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Singular limit in the optimized effective potential with finite basis sets.
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Most finite-basis set implementations of the optimized effective potential (OEP) method leave
the potential undetermined, when the auxiliary basis set for the potential is sufficiently large. We
discover that finite-basis OEP also exhibits previously unknown singular behaviour. We expect
similar anomalous behaviour to be a general feature of single-particle theories where the response
function, or the orbital Green’s function, is truncated with a finite orbital basis set and then inverted.
Imposing continuity, we derive new well-behaved finite-basis-set OEP equations that determine OEP
for any auxiliary basis set and adopt an analytic solution via matrix-inversion.

PACS numbers: 31.15.E-; 31.10.4+z, 31.15.xt, 71.15.-m

The Optimized Effective Potential (OEP) theory [1-4]
offers a promising route for improved accuracy in Density
Functional Theory (DFT) [5-17]. Using the OEP method-
ology, the optimal local exchange potential is determined
exactly. Furthermore, implicit (i.e. orbital) density func-
tionals for the correlation energy ﬂé, @] may yield accurate
local correlation potentials v.(r) and play a significant
role in the near future.

Unfortunately, implementations of OEP with the or-
bitals and the local potential expanded in finite basis
sets are marred with mathematical problems HE] Sev-
eral attempts have been made to overcome these issues
ﬂﬂ—lﬁ] but with limited success so far.

We review briefly the OEP theory, focusing on exact-
exchange OEP (x-OEP) as a concrete example. The OEP
is determined by a Fredholm integral equation of the first
kind,

/dr'xv(r, r')o(r’) = by(r) (1)

where, x,(r,r’) is the density-density response function,
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i,a
and b, (r) is a quantity with units of density. Indices ¢ and

a run respectively over occupied and unoccupied orbitals
in the OEP Slater determinant. For x-OEP,

bv (I‘) =2 Z w d)v,i(r) ¢v,a(r) . (3)

¢up(r), are orbitals of a single-particle hamiltonian,

hy Gu.p = €pp Gup, with the local potential v(r) repre-
senting the Hartree and exchange potentials:
v2
hor) = = + ten (x) + 0(x). (4)

Ven(r) is the electron-nuclear attraction potential. 7, (r)
is the direct Coulomb (or Hartree) local potential oper-
ator and /C, is the Coulomb exchange non-local opera-
tor. We use the shorthand (i| - |a) for the matrix element

(¢.i]|¢pv,a). From the definition of the response function,
Eq. (@) gives the response, b,(r), of the density when the
effective potential v(r) in Eq. (@) changes by v(r).

To solve the x-OEP Eq. (), we start with the orbitals
Ou.is Pu,e and eigenvalues €, ;,€,,, of a Hamiltonian h,,
@) with a trial x-OEP potential u. Keeping the or-
bitals and energies fixed (i.e. u fixed), we seek among v
the potential voep which solves the intermediate x-OEP
equation Xy Voep = by. The potential v,e, depends on
u. Having obtained voep[u], we update the potential u in
the Hamiltonian hy — h,,, [, we find the occupied or-
bitals and energy levels of the updated Hamiltonian and
we iterate until at convergence, voep|u] = u.

Hirata and co-workers [11] proved that, for a complete
orbital basis set, the products ¢, ;(r) ¢y o (r) form a com-
plete set bar a constant. Hence, in the vector space of
functions orthogonal to the constant function, the re-
sponse function () is invertible and OEP is determined
within a constant.

On the other hand, with a finite orbital basis set and
a finite auxiliary basis set {&,(r)} for the potential, the
straightforward search for OEP may yield an infinity of
solutions [10]: from Eqs. [[H3) we see that the potential
is undetermined in the null-space of x,. With a finite
orbital basis set, the dimensionality of the null-space of
Xv increases from unity (constant function) to infinity,
resulting in indeterminacy of the potential for functions
of the auxiliary space in the null-space of x,.

Interestingly, several approximations to the finite ba-
sis OEP approach M , which invariably employ the
Unsold approximation [24], determine the approximate
OEP fully. The Unsdld approximation amounts to a com-
mon energy denominator approximation for the static or-
bital Green’s function, together with the closure or com-
pleteness relation. The reason is that with the closure
relationship the orbital basis set becomes effectively com-
plete and the null space of x, reduces to the constant
function. Consequently it is no longer possible for an
auxiliary basis function to have a component in the null-
space of xy.

Returning to OEP, the remedy appears readily. Con-
sider the overlap matrix of y, with the auxiliary basis


http://arxiv.org/abs/1107.6007v1

functions, Ag, = —1/2 [[ & (r)xou(r,r)&, (r'). A singu-
lar value decomposition (SVD) of Ay, in order to trun-
cate auxiliary functions in the null-space of y,, should
remove any arbitrariness in the potential. Unfortunately,
this truncation is in general ambiguous because the sin-
gular eigenvalues of the matrix are not always separated
unambiguously from the non-zero ones. Then, the inver-
sion of Ak, is ill-posed.

Nevertheless, sometimes, the singular eigenvalues of
A, can be identified a priori, unambiguously, with a
clear gap of many orders of magnitude separating them
from the rest, as shown in Fig. [ In such a case, the re-
sulting potential after truncation of the singular eigenvec-
tors and inversion of Ay, is unique. However, depending
on the finite basis sets, the resulting unique potential may
not look healthy with unphysical oscillations appearing
near the nuclei; in the case of atoms, these oscillations
make the potential look very different from the exact x-
OEP potential obtained on the grid. See v}=" in the
inset of Fig. 2(a).

So far, the underlying reason for this anomaly has
remained elusive as it is usually confused with the ill-
posedness of the inversion of Ag,,, the two problems ap-
pearing as one.

In this Letter, we distinguish between the anomalous
behaviour of the unique potential, appearing even when
a SVD allows the truncation and inversion of A in the
space of its non-singular eigenfunctions, and the general
ill-posedness of choice of cut-off for the truncation and
inversion of A. In the following, we first focus on the
former clear-cut problem and we analyse and sort out
the anomaly. Then, we discuss the general case, where
the anomaly appears entangled with the ill-posedness of
the inversion of the matrix of the response function.

We shall base our analysis on the solution veep[u] of the
intermediate x-OEP equation Xy, Voep = by, with u fixed.
Since u will be fixed, we shall omit the dependence on u
in the rest of the section.

For simplicity, we shall analyse the consequence of a
finite orbital basis set in the special case where the finite
orbital set is composed of the occupied orbitals ¢; and
of a subset of the (mostly lower lying) virtual orbitals ¢,
of hy. The virtual orbitals of h,, (@) that are outside the
orbital basis form the the complement basis, and will be
denoted by ¢, and their energies by €.

To study the effect of the finite orbital basis we split

x and b in Egs. [@3): x(r,v') = x°(r,r’") + x(r,v’),
b(r) = b2(r) + b(r), where x°, ¥ and 0°, b are given by
Egs. @), @) but the sum over virtual states are restricted
in the orbital finite basis and its complement respectively.

Let us denote by v* the potential which satisfies the

equation, for A > 0, (we drop the subscript oep)

/dr’ [Xo(r, ') + Ax(r, r’)] M) =0 (r) + Ab(r). (5)

The exact x-OEP is obtained for A = 1. In a finite ba-
sis set implementation the unknown y is always omitted,

and v*=0 is calculated in place of v*=!. However, note

that for finite A > 0, the response function in (f) is in-
vertible and v* is determined up to a constant, while for
A = 0, x° has an infinite-dimensional null-space where
v =0 is undetermined. Hence, the complete omission of
X is a singular operation and v* is not a continuous func-
tion of A at A = 0, vA 70 #£ =0,

In the following we derive v* 9 for a finite orbital basis
set. We aim to investigate the interplay of finite orbital
and auxiliary basis sets and expand the potential v (r)
in an auxiliary basis, v*(r) = 3, vj &, (r). Multiplying
through by —(1/2) &k (r) and integrating, we obtain the
matrix equation for v*:

> (Agn + N Agn) v = bi, + Abxe (6)
with,
Ajn=—1/2 [ &N (r.1)n (), br=—1/2 [ & (£)b(x).
Apn==1/2 [[ & @)X (r, )& (x"), be=—1/2 [ & (r)b(x).
Obviously, we cannot have y, b exactly. We approxi-
mate ﬂﬂ] the energy differences in the denominators of y,

b by a constant, A ~ €, , — €,; and then use the closure
relation. The matrix elements become, for small A:

A =Y (il€r&nl) = D (&1 GIEalD)  (8)

o 3 B~ Kl o
b = 16 (T~ Kl = 3 (i16617) Gl T Kuli) (10)

With definitions (®I0), A in Eq. (@) stands for A\/A. In
the limits A — 0 and A — oo our results are independent
of A. For fixed A the solution of Eq. (@) is

o) :Zk:(AHA);; (b + Aby) (11)

For A — 0o, we recover the ELP equations v = A~1b
@, ] As we change A, from large values towards zero,
the potential v* tends to the required limit v*~°. To
derive this limit, we need the eigenvectors {c'} of A with
non-vanishing eigenvalues, g° # 0,

D A =" Y (Eklén) ¢ (12)

and an orthonormal basis {c¢*,¢”,...} in the null space
of A, > Appctt = 0. After some algebra we obtain:

v)\ﬂo _ ,UA:O + 7, (13)

where, )70 = Z on Z i by, (14)
9T
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A;lis the inverse of the non-singular matrix A,, =
ka ch Apn ¢, and A,; = an ¥ Agn ¢,

The finite basis x-OEP Eqs. (I31I5) are the main result
of this Letter. In these equations, the discontinuity of
the potential v* as a function of A at A\ = 0 is evident.
Until now, the potential v*=? played the role of finite
basis x-OEP. It is obtained by truncating the singular
eigenvectors of A and subsequently inverting A in the
space of non-singular eigenvectors. The component v of
70 determines x-OEP in parts of the auxiliary space
where v*=Y is undetermined. For example, the first term
on the rhs of Eqn. (&) is the projection of v>° in the
null space of A. Also if the null-space of A artificially
included all the eigenvectors of A, then from Eqs. (I3t
M5), we would have v*=° = 0 and v* 70 = 7 = v>.

The total energy as a function of A is continuous, i.e.,
the total energy of v* 7 is the same as that of v*=°,
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Figure 1: The eigenvalues of matrix A, for the Ne atom with
cc-pVDZ/uncontracted cc-pVDZ and cc-pVTZ/uncontracted
cc-pVTZ orbital and auxiliary basis sets respectively.

The eigenvalue spectrum of A for the Ne atom, using
two different basis set combinations for orbital and auxil-
iary basis sets, is shown in Fig.[[l In our calculations, we
use HF orbitals in place of ¢y, i, ¢.q. A gap separates the
zero from the nonzero eigenvalues for the cc-pVDZ basis
set. For this case, the limiting potential v} 7? appears in
Fig. BY(a), together with the potentials v*=0-901 (which
lies on top of v*70), v>® (ELP[22, 23], or CEDA[21]}, or
LHF[20]) and for reference the full numerical grid result
from Ref. [13. For this basis set, the total energy is iden-
tical for Hartree-Fock (HF) and for x-OEP, when A = 0
and A — 0.

In general, it will not be possible to identify a priori the
null from the non-singular eigenvalues of A ,], as is
shown in Fig. [l for the Ne atom and for orbital /auxiliary
basis sets cc-pVTZ/cc-pVTZ uncontracted. One way to
obtain the cut-off for the null space of A is to start from
too large values for the cut-off (with correspondingly too
large null space), and to reduce the cut-off value grad-

ually, removing one by one eigenvalues and eigenvectors
from the null space of A. The resulting x-OEP from (I3}
[[3)) converges to a limiting value and remains unchanged,
until a truly singular eigenvalue is reached. When the lat-
ter is removed from the null space, the potential changes
abruptly. For the previous example, the smallest non-
singular eigenvalue of A turns out to be 1.04 x 1073, The
exchange potential v} 7% is shown in Fig. 2(b). Here,
“X = 0”7 merely implies use of Eqs. (I3HIH) with an ap-
propriate cut-off.

An alternative approach has been proposed by Heaton-
Burgess et al ﬂﬁ], who introduce in the energy expression
under minimisation, a Tikhonov regularising term that
penalises oscillations of the potential. The main question
with Tikhonov’s regularisation theor ﬂﬁ] is the choice
of regularising function. In Ref. |, minimisation of
the penalty term alone, for strong coupling, leads to a
constant potential, which is clearly not the most appro-
priate choice. To obtain a naturally suited regularising
term, we follow the definition of x-OEP in Ref. [27] and
consider the second-order energy difference, (the sum is
over all virtual states a)

[(i| T = K = vla)[?
T,[v] = >0. (16
=3 R (16)
For fixed u, the minimising potential of T,[v] satisfies
the x-OEP equation Xy voep = by ﬂﬂ] We introduce the
A-dependence:

T, [v](AN) = TO[w] + AT, [v] (17)

T°[v], Tu[v] are given by (I8) but the sums over virtual
states are in the orbital basis set and the complement
respectively. Setting the functional derivative of T, [v](\)
equal to zero, yields Eq. ([B). Using the Unsold approxi-
mation to approximate T, [v], we obtain for small \:

Tu[](A) = T2[w] + A S, (18)

S = Z<i|(Ju—iCu—v)2|i>—Z (i Tu—Ku—v[5) 2. (19)

A in Eq. (I8) stands for A\/A. S is the quantity considered
by Staroverov et al [22, 23] in the derivation of ELP. We
keep the same symbol as credit to their work. Expanding
the potential in a basis set, v = >, v, &,, and varying
v, we obtain the finite-basis x-OEP Eqs. (GHIO).

From Eq. [I8) the energy expression TP[v] coupled
with the regularising term S, arise as a natural choice for
Tikhonov’s regularisation method to yield the finite-basis
x-OEP equations when the inversion of A is ill-posed. For
example, even for infinite coupling A, minimisation of the
regularising term S gives ELP which is a meaningful ap-
proximation to x-OEP.

In Fig. (b) we show several potentials for cc-pVTZ
and uncontructed cc-pVTZ orbital and potential basis
sets. In the inset of Fig. B(b), we show S versus T [v]
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Figure 2: Exchange potentials of the Ne atom using two different combinations for the basis sets for the orbitals and the

potential respectively: cc-pVDZ/cc-pVDZ uncontracted in (a) and cc-pVTZ/cc-pVTZ uncontracted in (b).

In (a), we show

the potentials for A — oo (ELP, or CEDA, or LHF), A = 0.0001, as well as the limit A — 0 using Eqs. (I3IIH)). In the inset,
the two wildly oscillating components of Eq. (I3) are shown. In (b), we show the potentials for A — oo and A = 0.002 (optimal
value from Tikhonov regularization), and the potential 7Y using such cut-off that the smallest non-singular eigenvalue of A
is 1.04 x 1073, The L-curve is shown in the inset; S and T are shifted by a constant.

for various \’s, and the characteristic L-curve ﬂE, ],
the apex of which gives the optimal A\g = 0.002 which
corresponds to the regularised potential v* (). The
total energies of x-OEP for both A\g = 0.002 and A — 0
are 3 x 10~* Hartrees higher than HF.

In conclusion, we have unveiled a discontinuity in the
OEP, as a function of A, at A = 0. This discontinuity is
expected to be a general feature of single-particle theo-
ries, where the response function (or the orbital Green’s
function) is truncated with a finite orbital basis set and

then inverted. Such instances arise in linear response in
time-dependent density functional theory m, @] and in
the Dyson equation. Using the Unsold approximation,
we managed to restore continuity and to derive amended
finite basis set x-OEP Eqs. (I3HIT) that determine the
limiting potential v** completely for the whole auxil-
iary basis set. In the general case, where the truncation
and inversion of A is ill-posed, we proposed an appropri-
ate Tikhonov regularisation term that leads to a physical
potential even in the limit of infinite coupling.
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