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Singular limit in the optimized effective potential with finite basis sets.
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Most finite-basis set implementations of the optimized effective potential (OEP) method leave
the potential undetermined, when the auxiliary basis set for the potential is sufficiently large. We
discover that finite-basis OEP also exhibits previously unknown singular behaviour. We expect
similar anomalous behaviour to be a general feature of single-particle theories where the response
function, or the orbital Green’s function, is truncated with a finite orbital basis set and then inverted.
Imposing continuity, we derive new well-behaved finite-basis-set OEP equations that determine OEP
for any auxiliary basis set and adopt an analytic solution via matrix-inversion.

PACS numbers: 31.15.E-, 31.10.+z, 31.15.xt, 71.15.-m

The Optimized Effective Potential (OEP) theory [1–4]
offers a promising route for improved accuracy in Density
Functional Theory (DFT) [5–7]. Using the OEP method-
ology, the optimal local exchange potential is determined
exactly. Furthermore, implicit (i.e. orbital) density func-
tionals for the correlation energy [8, 9] may yield accurate
local correlation potentials vc(r) and play a significant
role in the near future.
Unfortunately, implementations of OEP with the or-

bitals and the local potential expanded in finite basis
sets are marred with mathematical problems [10]. Sev-
eral attempts have been made to overcome these issues
[11–18] but with limited success so far.
We review briefly the OEP theory, focusing on exact-

exchange OEP (x-OEP) as a concrete example. The OEP
is determined by a Fredholm integral equation of the first
kind,

∫

dr′χv(r, r
′)v(r′) = bv(r) (1)

where, χv(r, r
′) is the density-density response function,

χv(r, r
′) = 2

∑

i,a

φv,i(r)φv,a(r)φv,a(r
′)φv,i(r

′)

ǫi − ǫa
, (2)

and bv(r) is a quantity with units of density. Indices i and
a run respectively over occupied and unoccupied orbitals
in the OEP Slater determinant. For x-OEP,

bv(r) = 2
∑

i,a

〈a|Jv −Kv|i〉

ǫi − ǫa
φv,i(r)φv,a(r) . (3)

φv,p(r), are orbitals of a single-particle hamiltonian,
hv φv,p = ǫv,p φv,p, with the local potential v(r) repre-
senting the Hartree and exchange potentials:

hv(r) = −
∇2

2
+ ven(r) + v(r) . (4)

ven(r) is the electron-nuclear attraction potential. Jv(r)
is the direct Coulomb (or Hartree) local potential oper-
ator and Kv is the Coulomb exchange non-local opera-
tor. We use the shorthand 〈i| · |a〉 for the matrix element

〈φv,i|·|φv,a〉. From the definition of the response function,
Eq. (1) gives the response, bv(r), of the density when the
effective potential v(r) in Eq. (4) changes by v(r).
To solve the x-OEP Eq. (1), we start with the orbitals

φu,i, φu,a and eigenvalues ǫu,i, ǫu,a of a Hamiltonian hu

(4) with a trial x-OEP potential u. Keeping the or-
bitals and energies fixed (i.e. u fixed), we seek among v
the potential voep which solves the intermediate x-OEP
equation χu voep = bu. The potential voep depends on
u. Having obtained voep[u], we update the potential u in
the Hamiltonian hu → hvoep[u], we find the occupied or-
bitals and energy levels of the updated Hamiltonian and
we iterate until at convergence, voep[u] = u.
Hirata and co-workers [11] proved that, for a complete

orbital basis set, the products φv,i(r)φv,a(r) form a com-
plete set bar a constant. Hence, in the vector space of
functions orthogonal to the constant function, the re-
sponse function (2) is invertible and OEP is determined
within a constant.
On the other hand, with a finite orbital basis set and

a finite auxiliary basis set {ξn(r)} for the potential, the
straightforward search for OEP may yield an infinity of
solutions [10]: from Eqs. (1-3) we see that the potential
is undetermined in the null-space of χv. With a finite
orbital basis set, the dimensionality of the null-space of
χv increases from unity (constant function) to infinity,
resulting in indeterminacy of the potential for functions
of the auxiliary space in the null-space of χv.
Interestingly, several approximations to the finite ba-

sis OEP approach [19–23], which invariably employ the
Unsöld approximation [24], determine the approximate
OEP fully. The Unsöld approximation amounts to a com-
mon energy denominator approximation for the static or-
bital Green’s function, together with the closure or com-
pleteness relation. The reason is that with the closure
relationship the orbital basis set becomes effectively com-
plete and the null space of χv reduces to the constant
function. Consequently it is no longer possible for an
auxiliary basis function to have a component in the null-
space of χv.
Returning to OEP, the remedy appears readily. Con-

sider the overlap matrix of χv with the auxiliary basis
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functions, Akn
.
= −1/2

∫∫

ξk(r)χv(r, r
′)ξn(r

′). A singu-
lar value decomposition (SVD) of Akn, in order to trun-
cate auxiliary functions in the null-space of χv, should
remove any arbitrariness in the potential. Unfortunately,
this truncation is in general ambiguous because the sin-
gular eigenvalues of the matrix are not always separated
unambiguously from the non-zero ones. Then, the inver-
sion of Akn is ill-posed.
Nevertheless, sometimes, the singular eigenvalues of

Akn can be identified a priori, unambiguously, with a

clear gap of many orders of magnitude separating them
from the rest, as shown in Fig. 1. In such a case, the re-
sulting potential after truncation of the singular eigenvec-
tors and inversion of Akn is unique. However, depending
on the finite basis sets, the resulting unique potential may
not look healthy with unphysical oscillations appearing
near the nuclei; in the case of atoms, these oscillations
make the potential look very different from the exact x-
OEP potential obtained on the grid. See vλ=0

x in the
inset of Fig. 2(a).
So far, the underlying reason for this anomaly has

remained elusive as it is usually confused with the ill-
posedness of the inversion of Akn, the two problems ap-
pearing as one.
In this Letter, we distinguish between the anomalous

behaviour of the unique potential, appearing even when
a SVD allows the truncation and inversion of A in the
space of its non-singular eigenfunctions, and the general
ill-posedness of choice of cut-off for the truncation and
inversion of A. In the following, we first focus on the
former clear-cut problem and we analyse and sort out
the anomaly. Then, we discuss the general case, where
the anomaly appears entangled with the ill-posedness of
the inversion of the matrix of the response function.
We shall base our analysis on the solution voep[u] of the

intermediate x-OEP equation χu voep = bu, with u fixed.
Since u will be fixed, we shall omit the dependence on u
in the rest of the section.
For simplicity, we shall analyse the consequence of a

finite orbital basis set in the special case where the finite
orbital set is composed of the occupied orbitals φi and
of a subset of the (mostly lower lying) virtual orbitals φa

of hu. The virtual orbitals of hu (4) that are outside the
orbital basis form the the complement basis, and will be
denoted by φ̃a and their energies by ǫ̃a.
To study the effect of the finite orbital basis we split

χ and b in Eqs. (1-3): χ(r, r′) = χ0(r, r′) + χ̃(r, r′),

b(r) = b0(r) + b̃(r), where χ0, χ̃ and b0, b̃ are given by
Eqs. (2), (3) but the sum over virtual states are restricted
in the orbital finite basis and its complement respectively.
Let us denote by vλ the potential which satisfies the

equation, for λ ≥ 0, (we drop the subscript oep)
∫

dr′
[

χ0(r, r′) + λ χ̃(r, r′)
]

vλ(r′) = b0(r)+λ b̃(r) . (5)

The exact x-OEP is obtained for λ = 1. In a finite ba-
sis set implementation the unknown χ̃ is always omitted,
and vλ=0 is calculated in place of vλ=1. However, note

that for finite λ > 0, the response function in (5) is in-
vertible and vλ is determined up to a constant, while for
λ = 0, χ0 has an infinite-dimensional null-space where
vλ=0 is undetermined. Hence, the complete omission of
χ̃ is a singular operation and vλ is not a continuous func-
tion of λ at λ = 0, vλ→0 6= vλ=0.
In the following we derive vλ→0 for a finite orbital basis

set. We aim to investigate the interplay of finite orbital
and auxiliary basis sets and expand the potential vλ(r)
in an auxiliary basis, vλ(r) =

∑

n v
λ
n ξn(r). Multiplying

through by −(1/2) ξk(r) and integrating, we obtain the
matrix equation for vλ:

∑

n

(Akn + λ Ãkn) v
λ
n = bk + λ b̃k , (6)

with,
Akn=−1/2

∫∫

ξk(r)χ
0(r, r′)ξn(r

′), bk=−1/2
∫

ξk(r)b
0(r),

Ãkn=−1/2
∫∫

ξk(r)χ̃(r, r
′)ξn(r

′), b̃k=−1/2
∫

ξk(r)b̃(r).

Obviously, we cannot have χ̃, b̃ exactly. We approxi-
mate [24] the energy differences in the denominators of χ̃,

b̃ by a constant, ∆ ≃ ǫ̃u,a − ǫu,i and then use the closure
relation. The matrix elements become, for small λ:

Akn =
∑

i,a

〈i|ξk|a〉〈a|ξn|i〉

ǫa − ǫi
(7)

Ãkn =
∑

i

〈i|ξkξn|i〉 −
∑

i,j

〈i|ξk|j〉〈j|ξn|i〉 (8)

bk =
∑

i,a

〈i|ξk|a〉〈a|Ju −Ku|i〉

ǫa − ǫi
(9)

b̃k =
∑

i

〈i|ξk(Ju−Ku)|i〉−
∑

i,j

〈i|ξk|j〉〈j|Ju−Ku|i〉 (10)

With definitions (8,10), λ in Eq. (6) stands for λ/∆. In
the limits λ → 0 and λ → ∞ our results are independent
of ∆. For fixed λ the solution of Eq. (6) is

vλn =
∑

k

(A+ λ Ã)−1
nk (bk + λ b̃k) (11)

For λ → ∞, we recover the ELP equations v∞ = Ã−1 b̃
[22, 23]. As we change λ, from large values towards zero,
the potential vλ tends to the required limit vλ→0. To
derive this limit, we need the eigenvectors {ci} of A with
non-vanishing eigenvalues, gi 6= 0,

∑

n

Akn cin = gi
∑

n

〈ξk|ξn〉 c
i
n , (12)

and an orthonormal basis {cµ, cν , . . .} in the null space
of A,

∑

n Akn cµn = 0. After some algebra we obtain:

vλ→0 = vλ=0 + v̄, (13)

where, vλ=0
n =

∑

i

cin
gi

∑

k

cik bk , (14)
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v̄n =
∑

µ,ν,k

cµn Ã
−1
µν cνk b̃k −

∑

i,µ,ν

cµn Ã
−1
µν Ãνi

∑

k c
i
k bk

gi
. (15)

Ã−1
µν is the inverse of the non-singular matrix Ãµν =

∑

k,n c
µ
k Ãkn cνn and Ãνi =

∑

k,n c
ν
k Ãkn cin.

The finite basis x-OEP Eqs. (13-15) are the main result
of this Letter. In these equations, the discontinuity of
the potential vλ as a function of λ at λ = 0 is evident.
Until now, the potential vλ=0 played the role of finite
basis x-OEP. It is obtained by truncating the singular
eigenvectors of A and subsequently inverting A in the
space of non-singular eigenvectors. The component v̄ of
vλ→0 determines x-OEP in parts of the auxiliary space
where vλ=0 is undetermined. For example, the first term
on the rhs of Eqn. (15) is the projection of v∞ in the
null space of A. Also if the null-space of A artificially
included all the eigenvectors of A, then from Eqs. (13-
15), we would have vλ=0 = 0 and vλ→0 = v̄ = v∞.
The total energy as a function of λ is continuous, i.e.,

the total energy of vλ→0 is the same as that of vλ=0.
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Figure 1: The eigenvalues of matrix A, for the Ne atom with
cc-pVDZ/uncontracted cc-pVDZ and cc-pVTZ/uncontracted
cc-pVTZ orbital and auxiliary basis sets respectively.

The eigenvalue spectrum of A for the Ne atom, using
two different basis set combinations for orbital and auxil-
iary basis sets, is shown in Fig. 1. In our calculations, we
use HF orbitals in place of φu,i, φu,a. A gap separates the
zero from the nonzero eigenvalues for the cc-pVDZ basis
set. For this case, the limiting potential vλ→0 appears in
Fig. 2(a), together with the potentials vλ=0.0001 (which
lies on top of vλ→0), v∞ (ELP[22, 23], or CEDA[21], or
LHF[20]) and for reference the full numerical grid result
from Ref. 13. For this basis set, the total energy is iden-
tical for Hartree-Fock (HF) and for x-OEP, when λ = 0
and λ → 0.
In general, it will not be possible to identify a priori the

null from the non-singular eigenvalues of A [18, 25], as is
shown in Fig. 1 for the Ne atom and for orbital/auxiliary
basis sets cc-pVTZ/cc-pVTZ uncontracted. One way to
obtain the cut-off for the null space of A is to start from
too large values for the cut-off (with correspondingly too
large null space), and to reduce the cut-off value grad-

ually, removing one by one eigenvalues and eigenvectors
from the null space of A. The resulting x-OEP from (13-
15) converges to a limiting value and remains unchanged,
until a truly singular eigenvalue is reached. When the lat-
ter is removed from the null space, the potential changes
abruptly. For the previous example, the smallest non-
singular eigenvalue of A turns out to be 1.04×10−3. The
exchange potential vλ→0

x is shown in Fig. 2(b). Here,
“λ → 0” merely implies use of Eqs. (13-15) with an ap-
propriate cut-off.
An alternative approach has been proposed by Heaton-

Burgess et al [18], who introduce in the energy expression
under minimisation, a Tikhonov regularising term that
penalises oscillations of the potential. The main question
with Tikhonov’s regularisation theory [26] is the choice
of regularising function. In Ref. [18], minimisation of
the penalty term alone, for strong coupling, leads to a
constant potential, which is clearly not the most appro-
priate choice. To obtain a naturally suited regularising
term, we follow the definition of x-OEP in Ref. [27] and
consider the second-order energy difference, (the sum is
over all virtual states a)

Tu[v] =
∑

i,a

|〈i|Ju −Ku − v|a〉|2

ǫu,a − ǫu,i
> 0 . (16)

For fixed u, the minimising potential of Tu[v] satisfies
the x-OEP equation χu voep = bu [27]. We introduce the
λ-dependence:

Tu[v](λ) = T 0
u [v] + λ T̃u[v] (17)

T 0[v], T̃u[v] are given by (16) but the sums over virtual
states are in the orbital basis set and the complement
respectively. Setting the functional derivative of Tu[v](λ)
equal to zero, yields Eq. (5). Using the Unsöld approxi-

mation to approximate T̃u[v], we obtain for small λ:

Tu[v](λ) = T 0
u [v] + λS , (18)

S =
∑

i

〈i|(Ju−Ku−v)2|i〉−
∑

ij

|〈i|Ju−Ku−v|j〉|2. (19)

λ in Eq. (18) stands for λ/∆. S is the quantity considered
by Staroverov et al [22, 23] in the derivation of ELP. We
keep the same symbol as credit to their work. Expanding
the potential in a basis set, v =

∑

n vn ξn, and varying
vn we obtain the finite-basis x-OEP Eqs. (6-10).
From Eq. (18) the energy expression T 0

u [v] coupled
with the regularising term S, arise as a natural choice for
Tikhonov’s regularisation method to yield the finite-basis
x-OEP equations when the inversion of A is ill-posed. For
example, even for infinite coupling λ, minimisation of the
regularising term S gives ELP which is a meaningful ap-
proximation to x-OEP.
In Fig. 2(b) we show several potentials for cc-pVTZ

and uncontructed cc-pVTZ orbital and potential basis
sets. In the inset of Fig. 2(b), we show S versus T 0

u [v]
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Figure 2: Exchange potentials of the Ne atom using two different combinations for the basis sets for the orbitals and the
potential respectively: cc-pVDZ/cc-pVDZ uncontracted in (a) and cc-pVTZ/cc-pVTZ uncontracted in (b). In (a), we show
the potentials for λ → ∞ (ELP, or CEDA, or LHF), λ = 0.0001, as well as the limit λ → 0 using Eqs. (13-15). In the inset,
the two wildly oscillating components of Eq. (13) are shown. In (b), we show the potentials for λ → ∞ and λ = 0.002 (optimal
value from Tikhonov regularization), and the potential vλ→0, using such cut-off that the smallest non-singular eigenvalue of A
is 1.04 × 10−3. The L-curve is shown in the inset; S and T

0

u are shifted by a constant.

for various λ’s, and the characteristic L-curve [18, 28],
the apex of which gives the optimal λ0 = 0.002 which
corresponds to the regularised potential vλ0 (11). The
total energies of x-OEP for both λ0 = 0.002 and λ → 0
are 3× 10−4 Hartrees higher than HF.
In conclusion, we have unveiled a discontinuity in the

OEP, as a function of λ, at λ = 0. This discontinuity is
expected to be a general feature of single-particle theo-
ries, where the response function (or the orbital Green’s
function) is truncated with a finite orbital basis set and

then inverted. Such instances arise in linear response in
time-dependent density functional theory [29, 30] and in
the Dyson equation. Using the Unsöld approximation,
we managed to restore continuity and to derive amended
finite basis set x-OEP Eqs. (13-15) that determine the
limiting potential vλ→0 completely for the whole auxil-
iary basis set. In the general case, where the truncation
and inversion of A is ill-posed, we proposed an appropri-
ate Tikhonov regularisation term that leads to a physical
potential even in the limit of infinite coupling.
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[13] A. Heßelmann, A.W. Götz, F. Della Sala, A. Görling, J.

Chem. Phys. 127, 054102 (2007).
[14] A.K. Theophilou, V.N. Glushkov, J. Chem. Phys., 124,

034105, (2006)
[15] C. Kollmar, M. Filatov, J. Chem. Phys. 127, 114104,

(2007)

[16] C. Kollmar, M. Filatov, J. Chem. Phys. 128, 064101
(2008)

[17] V.N. Glushkov, S.I. Fesenko, H.M. Polatoglou, Theor.
Chem. Acc. 124, 365, (2009)

[18] T. Heaton-Burgess, F.A. Bulat, W. Yang, Phys. Rev.
Lett. 98, 256401 (2007).

[19] J.B. Krieger, Y. Li, G.J. Iafrate, Phys. Rev. A, 46, 5453,
(1992).

[20] F. Della Sala, A. Görling, J. Chem. Phys. 115, 5718
(2001).
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