1, . . . , tr+1) = (t1 · · · tr − 1)(t1 − 1) · · · (tr − 1)f(t1, . . . , tr)

+(tr+1 − 1)g(t1, . . . , tr+1)
(4.2)

where f(t1, . . . , tr) ∈ Λr and g(t1, . . . , tr+1) ∈ Λr+1. By Lemma 2.3, we may assume
that

f(t1, . . . , tr) = f(t−1
1 , . . . , t−1

r ) (4.3)

and
∆L(t1, . . . , tr+1) = (−1)r+1t21 · · · t

2
rt
a
r+1∆L(t

−1
1 , . . . , t−1

r+1) (4.4)
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where a ≡ r + 1 (mod 2). For I = {i1, i2, . . . , iµ} ⊂ Ir, we set LI = Ki1 ∪ · · · ∪ Kis,
LI = LI ∪ Kr+1, and gI ∈ ΛI is obtained by substituting tj = 1 for all j ∈ Ir \ I to
g(t1, . . . , tr+1).

By (4.1) and (4.4), if I = {i} (s = 1), then we may take

∆LI
(ti, tr+1) = ∆Ki

(ti) (4.5)

where ∆Ki
(ti) = t2i∆Ki

(t−1
i ). If 2 ≤ s ≤ r (r ≥ 2), then we may take

∆LI
(ti1 , . . . , tis , tr+1) =

(

∏

i∈I

ti − 1

)

∏

i∈I

(ti − 1)fI(ti1 , . . . , tis)

+(tr+1 − 1)g′I(ti1 , . . . , tis, tr+1)

(4.6)

where
∆LI

(ti1 , . . . , tis) =
∏

i∈I

(ti − 1)fI(ti1, . . . , tis),

fI(ti1 , . . . , tis) = fI(t
−1
i1
, . . . , t−1

is
) ∈ ΛI

and
g′I(ti1, . . . , tis , tr+1) ∈ ΛI .

We set fI = fI(ti1 , . . . , tis) and g′I = g′I(ti1 , . . . , tis , tr+1). We remark that fIr =
f(t1, . . . , tr) and g

′
Ir
= g(t1, . . . , tr).

Lemma 4.1 Under the situation above, for 1 ≤ s ≤ r − 1, we have

gI = (tr+1 − 1)r−s−1∆LI
(ti1 , . . . , tis, tr+1).

Proof By applying Lemma 2.4 repeatedly, we have the result.

We exapand g(t1, . . . , tr+1)-part in (4.2) as follows:

Lemma 4.2 If r ≥ 2, then we have

g(t1, . . . , tr+1) = (tr+1 − 1)r−2
r
∏

i=1

∆Ki
(ti)

+
∑

I⊂Ir
2≤s=|I|≤r−1

∏

i∈I

(ti − 1)(tr+1 − 1)r−s−1

·

{(

∏

i∈I

ti − 1

)

fI + (tr+1 − 1)hI

}

+
r
∏

i=1

(ti − 1)h

where fI ∈ ΛI , hI ∈ ΛI , and h ∈ Λr+1.
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Proof We show by induction on r.

(i) The case r = 2.

By Lemma 4.1 and (4.5), g(t1, t2, t3)−∆K1
(t1)∆K2

(t2) is divisible by (t1−1)(t2−1).
Hence we have the result.

(ii) The case r ≥ 3.

Suppose the case r − 1. By (4.6), Lemma 4.1 and the assumption, we have

g(t1, . . . , tr+1) = ∆LI
(t1, . . . , tr−1, tr+1) + (tr − 1)HI

=

(

∏

i∈I

ti − 1

)

∏

i∈I

(ti − 1)fI + (tr+1 − 1)g′I + (tr − 1)HI

=

(

∏

i∈I

ti − 1

)

∏

i∈I

(ti − 1)fI + (tr+1 − 1)r−2
∏

i∈I

∆Ki
(ti)

+
∑

J⊂I
2≤k=|J |≤r−2

∏

i∈J

(ti − 1)(tr+1 − 1)r−k−1

·

{(

∏

i∈J

ti − 1

)

fJ + (tr+1 − 1)hJ

}

+
∏

i∈I

(ti − 1)hI + (tr − 1)HI

where I = Ir \ {r}, fI ∈ ΛI , g
′
I ∈ ΛI , hJ ∈ ΛJ , and HI ∈ Λr+1.

We set

G(t1, . . . , tr+1) = g(t1, . . . , tr+1)− (tr+1 − 1)r−2
r
∏

i=1

∆Ki
(ti)

−
∑

I⊂Ir
2≤s=|I|≤r−1

∏

i∈I

(ti − 1)(tr+1 − 1)r−s−1

·

{(

∏

i∈I

ti − 1

)

fI + (tr+1 − 1)hI

}

.

Then we have G(t1, . . . , tr−1, 1, tr+1) = 0. In the similar way, if we substitute ti = 1 for
any 1 ≤ i ≤ r to G(t1, . . . , tr+1), then we have 0, and hence G(t1, . . . , tr+1) is divisible
by
∏r

i=1(ti − 1).

Let E be the complement of L, andM = (L; u1, . . . , ur+1) the result of (u1, . . . , ur+1)-
surgery along L where ui ∈ Q ∪ {∞, ∅}. For I = {i1, i2, . . . , is} ⊂ Ir, we suppose that
ui = ∅ if i ∈ I, ui ∈ Q ∪ {∞} if i ∈ Ir \ I, and ur+1 ∈ {∞, ∅}. We set u(I) = (ui)i∈Ir\I
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and u(I) = u(I) ∪ {ur+1}. If ur+1 = ∅, then we set M = Mu(I), and if ur+1 = ∞, then
we set M = Mu(I). We set the natural inclusion ι : Mu(I) →֒ Mu(I). From now on, we
consider only the case ui ∈ {1,−1} (i ∈ Ir \ I).

Let mi and li (i = 1, . . . , r+1) be a meridian and a longitude of Ki. We denote the
homology class of a loop γ by [γ]. In H1(E), we have

[li] = [mr+1] (i = 1, . . . , r)

[lr+1] = [m1] · · · [mr]
(4.7)

In H1(Mu(I)), we have

[m′
i] = [mi]

ri[li] = [mi]
ri [mr+1] = 1, [l′i] = [mi] (i ∈ Ir \ I) (4.8)

where m′
i and l′i are a meridian and a longitude of the attaching solid torus for Ki

(i ∈ Ir \ I). In H1(Mu(I)), we have

[m′
r+1] = [mr+1] = 1, [l′r+1] = [lr+1] (4.9)

We note that
H1(E) = 〈t1, . . . , tr, tr+1〉 ∼= Zr+1,

H1(Mu(I)) = 〈ti1, . . . , tis , tr+1〉 ∼= Zs+1,

and
H1(Mu(I)) = 〈ti1 , . . . , tis〉

∼= Zs,

where we set ti = [mi] (i = 1, . . . , r + 1).

For J = {j1, . . . , jk} ⊃ I and p ∈ ΛJ , we use the following notations:

kJ(u(I)) : the number of 1 in ui (i ∈ J \ I),

ρJ(u(I)) = (−1)kJ (u(I))t
−kJ(u(I))
r+1 ,

ηJ(u(I)) = (−1)kJ (u(I)),

σJ (u(I)) : the sum of ui (i ∈ J \ I),

p(u(I)) the polynomial obtained by substituting ti = t−uir+1 (i ∈ J \ I) to p,

FJ(I) : the polynomial obtained by substituting ti = 1 (i ∈ J \ I) to fJ ,

F (I) = FIr(I).

The Reidemeister torsions of Mu(I) is the following:

Lemma 4.3 Suppose that r ≥ 2 and 1 ≤ |I| = s ≤ r − 1.

10



(1) If I = {x} (s = 1), then we have:

τ(Mu(I))
.
= ∆Kx

(tx)
∏

i∈Ir\{x}

∆Ki
(t−uir+1)

+(tx − 1)
∑

J∋x
2≤|J |≤r

ρJ(u(I))
(

txt
−σJ (u(I))
r+1 − 1

)

fJ(u(I))

+(tr+1 − 1)QI

where QI ∈ ΛI .

(2) If 2 ≤ |I| ≤ r − 1, then we have:

τ(Mu(I))
.
=

∏

i∈I

(ti − 1)
∑

J⊃I
2≤|J |≤r

ρJ(u(I))

(

∏

i∈I

tit
−σJ (u(I))
r+1 − 1

)

fJ(u(I))

+(tr+1 − 1)QI

where QI ∈ ΛI .

Proof By Lemma 2.1, Lemma 2.2 and (4.8), we have

τ(Mu(I))
.
= ∆L(u(I))

∏

i∈Ir\I

(t−uir+1 − 1)−1

.
= ∆L(u(I))(tr+1 − 1)−(r−s)

(4.10)

By (4.2), we have

∆L(u(I))
.
=

(

∏

i∈I

tit
−σJ (u(I))
r+1 − 1

)

∏

i∈I

(ti − 1)
∏

i∈Ir\I

(t−uir+1 − 1)f(u(I))

+(tr+1 − 1)g(u(I))

= ρJ (u(I))

(

∏

i∈I

tit
−σJ (u(I))
r+1 − 1

)

∏

i∈I

(ti − 1)(tr+1 − 1)r−sf(u(I))

+(tr+1 − 1)g(u(I))

(4.11)
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By Lemma 4.2, we have

g(u(I)) = (tr+1 − 1)r−2
∏

i∈I

∆Ki
(ti)

∏

i∈Ir\I

∆Ki
(t−uir+1)

+
∑

J⊂Ir
2≤k=|J |≤r−1

ρJ(u(I))
∏

i∈I∩J

(ti − 1)(tr+1 − 1)r−|I∩J |−1

·

{(

∏

i∈I

tit
−σJ (u(I))
r+1 − 1

)

fJ(u(I)) + (tr+1 − 1)hJ(u(I))

}

+ρIr(u(I))
∏

i∈I

(ti − 1)(tr+1 − 1)r−sh(u(I))

(4.12)

where hJ and h are the same as in Lemma 4.2. In (4.12), we note that

0 ≤ |I ∩ J | = |J | − |J \ I| ≤ |I| = s,

and |I ∩ J | = s if and only if J ⊃ I. By the fact, and (4.10), (4.11) and (4.12), we have
the result.

The Reidemeister torsions of Mr(I) are the following:

Lemma 4.4 Suppose that r ≥ 2 and 1 ≤ |I| ≤ r − 1.

(1) If I = {x} (s = 1), then we have:

τ(Mu(I))
.
=















∆Kx
(tx) + (tx − 1)2

∑

J∋x
2≤|J |≤r

ηJ(u(I))FJ(I)















(tx − 1)−1.

(2) If 2 ≤ |I| ≤ r − 1, then we have:

τ(Mu(I))
.
=

∏

i∈I

(ti − 1)
∑

J⊃I
2≤|J |≤r

ηJ(u(I))FJ(I).

Proof By (4.7) and (4.9), we have [mr+1] = tr+1 = 1 and [lr+1] =
∏

i∈I ti in H1(Mu(I)).
Hence by Lemma 2.2, we have

τ(Mu(I))
.
= τ(Mu(I))|tr+1=1

(

∏

i∈I

ti − 1

)−1

.

By combining with Lemma 4.3, we have the result.
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For I ⊂ Ir with 1 ≤ |I| ≤ r, and any u(I) = (ui)i∈Ir\I , we set

Seven
u(I) =

∑

J⊃I,|J\I|:even
2≤|J |≤r

ηJ(u(I))FJ(I),

Sodd
u(I) =

∑

J⊃I,|J\I|:odd
2≤|J |≤r

ηJ(u(I))FJ(I),

and −u(I) is obtained from u(I) by replacing ui into −ui for all i ∈ Ir \ I.

Lemma 4.5

Seven
−u(I) = Seven

u(I) and Sodd
−u(I) = −Sodd

u(I).

Proof For J ⊃ I, since kJ(u(I)) + kJ(−u(I)) = |J \ I|, we have

ηJ(−u(I)) = (−1)|J\I|ηJ(u(I)),

and the results.

Proof of Theorem 1.2 Suppose that L is component-preservingly amphicheiral. Then
Mu(I) is homeomorphic to M−u(I).

(1) By Lemma 4.4 (1) and Lemma 4.5, we have

τ(Mu(I))
.
=
{

∆Kx
(tx) + (tx − 1)2

(

Seven
u(I) + Sodd

u(I)

)}

(tx − 1)−1

and
τ(M−u(I))

.
=
{

∆Kx
(tx) + (tx − 1)2

(

Seven
u(I) − Sodd

u(I)

)}

(tx − 1)−1.

Since τ(Mu(I))
.
= τ(M−u(I)) and ∆Kx

(1) = 1 6= 0, we have Sodd
u(I) = 0.

(2) By Lemma 4.4 (2) and Lemma 4.5, we have

τ(Mu(I))
.
=
∏

i∈I

(ti − 1)
(

Seven
u(I) + Sodd

u(I)

)

and
τ(M−u(I))

.
=
∏

i∈I

(ti − 1)
(

Seven
u(I) − Sodd

u(I)

)

.

Since τ(Mu(I))
.
= τ(M−u(I)), we have Seven

u(I) = 0 or Sodd
u(I) = 0.

Proof of Corollary 1.3 (1) We set r = 2r′ where r′ ∈ Z and r′ ≥ 1. We prove by
induction on r.

Suppose r = 2 (r′ = 1). By Theorem 1.2 (1), we have Sodd
u(I) = ±F (I) = 0.

Suppose r′ ≥ 2. By the assumption of induction, we have FJ(I) = 0 for every J such
that |J | is even, and 2 ≤ |J | ≤ r− 2. By Theorem 1.2 (1), we have Sodd

u(I) = ±F (I) = 0.

(2) Since Seven
u(I) = ±∆LI

6= 0, we have Sodd
u(I) = ±F (I) = 0 by Theorem 1.2 (2). The

equation F (I) = 0 holds if and only if f is divisible by ti − 1 from Lemma 2.3.

(3) Since Sodd
u(I) = ±F (I) 6= 0, we have Seven

u(I) = ±∆LI
= 0 by Theorem 1.2 (2).
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Remark 4.6 By Corollary 1.3 (3) and Lemma 3.1 (1), for an algebraically split component-
preservingly amphicheiral link L, if we can add one component K ′ to L satisfying that
L′ = L∪K ′ is also an algebraically split component-preservingly amphicheiral link such
that ∆L′ is not divisible by (t′ − 1)2 where t′ corresponds to a meridian of K ′, then we
have ∆L = 0. We hope that it is possible for the case that L is an algebraically split
component-preservingly amphicheiral link with even components. If it is true, then
Conjecture 1.1 is affirmative. However, if L is the Borromean rings (3-component link),
then there does not exist a knot like K ′.

Proof of Corollary 1.4 We take I = {2}. By Corollary 1.3 (2) (or Corollary 1.3 (1)),
f(t1, t2) is divisible by t1 − 1. We can argue similarly for the case I = {1}. Therefore
we have the result.

5 Proof of Theorem 1.5 and Corollary 1.6

We prove Theorem 1.5 by a slightly generalized argument of Hartley [3, Theorem 2.1].

Proof of Theorem 1.5 Suppose that L is oriented. We span a Seifert surface F
corresponding the orientation. We set a Seifert matrix from F as S. We can compute
the one variable Alexander polynomial of L from S as:

(t− 1)∆L(t, . . . , t) = det(tS − ST )

where ST is the transposed matrix of S. Let ϕ be an orientation-reversing homeomor-
phism of S3. Since L is (ε, . . . , ε)-amphicheiral, ϕ(F ) is still a Seifert surface of L, and
the corresponding Seifert matrix changed into −S. Since the S-equivalences do not
change the one variable Alexander polynomial, we have

(t− 1)∆L(t, . . . , t) = det(−tS + ST ).

Since the size of S is odd, we have ∆L(t, . . . , t) = 0. We can argue similarly if Ki is
changed into ηiKi. Therefore we have the result.

Proof of Corollary 1.6 By Corollary 1.4 and Theorem 1.5, we have the result.

6 Supporting examples

We raise examples which support Conjecture 1.1.

Example 6.1 (1) In Figure 1, let Mλ be the λ-component Milnor link [18] where
λ ≥ 3. In particular, M3 is the Borromean rings. The Alexander polynomial of Mλ is
∆M3

(t1, t2, t3) = (t1−1)(t2−1)(t3−1) and ∆Mλ
(t1, . . . , tλ) = 0 (λ ≥ 4). The Borromean

rings M3 is (+,+,+)-amphicheiral, but it is not (−,−,−)-amphicheiral (cf. [6, 10]).
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=

Mλ

K1

K2

M3K3 Kλ−1

Kλ

Borromean rings

Figure 1: λ-component Milnor link Mλ

(2) In Figure 2, let C(2a1, 2b1, . . . , 2an) be a 2-component 2-bridge link where the num-
ber in a rectangle implies the number of half twists. A 2-component amphicheiral
2-bridge link is not algebraically split (see [7]), and the Alexander polynomial of every
non-trivial 2-bridge link is not zero. As a special case, the Alexander polynomial of
L = C(2a, 2b,−2a) (a 6= 0, b 6= 0) (C(2,±2,−2) is the Whitehead link) is

∆L(t1, t2) = b(t1 − 1)(t2 − 1)

{

(t1t2)
a − 1

t1t2 − 1

}2

by Kanenobu’s formula [12]. We can see that L is not amphicheiral by Corollary 1.4.

12a n

1−2b

22a 2a

L

2−2b

Figure 2: 2-bridge link L = C(2a1, 2b1, . . . , 2an)

(3) For links with up to 11 crossings, we use slightly modified notations in a web site
maintaied by D. Bar-Natan and S. Morrison [1]. In the class, only 102n36 and 104n107 are
algebraically split component-preservingly amphicheiral links with even components.
Moreover they are algebraically split component-preservingly (+)-amphicheiral links.
We can confirm that the Alexander polynomials of them are 0 by direct computations
or [10, Theorem 1.3]. We also remark that the condition “component-preservingly”
is needed. 102n59 and 112n247 are algebraically split amphicheiral links with even com-
ponents which are not component-preservingly amphicheiral (cf. [9]). The Alexander
polynomials of them are

∆102n59
(t1, t2)

.
= (t1 − 1)(t2 − 1)(t1 − t2)(t1t2 − 1)

∆112n247
(t1, t2) = 0.
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We note that ∆102n59
(t1, t2) satisfies the condition

∆102n59
(t, t) = ∆102n59

(t, t−1) = 0

in Theorem 1.5, and both 102n59 and 112n247 are (±,±; (1 2))-amphicheiral where (1 2)
is the nontrivial permutation of {1, 2}.

10 n36
2

10 n59
2

10 n107
4

11 n247
2

=

=

Figure 3: Examples of prime links with up to 11 crossings
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