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ABSTRACT. We consider the design and analysis of numerical methods for approxi-
mating positive solutions to nonlinear geometric elliptic partial differential equations
containing critical exponents. This class of problems includes the Yamabe problem
and the Einstein constraint equations, which simultaneously contain several challeng-
ing features: high spatial dimension n > 3, varying (potentially non-smooth) coef-
ficients, critical (even super-critical) nonlinearity, non-monotone nonlinearity (arising
from a non-convex energy), and spatial domains that are typically Riemannian mani-
folds rather than simply open sets in Rn. These problems may exhibit multiple solu-
tions, although only positive solutions typically have meaning. This creates additional
complexities in both the theory and numerical treatment of such problems, as this fea-
ture introduces both non-uniqueness as well as the need to incorporate an inequality
constraint into the formulation. In this work, we consider numerical methods based on
Galerkin-type discretization, covering any standard bases construction (finite element,
spectral, or wavelet), and the combination of a barrier method for nonconvex optimiza-
tion and global inexact Newton-type methods for dealing with nonconvexity and the
presence of inequality constraints. We first give an overview of barrier methods in non-
convex optimization, and then develop and analyze both a primal barrier energy method
for this class of problems. We then consider a sequence of numerical experiments using
this type of barrier method, based on a particular Galerkin method, namely the piecewise
linear finite element method, leverage the FETK modeling package. We illustrate the be-
havior of the primal barrier energy method for several examples, including the Yamabe
problem and the Hamiltonian constraint.
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1. INTRODUCTION

In this article we consider the design and analysis of numerical methods for approx-
imating positive solutions to nonlinear geometric elliptic partial differential equations
containing critical exponents. These types of problems arise regularly in geometric anal-
ysis and mathematical physics, examples of which include the Yamabe problem and
the Einstein constraint equations [8, 9]. These problems often simultaneously contain
several challenging features, including spatial dimension n > 3, varying and potentially
non-smooth coefficients, critical (or even super-critical) nonlinearity, non-monotone non-
linearity (arising from a nonconvex energy), and spatial domains that are typically Rie-
mannian manifolds rather than simply open sets inRn. For these types of problems, there
may be multiple solutions, although only positive solutions typically have mathematical
and physical meaning. This creates additional complexities in both the theory and numer-
ical treatment of such problems, as this feature introduces both non-uniqueness as well
as the need to incorporate an inequality constraint into the formulation. In this work, we
consider numerical methods based on Galerkin-type discretization, covering any stan-
dard bases construction (finite element, spectral, or wavelet), and the combination of a
barrier method for nonconvex optimization and global inexact Newton-type methods for
dealing with nonconvexity and the presence of inequality constraints. Our goal is to de-
velop reliable methods for computing positive approximate solutions to these types of
nonlinear problems.

Critical exponent problems arise in a fundamental way throughout geometric analysis
and mathematical general relativity. One of the seminal problems in this area is the
Yamabe Problem: Find u ∈ X such that

−8∆gu+Ru = Ruu
5 in Ω, (1.1)

u > 0, (1.2)

where Ω is a Riemannian 3-manifold, g is the positive definite metric on Ω, ∆g is the
Laplace-Beltrami operator generated by g, R is the scalar curvature of g, and Ru is the
scalar curvature corresponding to the conformally transformed metric:

g = φ4g. (1.3)

The coefficients R and Ru can take any sign. The Banach space X containing the solu-
tion is an appropriate Sobolev class W s,p(Ω) for suitably chosen exponents s and p. If
the manifold Ω has a boundary, then boundary conditions are also prescribed, such as
u = 1 on an exterior boundary to Ω. In the case that Ω ⊂ R3, and gij = δij , then ∆g re-
duces to just the Laplace operator on Ω. With the presence of the term u5 and the spatial
dimension being three, this is an example of a critical exponent problem; such problems
are known to be difficult to analyze as well as to simulate numerically. The presence of
the inequality constraint (only positive solutions have mathematical and physical mean-
ing) creates additional complexities in both the theory and numerical treatment of such
problems. Prior work on numerical methods for critical exponent semilinear problems
has focused primarily on the development of adaptive methods for recovering solution
blowup; cf. [3, 2].

Outline of the paper. The structure of the remainder of the paper is as follows. In §2,
we give a more detailed overview of the class of geometric PDE problems of interest,
including both the Yamabe problem and the Hamiltonian constraint in the Einstein equa-
tions. As part of the discussion, we derive the linearized Hamiltonian constraint, and
construct an artificial nonconvex “energy” functional, which gives rise to the Hamilton-
ian constraint as a condition for its stationarity. In §3, we give an overview of barrier
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methods in nonconvex optimization. In §4 we then develop and analyze a primal bar-
rier energy method for this class of problems. Finally, in §5 we consider a sequence of
numerical experiments using this type of barrier method, based on a particular Galerkin
method, namely the piecewise linear finite element method, leverage the FETK model-
ing package. We illustrate the behavior of the primal barrier energy method for several
examples, including the Yamabe problem and the Hamiltonian constraint. We draw some
conclusions in §6.

2. ELLIPTIC PROBLEMS IN GEOMETRIC ANALYSIS AND RELATIVITY

While one of our motivations here is to develop methods for the Yamabe problem and
similar problems arising in geometric analysis, we are also interested in a related, more
general problem arising in general relativity. The Einstein equations, which represents
Einstein’s 1915 theory of gravity, are a coupled hyperbolic-elliptic system that governs
the deformation of the underlying metric of spacetime in response to the distribution and
dynamics of matter and energy density. The elliptic part of the system, known as the
Einstein constraint equations, or the coupled Hamiltonian and momentum constraints,
are of great interest in both the mathematical and numerical relativity research commu-
nities. This elliptic system must be satisfied by initial data used to evolve the metric
forward in time with the hyperbolic portion of the Einstein equations (called the evolu-
tion equations), and the constraints must also be satisfied at all points in time during the
evolution.

The Einstein constraints have all of the difficult features of the Yamabe problem, plus
more: three spatial dimensions, non-flat Riemannian manifold spatial domain, critical ex-
ponent, non-monotone nonlinearity, negative exponent powers (non-polynomial rational
nonlinearity, giving rise to singularities at the origin), possibly non-smooth coefficients,
possible non-uniqueness, physical positivity requirement, and the structure of an elliptic
system for two variables, with lack of a variational structure (the equations do not arise
as the Euler condition for stationarity of an underlying energy functional). However, one
of the difficulties is not present in an important physical situation known as the constant
mean curvature (CMC) case: in this situation, the coupled elliptic system of the Hamil-
tonian and momentum constraints decouple into the separate constraints, both of which
have separate variational structure. However, all of the other difficulties remain, and the
Hamiltonian constraint alone may be viewed as a generalization of the Yamabe problem.
An overview of the Einstein constraints, including the CMC case, can be found in [8, 9].
Here we will consider only the CMC case, and focus on the Hamiltonian constraint, also
known as the Lichnerovich equation.

−∇ · (ā∇u) +
R

8
u = −τ

2

12
u5 +

σ2

8
u−7 + 2πρu−3 in Ω, (2.1)

(ā∇u(x, y, z)) · n+ cu = gN on ∂NΩ, (2.2)
u = gD on ∂DΩ, (2.3)

where n is the unit normal and ∂Ω = ∂DΩ
⋃
∂NΩ and ∂DΩ

⋂
∂NΩ = ∅. Here R(x),

τ 2(x), σ2(x) : Ω ⊂ <3 → < and ρ, σ2, τ 2 ≥ 0 for all x ∈ Ω. Also it assumed that
there exist positive constants C1 and C2 such that −C1 ≤ R(x) ≤ C2. Also, τ may
be considered to be constant so that CMC decoupling occurs. Reasonable values for σ
are such that 0 ≥ σ2 ≤ C3 where C3 may be as large as 106. The strong form of the
constraints given in (2.1–2.3) can be transformed into the weak form, reformulating the
problem using fewer derivatives.
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2.1. Weak Formulation. The weak formulation is obtained by taking theL2-inner prod-
uct over Ω with all test functions v ∈ H1

0 (Ω) 4
= {u ∈ H1(Ω) : v = 0 on ΩD} and (2.1),

yielding: ∫
Ω

(
−ā4u+

R

8
u+

τ 2

12
u5 − σ2

8
u−7 − 2πρu−3

)
v dx = 0.

Green’s first identity states:∫
Ω

(∇ · z)v dx =

∫
∂Ω

(n · z)v ds−
∫

Ω

z · ∇v dx.

Taking z := ā∇u and recalling that v = 0 on ∂D(Ω), we obtain:∫
Ω

(ā∇u) · ∇v dx−
∫
∂NΩ

(n · ā∇u)v ds+

∫
Ω

k(u)v dx = 0, (2.4)

where k(u) 4
=

R
8
u+ τ2

12
u5 − σ2

8
u−7 − 2πρu−3. Using (2.2) in (2.4), yields:∫

Ω

(ā∇u) · ∇v + k(u)v dx−
∫
∂NΩ

(gN − cu) v ds = 0.

Thus, the weak form of (2.1-2.3) is given by:

Find u ∈ X = H1
D(Ω) ∩ [u−, u+] s.t. (f(u), v) = 0, for all v ∈ H1

0 (Ω), (2.5)

where H1
D(Ω) 4

= {u ∈ H1(Ω) : u = gD on ΩD} and

(f(u), v) 4
=

∫
Ω

[(ā∇u) · ∇v + k(u)v] dx+

∫
∂NΩ

(cu− gN)v. (2.6)

Note that we have constructed the space X = H1
D(Ω) ∩ [u−, u+] in which to look for

solutions to the problem based on the need to “guard” the nonlinearity from blow-up at
the origin. This potential blowup is due to the negative powers appearing as part of the
non-polynomial, rational form of the nonlinearity. The pointwise interval [u−, u+], which
can be strictly negative or strictly positive, can be shown to contain one or more solutions
using maximum principles and fixed-point arguments; cf. [8, 9]. The numerical methods
we develop later in the paper will incorporate this type of “guarding” in the discrete
formulation.

The Gateaux derivative (Df(u)w, v) of the weak nonlinear form (2.6) is needed for
use in Newton-like algorithms. It is computed formally as

∂

∂t
f (u+ tw) (v)

∣∣∣∣
t=0

=
∂

∂t

[∫
Ω

[(ā∇(u+ tw)) · ∇v + k(u+ tw)v] dx

] ∣∣∣∣
t=0

+
∂

∂t

[∫
∂NΩ

(c (u+ tw)− gN) v ds

] ∣∣∣∣
t=0

,

(2.7)

giving that

(Df(u)w, v) =

∫
Ω

[(ā∇w) · ∇v + k′(u)wv] dx+

∫
∂NΩ

cwv ds, (2.8)

where k′(u)wv = R
8
wv + 5

12
τ 2u4wv + 7

8
σ2u−8wv + 6πρu−4wv.
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2.2. The energy. The weak formulation can be viewed as a zero-finding problem; al-
ternatively, it may be viewed as the problem of finding a critical point of an energy
functional.

Theorem 2.1. u is a solution to the weak form (2.5) if and only if u is a critical point of
the energy functional

J(u) =

∫
Ω

[
1

2
(ā∇u) · ∇u+

1

16
Ru2 +

1

72
τ 2u6 +

1

48
σ2u−6 + πρu−2

]
dx

+
1

2

∫
∂NΩ

cu2 ds−
∫
∂NΩ

gNu ds. (2.9)

Proof. We prove this theorem by showing that Gateaux derivative of J(u) is exactly the
weak formulation (2.5). We have

∂

∂t
J (u+ tv)

∣∣∣∣
t=0

=
∂

∂t

[∫
Ω

[
1

2
(ā∇(u+ tv)) · ∇(u+ tv) +

1

16
R(u+ tv)2

+
1

72
τ 2(u+ tv)6 +

1

48
σ2(u+ tv)−6 + πρ(u+ tv)−2

]
dx

] ∣∣∣∣
t=0

+
∂

∂t

[∫
∂NΩ

[
1

2
c (u+ tv)2 − gN(u+ tv)

]
ds

] ∣∣∣∣
t=0

=

∫
Ω

[
(ā∇u) · ∇v +

R

8
uv +

τ 2

12
u5v − σ2

8
u−7v − 2πρu−3v

]
dx

+

∫
∂NΩ

(cu− gN)v ds

= (f(u), v).

�

Theorem 2.1 can be restated in terms of stationarity.

Corollary 2.2. The energy functional J(u) in (2.9) is stationary at u if and only if u is a
solution to the weak formulation (2.5).

From an optimization standpoint, it is reasonable to ask under what conditions can
J(u) be minimized to obtain the solution to the weak formulation. Certainly, if J(u) is a
convex energy functional then a weak solution can be found by minimizing J(u). Con-
vexity implies uniqueness of solutions, which in this application is often not the case.
Nevertheless, Newton’s method may be used to find a critical point of the energy, requir-
ing the need for a second derivative. From Theorem 2.1, the second Gateaux derivative
of the energy functional J(u) is exactly D(f(u), v) (see (2.8)).

Example 1. Set ā = 1.0, R = 1.0, τ = 0.1, σ = 0.2, ρ = 0.1, c = 1.0, and
gN = −1.0 with Ω chosen to be a single hole domain at the origin in three-dimensional
space with only Robin boundary conditions. In this simple case, since R ≥ 0 and c ≥ 0,
the energy functional J(u) is convex on the domain of positive functions u > 0, and
thus, minimizing the energy functional J over u > 0 is equivalent to solving the weak
formulation. Similarly, if R ≥ 0 and c ≥ 0, then J(u) is also convex over u < 0–
allowing for the existence of both strictly negative and positive solutions. This yields a
convex energy functional J with one positive solution u > 0 and one negative solution
u < 0 (see Section 5).
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FIGURE 1. A plot of the integrand I(u) with u 4
= x, ā = 2, R = −1000,

τ =
√

72, σ =
√

48, ρ = 1/π, and Ω = [0.4, 3].

Example 2. Set a = 2.0, τ =
√

72, σ =
√

48, and ρ = 1/π, and let Ω be the
one-dimensional closed subset [0.1, 10]. With these choices, the energy reduces to:

J(u) =

∫ 10

0.1

[
(∇u) · ∇u+

1

16
Ru2 + u6 + u−6 + u−2

]
dx. (2.10)

Let I(u) denote the integrand in (2.10). For u 4
= x, the second derivative of I(u) is given

by
d2I(u)

dx2
=

1

8
R + 30u4 + 42u−8 + 6u−4.

Thus, if R < 0 and sufficiently negative, I has an inflection point; otherwise, I is a
strictly positive, convex function of u. For any value of R, I(u) is an even function since
I(u) = I(−u). The integrand I(u) with R = −1000 is plotted in Figure 1 in coordinate
pairs (x, I(u)) with u 4

= x on the interval [0.4, 3]. The second derivative of I(u) confirms
this is a nonconvex function of u.

When the energy functional is convex, a weak solution can be found by minimizing
the energy functional using a Newton-like iteration. However, when the energy is non-
convex, a weak solution may be a maximizer or saddlepoint of the energy. In this case,
Newton’s method can be used to find a stationary point of the energy functional with
progress towards a stationary point being guaranteed by computing steps along the New-
ton direction that yield sufficient decrease in a merit function. The positivity constraint
u > 0 can naturally be enforced when solving the Lichnerovich equation (2.1–2.3) using
a safe-guarded Newton method. Unlike the Lichnerovich equation, the Yamabe Problem
(1.1) does not have a singularity at u = 0; thus, a barrier method can be used to help
enforce the positive inequality constraint on u. In the following section, we consider
barrier methods for nonconvex optimization and develop a primal barrier energy method
for this class of problems.

3. BARRIER METHODS FOR NONCONVEX OPTIMIZATION

Barrier methods are the most widely-used type of interior method for general nonlinear
inequality-constrained optimization problems of the form:

minimize
x∈<n

f(x)

subject to c(x) ≥ 0,
(3.1)



BARRIER METHODS FOR CRITICAL EXPONENT PROBLEMS 7

where f : <n → < is assumed to be twice-continuously differentiable and c : <n → <m
is an m-vector of constraints. Generally speaking, barrier methods seek to minimize a
composite function that both resembles the original function and naturally prevents in-
feasible iterates. Today, the most widely used barrier function is the classical logarithmic
barrier function:

Bµ(x) = f(x)− µ
m∑
i=1

ln ci(x). (3.2)

Notice that if µ is small, the barrier function resembles the original function; moreover,
this function inherits the smoothness associated with the original problem but is only
defined in the strict interior of the feasible region for the original problem (3.1).

The classical barrier method solves (3.1) by minimizing Bµ(x) for a decreasing se-
quence of positive µ. Given a fixed µ > 0, first-order optimality conditions for x∗ to be
a minimizer of the barrier function is that∇Bµ(x∗) = 0, i.e.,

∇f(x∗)− J(x∗)Ty(x∗) = 0, (3.3)

where J denotes the constraint Jacobian and yi(x) 4
= µ/ci(x). Alternatively, y is inter-

preted as a vector of Lagrange multipliers associated with the original inequality problem
(3.1). Moreover, ci(x)yi = µ can be viewed a perturbation of the complementarity con-
dition for a first-order KKT point.

When c(x) 4
= x, the Newton equations for minimizing Bµ(x) are given by(
∇2f(x) + µ diag(X−2)

)
p = −

[
∇f(x)− µX−1

]
, (3.4)

where X−j 4
= [1/xj1, 1/x

j
2, . . . , 1/x

j
n]T for j ∈ {1, 2}, and diag(x) is the diagonal matrix

whose ith diagonal entry is xi. To ensure global convergence, a line search must be used
to satisfy a sufficient decrease criteria (e.g., the Armijo or Wolfe conditions). Once a
minimizer x(µ) of Bµ(x) is computed, µ is reduced and the process is repeated. Notice
that the subsequent minimization can be warm-started by choosing the minimizer of the
previous barrier function as the initial guess. Algorithm 3.1 summarizes the classical bar-
rier method for solving (3.1) with c(x) 4

= x and using the Amijo condition for sufficient
descent.

Algorithm 3.1: Classical Barrier Method.
Choose x0 > 0, µ > 0, η ∈

(
0, 1

2

)
, and γ ∈ (0, 1);

Set k = 0;
while not converged do
Compute x(µ), an unconstrained minimizer of Bµ(x):

while not converged do
Solve (3.4) to obtain p;
Use the “99% rule” to compute αmax;
Compute α ∈ (0, αmax] such that Bµ(x+ αp) ≤ Bµ(x) + ηα∇Bµ(x)Tp;
x← x+ αp;

end do
xk+1 ← x(µ);
µ← γµ;
k ← k + 1;

end do
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When computing a step length, it is necessary to safeguard the step to avoid taking
a step into the infeasible region. For linear constraints, the so-called “99%” rule may
be invoked (e.g., see [6]) that states that if ∆xi < 0 for at least one i: (i) Compute
αmax = max{−(xi/∆xi) : ∆xi < 0}; (ii) Set the maximum step length to be ᾱ =
max{0.99× αmax, 1}.

We now state two theorems that summarize the convergence of the classical barrier
method. The first theorem governs the local convergence of a sequence of minimizers
of the classical barrier function. Before stating this theorem, we state the following
theorem, which will be used in the proof of the theorem on local convergence.

Theorem 3.1. Consider problem (3.1), where f : <n → < and c : <n → <m are
continuous. Let N denote the set of all local constrained minimizers with objective
function value f ∗, and assume that f ∗ has been chosen so that N is nonempty. Assume
further that the set N ∗ ⊆ N is a nonempty compact isolated subset of N . Then there
exists a compact set S such that N ∗ lies in int(S) ∩ F and for any feasible point x̄ in
S but not in N ∗, f(x̄) > f ∗. Furthermore, every point x∗ in N ∗ has the property that
f(x∗) = f ∗ = min f(x) for all x ∈ S ∩ F .

Proof. See [5, Theorem 7] and [12, Theorem 6]. �

The following theorem and proof regarding convergence of the minimizers of the bar-
rier function is found in [6].

Theorem 3.2. Consider problem (3.1), where f : <n → < and c : <n → <m are
continuous. Let F denote the feasible region, let N denote the set of minimizers with
objective function value f ∗, and assume that N is nonempty. Let {µk} be a strictly
decreasing sequence of positive barrier parameters such that limk→∞ µk = 0. Assume
that

(a) there exists a nonempty compact set N ∗ of local minimizers that is an isolated
subset of N ;

(b) at least one point in N ∗ is in the closure of strict(F).
Then the following results hold:

(i) there exists a compact set S such that N ∗ ⊂ int(S) ∩ F and such that, for any
feasible point x̄ in S but not in N ∗, f(x̄) > f ∗;

(ii) for all sufficiently small µk, there is an unconstrained minimizer yk of the barrier
function Bµk(x) in strict(F) ∩ int(S), with

Bµk(yk) = min {Bµk(x) :x ∈ strict(F) ∩ S }.

Thus Bµk(yk) is the smallest value of Bµk(x) for any x ∈ strict(F) ∩ S;
(iii) any sequence of these unconstrained minimizers {yk} of Bµk(x) has at least one

convergent subsequence;
(iv) the limit point x∞ of any convergent subsequence {xk} of the unconstrained min-

imizers {yk} defined in (ii) lies in N ∗;
(v) for the convergent subsequences {xk} of part (iv),

lim
k→∞

f(xk) = f ∗ = lim
k→∞

Bµk(xk).

Proof. See [6]. �

Applied to problem (3.1), the classical barrier method can be viewed as a path-following
method that defines a path to both an optional x∗ and associated Lagrange multipliers λ∗.
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The following theorem (stated and proved in [6] and based on results from [5, 12, 13])
summarizes the conditions under which a sequence of barrier minimizers converges to
the solution of (3.1).

Theorem 3.3. Consider problem (3.1). Assume that the set of strictly feasible points is
nonempty. Let x∗ be a local constrained minimizer of (3.1),∇f(x) 4

= g(x), J(x) 4
= ∇c(x)T ,

and A denote the set of indices of the active constraints at x∗. Assume that the following
sufficient optimality conditions hold at x∗:

(a) x∗ is a KKT point, i.e., there exists a nonempty setMλ of Lagrange multipliers
λ satisfying

Mλ = {λ : g(x∗) = J(x∗)Tλ, λ ≥ 0, and ci(x∗)λi = 0 ∀i};
(b) there exists p such that JA(x∗)p > 0, where JA(x∗) denotes the active constraints

at x∗; and
(c) there exists ω > 0 such that pTH(x∗, λ)p ≥ w‖p‖2

2 for all λ ∈ Mλ and all
nonzero p satisfying g(x∗)Tp = 0 and JA(x∗)p ≥ 0, whereH(x∗, λ) 4

= ∇2f(x∗)−∑m
i=1 λi∇2ci(x

∗) is the Hessian of the Lagrangian evaluated at x = x∗.
Assume that a logarithmic barrier method is applied in which µk converges monotoni-
cally to zero as k →∞. Then

(i) there is at least one subsequence of unconstrained minimizers of the barrier func-
tion Bµk(x) converging to x∗;

(ii) let {xk} denote such a convergent subsequence. Then the sequence of barrier
multipliers {λk}, whose ith component is µk/ci(xk) is bounded;

(iii) limk→∞ λ(xk) = λ̄ ∈Mλ.
If, in addition, strict complementarity holds at x∗, i.e., there is a vector λ ∈ Mλ such
that λi > 0 for all i ∈ A, then

(iv) λ̄A > 0;
(v) for sufficiently large k, the Hessian matrix∇2Bµk(xk) is positive definite;

(vi) a unique, continuously differentiable vector function x(µ) of unconstrained min-
imizers of Bµ(x) exists for positive µ in a neighborhood of µ = 0; and

(vii) limµ→0+ x(µ) = x∗.

Proof. See [6]. �

Consider the case when c(x) 4
= x, and the constrained local minimizer x∗ is strictly

positive. In this case, Theorem 3.3 reduces to the following corollary:

Corollary 3.4. Consider problem (3.1) with c(x) 4
= x. Suppose x∗ be a local constrained

minimizer of (3.1). Further, assume that x∗ > 0. Let ∇f(x), J(x) and A be defined as
in Theorem 3.3. Assume that the following sufficient optimality conditions hold at x∗:

(a) x∗ is a stationary point of f(x), i.e., g(x∗) = 0;
(b) ∇2f(x∗) is positive definite.

Assume that a logarithmic barrier method is applied in which µk converges monotoni-
cally to zero as k →∞. Then

(i) there is at least one subsequence of unconstrained minimizers of the barrier func-
tion Bµk(x) converging to x∗;

(ii) let {xk} denote such a convergent subsequence. Then the sequence of barrier
multipliers {λ(xk)}, whose ith component is µk/ci(xk) is bounded;

(iii) limk→∞ λ(xk) = 0;
(iv) for sufficiently large k, the Hessian matrix∇2Bµk(xk) is positive definite;
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(v) a unique, continuously differentiable vector function x(µ) of unconstrained min-
imizers of Bµ(x) exists for positive µ in a neighborhood of µ = 0; and

(vi) limµ→0+ x(µ) = x∗.

Proof. This proof is based on the proof given in [6] for Theorem 3.3, modified for the
case when c(x) = x and the constrained local minimizer x∗ is strictly positive.

Since x∗ > 0, x∗ is in strict(F), and thus, in the closure of strict(F). Assumptions
(a) and (b) imply that x∗ is an isolated unconstrained minimizer of f(x). Thus, the
conditions of Theorem 3.2 are met, implying that there is at least one subsequence of
unconstrained minimizers of Bµk(x) converging to x∗. This proves (i).

Let {xk} denote such a convergent sequence, i.e., limk→∞ x
k = x∗. Each xk is an

unconstrained minimizer of Bµk(x):

∇Bµk(x) = g(xk)−
m∑
i=1

∇ci(xk)λi(xk), where λi(x
k) =

µk
ci(xk)

.

Because c(xk) > 0 (from Theorem 3.2, result (ii)), λi(xk) is strictly positive for any
µk > 0. Since there are no active constraints at x∗ and xk converges to x∗,

lim
k→∞

ci(x
k) = ci(x

∗) > 0, and hence lim
k→∞

λi(x
k) = 0,

for all i = 1, . . . ,m, proving (ii) and (iii).
As in the proof of (v) in Theorem 3.3, to determine the properties of ∇2Bµk(xk) as

k →∞, we write the Hessian of the barrier function (3.2) as

∇2Bµk(xk) = ∇2f(xk) +−
m∑
i=1

λi(x
k) ∇2ci(x

k) +
m∑
i=1

λi(x
k)

ci(xk)
∇ci(xk)(∇ci(xk))T .

Since xk → x∗ and λ(xk) → 0 as k → ∞, limk→∞∇2Bµk(xk) = ∇2f(x∗). Thus,
by assumption (b), for sufficiently large k, the Hessian ∇2Bµk(xk) is positive definite,
proving (iv).

To verify the existence of a unique, differentiable function x(µ) for positive µ in a
neighborhood of x(µk), we apply the implicit function theorem (see, for example, [11,
p. 128] and [10, pp. 585–586]) to the n + 1 variables (x, µ). At (xk, µk), we know that
the following system of nonlinear equations has a solution:

Φ(x, µ) = g(x)

The Jacobian of Φ with respect to x is the barrier Hessian ∇2Bµ(x), which was just
shown to be positive definite at x = xk and µ = µk. The implicit function theorem
then implies that there is a locally unique, differentiable function x(µ) passing through
x(µk)

4
= xk such that Φ(x(µ), µ) = 0 for all positive µ in a neighborhood of µk.

Using continuation arguments, it is straightforward to show that the function x(µ)
exists for all 0 < µ ≤ µk for all sufficiently large k, giving result (vi).

Result (vi) is immediate from the local uniqueness of x(µ) and result (i), that xk is a
local unconstrained minimizer of the barrier function. �

4. THE PRIMAL BARRIER ENERGY METHOD

Inequality constraints on u introduced in Section 2 can be enforced using a barrier
method. Define

Jµ(u) = J(u)− µ
∫

Ω

ln(u) dx,
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where J(u) is defined as in (2.9). The Gateaux derivative is given by

J ′µ(u)(v) = J ′(u)(v)− d

dt

[
µ

∫
Ω

ln(u+ tv)

] ∣∣∣∣
t=0

=

∫
Ω

[(ā∇u) · ∇v + k(u)v] dx

+

∫
∂NΩ

(cu− gN)v ds− µ
∫

Ω

u−1v dx. (4.1)

Thus, the condition for stationarity of Jµ(u) is given by solving the following problem:

Find u ∈ H1
0 (Ω) s.t. J ′µ(u)(v) = 0, ∀v ∈ H1

0 (Ω). (4.2)

The second Gateaux derivative of Jµ(u) is given by

J ′′µ(u)(w, v) =

∫
Ω

[(ā∇w) · ∇v + k′(u)wv] dx+

∫
∂NΩ

cwv ds+ µ

∫
Ω

u−2wv dx.

(4.3)
Thus, the Newton update for solving (4.2) is given by:

Find w ∈ H1
0,D(Ω) s.t. J ′′µ(u)(w, v) = −J ′µ(u)(v), ∀v ∈ H1

0,D(Ω). (4.4)

4.1. Discretization. We use a standard Galerkin finite element method to approximate
the solution (4.4) in an N -dimensional subspace Xh ⊂ X = H1

0,D(Ω) ∩ [u−, u+]. Thus,
we seek a solution uh ∈ Xh such that

J ′µ(uh)(vh) = 0, ∀v ∈ Xh. (4.5)

The Newton update is given by:

Find wh ∈ Xh ⊂ X s.t. J ′′µ(uh)(wh, vh) = −J ′µ(uh)(vh), ∀vh ∈ Xh. (4.6)

Let {φi}N1 be a basis Xh. Then, without loss of generality, let

uh =
N∑
i

αiφi, wh =
N∑
i

βiφi,

for some {αi} and {βi}. It is sufficient to take the test functions vh ∈ Xh to be the basis
functions {φi}Ni=1. Equation (4.6) is equivalent to solving the following matrix-vector
equation:

[A(uh) + µM(uh)]W = − [G(uh)− µH(uh)] , (4.7)
where

Aij(uh) = J ′′µ(uh) (φj, φi) , (4.8)

Mij(uh) =

∫
Ω

(uh)
−2 φjφi dx (4.9)

Wi = βi, (4.10)
Gi(uh) = J ′µ(uh)(φi), (4.11)

Hi(uh) =

∫
Ω

(uh)
−1φi dx (4.12)

The barrier term contributes an extra term to the system matrix, namely

M = µ

∫
Ω

u−2
h φjφi dx.
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Thus, the barrier term adds a positive definite matrix to the original system matrix, and
so, may be viewed as a regularization. In FETK, this integral is approximated using a
high-accuracy quadrature rule, using a finite sum with fixed positive weights.

The Newton update W defines a descent direction for

φ(uh) =
1

2
‖G(uh)‖2

2, (4.13)

and thus, φ(uh) may be used as a merit function to enforce sufficient descent.
At optimality, the solution uh must lie in the strict interior of the feasible region,

and thus, the Lagrange multipliers must be exactly zero. Because of this, there is no
restriction that µ must be kept away from zero. Thus, µ may be steadily decreased, and
in fact, may be set to zero–solving the original stationary problem.

Algorithm 4.1 summarizes the primal barrier energy method:

Algorithm 4.1: Primal Barrier Energy Method.
Choose u0 > 0, µ > 0, η ∈

(
0, 1

2

)
, and γ ∈ (0, 1);

Set k = 0;
while not converged do
Compute u(µ) to approximately solve (4.5):

while not converged do
Solve (4.7) to obtain wih;
Use the “99% rule” to compute αmax;
Compute α ∈ (0, αmax] such that φ(uih + αwih) ≤ φ(uih) + ηα∇φ(uih)

Twih;
uih ← uih + αwih;

end do
uk+1 ← u(µ);
µ← γµ;
k ← k + 1;
i← 0;

end do

In practice, each barrier function Bµ(x) does not have to be minimized to high pre-
cision. Typically, each barrier function is considered sufficiently minimized when the
norm of its gradient is either less than an fixed absolute tolerance or satisfies a relative
tolerance based on Bµ(x0), where x0 denotes the initial guess for the minimization (see,
for example, [4]).

5. NUMERICAL RESULTS

The standard Newton method, a standard Newton method with safeguarding, and
the primal barrier energy method was implemented using FETK (the Finite Element
ToolKit; see [7] and http://www.FETK.org). These methods were used to solve the Ein-
stein constraint equations on three single-hole domains, centered at the origin, with given
boundary conditions on both the inner and outer boundary. Each tetrahedral mesh was
generated by the GAMer component of FETK, which is a high-fidelity surface and vol-
ume meshing tool based on standard simplex triangulation, subdivision, and smoothing
algorithms (cf. [14, 15]). Details of the three meshes are given in Table 1.

At the heart of each nonlinear solver is a linear solver (e.g., sparse direct solver or
the conjugate-gradient (CG) method). For more ill-conditioned systems, the Newton

http://www.FETK.org
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TABLE 1. Meshes

Mesh #1 Mesh #2 Mesh #3

Inner radius 50 10 1
Outer radius 100 100 100
Vertices 2089 1436 2820
Simplicies 9726 7589 15321

equations may not be solved exactly; however, it is necessary that any step obtained
from the linear solver of choice must be a descent direction. A simple backtracking line
search is used to obtain a step that meets the sufficient decrease criteria in Algorithms 3.1
and 4.1. Convergence is obtained when the norm of the nonlinear residual defining the
PDE is less than a chosen tolerance of ε 4

= 1.0e-07, i.e.,

‖G(uk)‖2 ≤ ε. (5.1)

For each example, the energy barrier method initialized µ and then decreased µ when-
ever the iterate ukh satisfied

‖f(ukh)‖2 ≤ max{εµ‖f(u0
h)‖2, εµ} (5.2)

where f(ukh) = G(ukh) − µH(ukh), u0
h denotes the initial iterate after decreasing µ, and

εµ = max{min{0.1, µ}, ε}. This choice of εµ allows each subproblem to be solved to
greater accuracy as µ is decreased.

Reasonable choices for parameters for the Lichnerov equation with boundary condi-
tions include those given in Examples 1–2, in Section 2.2. The first two examples are
with these choices of parameters.

Example 1. Set ā = 1.0, R = 1.0, τ = 0.1, σ = 0.2, ρ = 0.1, c = 1.0, and gN = −1.0.
We pick Ω to have Robin boundary conditions on both the inner and outer boundary.
The presence of the negative exponents acts as a natural barrier function, preventing in-
feasible iterates. For this reason, to obtain a positive solution it is sufficient to add a
safeguarding procedure such as the so-called “99% rule” (see Section 3) to the standard
Newton method.

Table 2 gives the results of using the standard Newton method, Newton’s method with
safeguarding using the “99% rule”, and the primal energy method to solve the Lich-
nerovich equation. For each solver, the initial guess was a vector of all ones. We list
the number of iterations (“itns”), residual, and the signs of the entries in the vector of
coefficients for uh (i.e., + denotes all the entries are strictly positive, − denotes all the
entries are strictly negative, and +/− denotes both positive and negative entries). Note
that there is one linear solve per iteration, and thus, the number of iterations is also the
number of linear solves required by each method. All four solvers converged on all three
meshes to strictly positive solutions.

In Table 2, the energy barrier method is reported with two different initial values of µ.
First, the energy barrier method was run with µ = 0.0, making it numerically equivalent
to Newton’s method with safeguarding. (For nonconvex problems, we do not expect
the energy barrier method to converge to a strictly positive solution with this choice of
µ). For illustrative purposes, the results with µ = 1.0 are also reported; for this test,
when each subproblem was sufficiently solved (i.e., (5.2) was satisfied), we reduced µ
by a factor of 1/10. However, for this convex problem, allowing faster reductions of
µ leads to fewer overall iterations. In fact, reducing µ by a factor of 1/100 led to 14
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iterations on mesh #1, 16 iterations on mesh #2, and 16 iterations on mesh #3. For more
difficult problems, reducing µ too quickly will impede convergence. Even though faster
reductions in µ would lead to results more similar to the Newton methods, for the results
in Table 2, we chose to display results with a reasonable, commonly accepted reduction
of 1/10. Also, it is worth noting that the different residual values for the algorithms are
inconsequential in that convergence only requires (5.1) to be satisfied. (In these cases,
Newton’s method was fortunate in that quadratic convergence led to a much smaller
residual for each final iterate.)

In Table 2 we see that a positive solution was obtained by all methods using an initial
guess of all ones. As previously noted, a barrier method is not required to obtain a
strictly positive solution since the energy functional has a natural barrier in the form of
negative coefficients of u. Thus, we expect that a safeguarded Newton method will be
sufficient to recover a positive solution. In this example, Newton’s method with and
without safeguarding produced the same iterates. It is of interest to note that a strictly
negative solution can be recovered on all three meshes by using the standard Newton
method together with the initial guess of a vector of all negative ones.

TABLE 2. Example #1.

Mesh #1 Mesh #2 Mesh #3

method itns resid sign itns resid sign itns resid sign

Newton (standard) 6 2.71e-12 + 6 5.15e-12 + 6 4.73e-12 +
Newton (safeguarded) 6 2.71e-12 + 6 5.15e-12 + 6 4.73e-12 +
Barrier energy (µ0 = 0.0) 6 2.71e-12 + 6 5.15e-12 + 6 4.73e-12 +
Barrier energy (µ0 = 1.0) 22 6.15e-08 + 24 1.19e-08 + 24 1.17e-08 +

Example 2. Let a = 2, R = −1000, τ =
√

72, σ =
√

48, and ρ = 1/π. For this
example, the inner and outer boundaries of all three meshes have a Robin boundary
condition with c = 2 and gN = 10.

On the first mesh, the standard Newton method failed to converge in 50 iterations,
denoted by the asterisk in Table 3; in fact, at the 100th iteration, the current approxi-
mation to uh contained both positive and negative entries–the standard Newton method
was unable to maintain a strictly positive solution. When the initial guess was set to
a vector whose entries were all 10, Newton’s method converged to a positive solution;
when the initial guess was set to a vector whose entries were all -10, the standard New-
ton method returned a strictly negative solution; and when the initial guess was set to a
vector whose enries were all -1, the standard Newton method returned a strictly positive
solution. (Newton’s method without safeguarding was unpredictable–one could recover
a positive solution even when starting with an initial negative guess.) Meanwhile, with an
initial guess of all ones, the safeguarded Newton method converged to a strictly positive
solution. The barrier energy method converged with µ0 = 1 and subsequent reductions
in µ of 1/10, as in Example 1.

On the second mesh, all methods converged to the same strictly positive solution when
the initial guess was all ones. (The barrier energy method was run with µ0 = 1 and
subsequent reductions in µ of 1/10, as in Example 1.) A strictly negative solution can
be recovered by using the standard Newton method together with the initial guess of a
vector whose entries are all -10.
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On the third mesh, Newton’s method without safeguarding did not converge within
the first 100 iterations and had both positive and negative components. A negative so-
lution was obtained by the standard Newton method by starting with a vector whose
entries were all -10. Meanwhile, Newton’s method with safeguarding made insignificant
progress after the seventh iteration, and thus, failed to converge in 100 iterations. The
safeguarded method failed because the initial safeguarded Newton steps took some of
the coefficients of uh very close to the boundary and the following Newton directions
continued to point in the direction of negative numbers for these components. In this
event, the “99% rule” allows subsequent steps of only negligible size along the Newton
direction at each iteration. As a result, the safeguarded Newton method is unable to make
any real progress each subsequent iteration, and thus, fails to converge.

In this example, we see that even though there is a natural barrier in the Lichnerovich
equation, there are additional benefits that a barrier function approach can offer: By
setting the parameter µ to be large enough, we can alter the pure Newton direction, pre-
venting the initial Newton iterates from getting too close to the boundary. For example,
setting µ0 to be 10, 20, 30, or 40, the energy method’s iterates took large initial steps to
the boundary, preventing convergence; however, with µ0 = 50, the algorithm converged
to a positive solution. (The values in Table 3 are with µ0 = 50 and subsequent reductions
in µ of 1/10.)

The energy barrier method was the only method to find a strictly positive solution to
this problem on all three meshes.

TABLE 3. Example #2.

Mesh #1 Mesh #2 Mesh #3

method itns resid sign itns resid sign itns resid sign

Newton (standard) * 4.69e+19 +/- 11 9.80e-08 +/- * 4.92e+20 +/-
Newton (safeguarded) 9 2.89e-09 + 7 1.37e-08 + * 2.01e+07 +
Barrier energy 16 4.02e-08 + 16 7.67e-08 + 17 9.47e-09 +

Example 3. Consider following Yamabe problem:

−8∆u+ ρ(r)u5 = 0,

where ρ(r) = 1/r3, and r is the Euclidean distance. (This choice of ρ(r) was motivated
by equation (41) in [1]). For this example, we impose the Dirichlet condition u = 1
on both the inner and outer boundaries of all three meshes. For this example, the initial
guess was taken to be a vector of ones; given the Dirichlet condition, this is a reasonable
starting point.

Table 4 reports the results of each solver on this problem. Neither backtracking nor a
barrier method was required to solve this problem.

TABLE 4. Example #3.

Mesh #1 Mesh #2 Mesh #3

method itns resid sign itns resid sign itns resid sign

Newton (standard) 1 1.91e-08 + 2 1.16e-12 + 3 1.18e-12 +
Newton (safeguarded) 1 1.91e-08 + 2 1.16e-12 + 3 1.18e-12 +
Barrier energy (µ=1.0) 18 1.13e-12 + 22 1.25e-12 + 23 1.34e-12 +
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Example 4. For this example, we modify the problem in Example 3 to include the extra
term in (1.1):

−8∆u− 1

8
u = −ρ(r)u5,

where ρ(r) = 1/r3, and r is the Euclidean distance. Also, assume Dirichlet boundary
conditions of u = 1 on both the inner and outer boundaries. For this example, the initial
guess was taken to be a vector of ones.

Table 5 contains the results on all three meshes. The standard Newton method con-
verged quickly to a solution with positive and negative components on each mesh. New-
ton’s method with safeguarding did not converge on any mesh. On the all three meshes,
the method took initial large steps to the boundary and made negligible progress after ten
iterations. The primal barrier energy method with µ0 = 1 converged on the first mesh,
but this initial value of µ on the second mesh was too small. With µ0 = 10, the primal
barrier energy method converged to a strictly positive solution on all three meshes.

TABLE 5. Example #4.

Mesh #1 Mesh #2 Mesh #3

method itns resid sign itns resid sign itns resid sign

Newton (standard) 11 2.71e-08 +/- 16 9.65e-09 +/- 18 8.97e-11 +/-
Newton (safeguarded) * 9.16e+03 + * 1.64e+04 + * 1.47e+04 +
Barrier energy (µ=10.0) 17 1.94e-11 + 18 2.86e-11 + 18 2.69e-11 +

6. CONCLUSION

In this article we considered both the design and the analysis of a certain class of non-
convex optimization-based numerical methods for approximating positive solutions to
nonlinear geometric elliptic partial differential equations containing critical exponents.
As noted, these types of problems arise regularly in geometric analysis and mathemati-
cal physics; our primary interest here was Yamabe problem and the Einstein constraint
equations. The difficulty one faces with these problems are the simultaneous presence of
several challenging features, including spatial dimension n > 3, varying and potentially
non-smooth coefficients, critical (or even super-critical) nonlinearity, non-monotone non-
linearity (arising from a non-convex energy), and spatial domains that are typically Rie-
mannian manifolds rather than simply open sets inRn. For these types of problems, there
may be multiple solutions, although only positive solutions typically have mathemati-
cal and physical meaning. This creates additional complexities in both the theory and
numerical treatment of such problems, as this feature introduces both non-uniqueness
as well as the need to incorporate an inequality constraint into the formulation. As
a practical approach for treating these difficulties, we considered numerical methods
based on Galerkin-type discretization, covering any standard bases construction (finite
element, spectral, or wavelet), and the combination of a barrier method for nonconvex
optimization and global inexact Newton-type methods for dealing with nonconvexity
and the presence of inequality constraints. After giving an overview of barrier methods
in non-convex optimization, we then developed and analyzed a primal barrier energy
method. We then presented a sequence of numerical experiments using this type of bar-
rier method, based on a particular Galerkin method, namely the piecewise linear finite
element method, leverage the FETK modeling package. In the experiments, the negative
pole in the Hamilitonian constraint provided a “natural” barrier, aiding the convergence
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of Newton methods. In this setting, a barrier method will often be unnecessary; how-
ever, in some cases the numerical experiments showed that allowing for a flexible barrier
parameter can be helpful (see Example 2, Mesh #3). The experiments also confirmed
that on some classes of Yamabe problems, a solution could not be found without the use
of a barrier method (see Example #4), suggesting that barrier methods are more useful
on critical exponent problems without singularities that arise from lower-order negative
exponent terms.

Although we considered here only scalar elliptic equations with variational structure,
that is, they that arise as the Euler condition for stationarity of an underlying (usually
nonconvex) energy, more generally these types of critical exponent problems may arise as
part of a more complex elliptic system. A prime example is the coupled Hamiltonian and
momentum constraints in the Einstein equations [8, 9]. While the Hamiltonian constraint
(as well as the momentum constraint) alone has variational structure, when combined as
a system there is in fact no variational structure to exploit. Nevertheless, the ideas in this
paper can be applied by using alternative formulations of the Einstein constraints, and
will be pursued in a second article.
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