MCNP 程序用热中子散射数据制作和检验

陈朝斌1,陈义学^{2,*},胡泽华¹,王 佳¹,吴 军²

(1.北京应用物理与计算数学研究所,北京 100088;2.华北电力大学 核科学与工程学院,北京 102206)

摘要:基于 ENDF/B-W.0 评价库,以前已陆续研制了可供 MCNP 程序使用的连续截面库,以及多套多 个温度、多组邦达连柯背景截面修正的多群参数库。本文采用 NJOY 程序以及 ENDF/B-W.0 评价库热 散射子库,完成了 MCNP 程序使用热中子散射数据库 S(α,β)的制作和检验。比较了自制库与 MCNP 自带基于 ENDF/B-W版热散射数据库(sab2002),对改进较明显的重要介质"轻水中氢"和"重水中氘"给 出了分析说明。通过 48 个基准装置 k_{eff}计算结果可看出,MCNP 程序自带热中子散射库 sab2002 与自 制库 thb70 计算的 k_{eff}整体上偏差不大,k_{eff}平均偏差约 65 pcm。

关键词:ENDF/B-₩.0;热中子散射;MCNP;积分检验

中图分类号:TL32 **文献标志码:**A **文章编号:**1000-6931(2010)11-1335-06

Generating and Validation of Thermal Neutron Scattering Library for MCNP

CHEN Chao-bin¹, CHEN Yi-xue^{2,*}, HU Ze-hua¹, WANG Jia¹, WU Jun²

(1. Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
2. School of Nuclear Science and Engineering, North China Electric Power University, Beijing 102206, China)

Abstract: A continuous neutron transport library for MCNP and several temperaturedependent multigroup cross section libraries with Bondarenko self-shielded factors based on ENDF/B-VI. 0 were generated in former work. In the work the thermal $S(\alpha, \beta)$ tables for MCNP code were converted from the thermal neutron scattering sublibrary of ENDF/B-VI. 0 using NJOY program. The available thermal $S(\alpha, \beta)$ library named sab2002 (from ENDF/B-VI) released with MCNP were investigated and compared with the self-produced library thb70, and some significant improvements of important medias, such as H in H₂ O and D in D₂ O, were presented. Forty-eight critical benchmark models were selected to calculate the k_{eff} using sab2002 and thb70, respectively. The results show that there is a not too much difference (65 pcm averagely) between the two libraries.

收稿日期:2009-11-02;修回日期:2010-01-25

基金项目:国家自然科学基金资助项目(10705011,10875042);北京市科技新星计划资助项目(2007B058);复杂系统可靠性参数灵敏度估计方法研究资助项目(70771014)

作者简介:陈朝斌(1974—),男,陕西安康人,助理研究员,硕士,核科学与工程专业

^{*}通信作者:陈义学,E-mail: yxchen@ncepu.edu.cn

Key words: ENDF/B-W.0; thermal neutron scattering; MCNP; integral validation

在热中子核反应堆中,超过4 eV 的中子在 与靶核发生碰撞时,分子内的结合能与该中子-核相互作用的能量相比是不重要的,这时可假 定靶核是静止的、未被束缚的。能量低于4 eV 的中子,由于中子能量与散射核的热能是可比 较的,则不能认为靶核是静止的;中子与运动的 靶核发生弹性碰撞时,由于能从靶核获得能量, 所以,出射中子的能量可能大于入射中子的能 量,这即是热能区的中子向上散射现象。此外, 在分子或固体中,散射核与邻近核之间存在着 相互作用,即核处于束缚状态,与中子发生碰撞 时不能自由地反冲。再者,由于较低能量中子 的德布罗意波长可与分子或晶体内核的间距相 比较,与不同核发生散射的中子间可能发生于 涉。因此,在热堆中,热能区的散射截面不单纯 是随能量变化的,还与散射介质的温度及物理、 化学性质有关。

为配合超临界水堆物理设计研究,需研制 考虑各种效应的完备的参数库集。在前面的工 作中已完成了基于 ENDF/B-WL.0 评价库^[1]的 MCNP 程序^[2]用连续截面库以及 175 群、172 群、80 群、70 群和 30 群等多温度且考虑自屏效 应的多群参数库的制作和检验^[3-5]。本工作采 用 NJOY 程序^[6]及 ENDF/B-WL.0 评价库的热 中子散射子库,制作供 MCNP 程序使用的热中 子散射数据库。

1 热中子散射数据

热中子散射截面通常可分为3部分。

1) 非弹性散射:包括相干和非相干非弹性 散射,对所有物质皆重要,用散射律 $S(\alpha,\beta)$ 表示。

2) 非相干弹性散射:对含氢的固态物质重 要,如 ZrH、聚乙烯、固态轻水等。

3)相干弹性散射:对晶体重要,如石墨、铍和 UO₂等。

下面以石墨热化截面为例说明热化截面特 点(图 1)。石墨的总截面可分成 5 个特征区 域,图 1 中以阿拉伯数字标识。中子核反应的 类型依赖于发生反应所处的能区,中子总截面 的形态与中子的行为密切相关。当中子能量大 干 20 MeV(能区 5)时,中子波长极小,截面随 中子能量的增加下降很快。在能区4中,中子 能量范围为1~20 MeV,因共振反应而具有尖 锐的峰,共振峰与复合核¹³C的核能级相对应。 在1 eV~0.1 MeV 能段(能区 3),势散射占支 配地位,截面变化较小,入射中子主要发生弹性 反应,裂变产生的中子主要通过势散射而慢化。 在能区 2 中,入射中子能量在 0.2 meV~1 eV 区间呈锯齿状结构:在 0.2 meV 处突然下降, 这即是所谓的布拉格截止能量(对石墨而言,约 为 0.2 meV)。当中子能量足够低、中子波长与 物质中的原子间距可比时,中子将与物质中靶 核集团发生相互作用而不是与单个靶核发生相 互作用。对于石墨这样具有规则晶体结构的物 质,在满足布拉格条件($\lambda/N=2d\sin\theta$)下,中子 将会发生衍射,其中,d为晶格平面之间的距 离。这类反应被称为布拉格弹性散射。当中子 能量低于布拉格截止能量(能区1)时,中子波 长变大而不再满足布拉格条件,此时,相干弹性 散射(布拉格散射)不再发生,而仅发生非弹性 散射。这个区域中子截面极小,截面表现为 1/v 的性质。

Fig. 1 Comparison of total cross section of natural carbon with thermal cross sections of graphite

1.1 ENDF/B-6 格式 TSL 子库

ENDF/B-6格式的热散射率(TSL)数据存储在文档7中,即MF=7。弹性散射截面和非

弹性反应分别采用 MT=2 和 MT=4 标识。 表 1列出了 ENDF/B-Ⅲ.0 评价库热中子散射 子库基本信息。其中,BeO 分开评价,形成 Be(BeO)和O(BeO)两个评价文件,增加了Al、Fe、UO2热散射律评价数据。

	表	1 EN	DF/B-	·MI.0 热	中子	·散射率子/	幸基本概	况
Table	1	Summ	ary of	thermal	law	sublibrary	of ENDF	°/B-∭.0

序号	标识	说明	文档(MF),反应道(MT)	包括的温度/K
1	HinH2O	H ₂ O中的H	MF=7, MT=4	293.6,350,400,450,500,550,600,650,800
2	HinCH2	CH2中的 H	MF = 7, MT = 2, 4	296,350
3	DinD2O	D ₂ O中的 D	MF=7, MT=4	293.6,350,400,450,500,550,600,650
4	HinZrH	ZrH 中的 H	MF = 7, MT = 2, 4	296,400,500,600,700,800,1 000,1 200
5	ZrinZrH	ZrH 中的 Zr	MF = 7, MT = 2, 4	296,400,500,600,700,800,1 000,1 200
6	l-CH4	液态甲烷	MF=7, MT=4	100
7	s-CH4	固态甲烷	MF = 7, MT = 2, 4	22
8	benzine	轻质汽油	MF=7, MT=4	296,350,400,450,500,600,800,1 000
9	graphite	石墨	MF = 7, MT = 2, 4	296,400,500,600,700,800,1 000,1 200,1 600,2 000
10	Be-metal	金属铍	MF = 7, MT = 2, 4	296,400,500,600,700,800,1 000,1 200
11	OinBeO	BeO 中的 O	MF = 7, MT = 2, 4	293.6,400,500,600,700,800,1 000,1 200
12	BeinBeO	BeO 中的 Be	MF = 7, MT = 2, 4	293.6,400,500,600,700,800,1 000,1 200
13	013_Al_027	金属铝	MF = 7, MT = 2, 4	20,80,293.6,400,600,800
14	026_Fe_056	金属铁	MF = 7, MT = 2, 4	20,80,293.6,400,600,800
15	OinUO2	UO2中的 O	MF = 7, MT = 2, 4	296,400,500,600,700,800,1 000,1 200
16	UinUO2	UO ₂ 中的 U	MF = 7, MT = 2, 4	296,400,500,600,700,800,1 000,1 200
17	ortho-D	液态 ortho 氘	MF=7, MT=4	19
18	ortho-H	液态 ortho 氢	MF=7, MT=4	20
19	para-D	液态 para 氘	MF = 7, MT = 4	19
20	para-H	液态 para 氢	MF=7, MT=4	20

1.2 ACE 格式热散射数据存储格式

MCNP程序使用的热中子散射数据包括 4 个数据块,即ITIE、ITCE、ITXE 和 ITCA,分 别存储能量相关非弹性散射截面、能量相关弹 性散射截面、非弹性散射能量-角度分布数据及 弹性散射角度分布数据,其中,ITIE 和 ITXE 数据块总是存在的。角度分布均以等概率出射 余弦边界形式给出,非弹性散射能量-角度分布 区分不同的出射能量,弹性散射角分布不区分 出射能量,详细信息参见文献[7]。

2 参数库的制作与检验

2.1 制作过程

采用 NJOY 程序,制作了 ENDF/B-Ⅲ.0

评价库热散射率子库中所有介质给定温度下的 可供 MCNP 连续截面库配套使用的 S(α,β)参 数库。其中,入射能点个数为 108,出射角个数 为 25,出射能量个数为 64,其中,出射角和出射 能量个数比 sab2002 库多 1 倍。另外,所制作 的参数文件中是否有弹性散射数据取决于 ENDF/B 库文件中是否给出文档 7 中的 MT= 2 反应道(表 1)。

在制作过程中,首先生成相应散射核的连续截面,再采用 NJOY 热化参数生成模块 THERMR,生成自由气体模型参数和采用热 散射率评价数据生成的参数,接着使用 ACER 模块生成可供 MCNP 程序使用的热散射数据 文件及索引文件,再由自编的 CSPT 程序^[4]自 动将不同介质的热散射数据文件整理成方便使 用的库文件。CSPT 程序还可对 ACE 格式的 热散射数据进行比较和分析(图 1、2)。

2.2 重要介质热散射数据比较

采用 CSPT 程序对自制库与 MCNP 自带 热散射数据库进行了分析,着重比较了不同版 本库中主要介质的非弹性散射截面。图 2 示出 了"轻水中氢"和"重水中氘"的非弹性散射截面 的比较,其中,"tmccs"和"sab2002"是 MCNP 自带的早期版本热中子散射库;thb70 是基于 ENDF/B-WL0 评价库热散射率子库的本文自 制库。图 2 同时示出了基于 B-WI.0 评价库热 散射率子库分别来自 IAEA 的 ADS 测试库^[8] 和 LANL 实验室制作的热中子散射库^[9]。从 图 2 可看出,本文制作的数据与文献制作的结 果完全一致,说明本文制作的数据库是正确的。 另外,在热中子散射中,整个靶核是不可能处于 激发态的,所以,这里的非弹截面是表征散射核 或分子的振动或旋转等不连续量子能态的变 化;在低能中子的弹性散射中,散射核或分子的 振动和旋转能量不受影响,但整体将会发生反冲。 从图 2 可看出,ENDF/B-WI.0 的热散射率

图 2 氢和氘截面与其不同版本库中热化截面的比较 Comparison of cross sections of H and D with their thermal cross sections from different libraries

子库中"轻水中氢"和"重水中氘"的非弹性散射 截面在 10⁻⁹ MeV 以下能段改进较明显。另 外,石墨和聚乙烯的热散射数据无任何变动; BeO 中的氧和铍热散射数据分开评价,形成两 个评价文件,但氧和铍的非弹性散射截面之和 与原氧化铍整体评价时的非弹性散射截面完全 一致。

2.3 临界积分检验

Fig. 2

积分检验主要从 ICSBEP 手册^[10]中选择

了若干需引入热散射数据的基准装置,以基于 ENDF/B-W.0评价库的连续截面库为基础,采 用 MCNP 程序计算装置基准模型的 k_{eff}。所选 择临界装置基准模型的基本信息列于表 2。热 中子散射数据库分别采用 MCNP 程序自带的 "60t"库(即 sab2002 库文件)和基于 ENDF/B-W.0评价库热散射率子库的本文自制库(以 "70t"标识)。k_{eff}计算结果列于表 2。

	1			• •		v	
序号	ICSBEP 编号	说明	热散射介质	备注 -	$k_{ m eff}$		
					60t 库	70t 库	评价值
1	HEU-MET-FAST-4	水反射层	lwtr		0.999 10	0.999 97	0.998 5
2	HEU-COMP-THERM-10	UO₂&BeO 堆芯,	lwtr,obeo,beeo	Case1	0.997 29	0.998 63	1.000 0(21)
3		水反射		Case2	0.994 15	0.995 22	1.000 0(21)
4	HEU-SOL-THERM-001	磷酸氢双氧铀	lwtr	Case1	0.998 79	0.998 40	1.000 4(60)
5				Case2	0.996 10	0.996 43	1.002 1(72)

表 2 MCNP 自带热中子散射库与自制库计算的 k_{eff}比较 Table 2 Comparison of k_{eff} between sab2002 library and self-produced library thb70

续表 2								
			热散射介质		$k_{ m eff}$			
序号	ICSBEP 编号	说明		备注	60t 库	70t 库	评价值	
6				Case3	1.002 31	1.001 48	1.000 3(35)	
7				Case4	0.998 50	0.998 21	1.000 8(53)	
8	IEU-COMP-THERM-2		lwtr	Case1	0.996 29	1.000 00	1.001 4(39)	
9	LEU-COMP-THERM-1	水慢化	lwtr	Case1	0.999 34	0.999 46	0.999 8(30)	
10	LEU-COMP-THERM-6	水反射	lwtr	Case1	0.999 23	1.000 33	1.000 0(20)	
11				Case2	0.999 90	1.000 96	1.000 0(20)	
12	LEU-COMP-THERM-10	水慢化	lwtr,poly	Case1	1.003 95	1.005 18	1.000 0(21)	
13				Case4	0.994 99	0.997 35	1.000 0(21)	
14	LEU-SOL-THERM-4	水反射	lwtr	Case1	1.000 80	1.000 48	0.999 4(8)	
15	PU-COMP-MIXED-1	聚乙烯慢化	lwtr,poly	Case1	1.024 81	1.024 97	0.998 6(41)	
16				Case2	1.027 79	1.027 51	1.000 0(68)	
17	PU-SOL-THERM-1		lwtr	Case1	1.003 04	1.004 98	1.000 0(50)	
18	PU-SOL-THERM-5		lwtr	Case1	1.002 39	1.002 24	1.000 0(47)	
19	MIX-MISC-THERM-5		lwtr	Case1	0.995 47	0.996 89	1.000 0(85)	
20	U233-COMP-THERM-1	轻水慢化、反射	lwtr	SB-1	1.001 02	1.001 05	1.000 6(27)	
21			lwtr	SB-2	1.003 63	1.004 44	1.001 5(25)	
22	HEU-SOL-THERM-020	重水氟化铀酰溶液	dd2o	Case1	0.994 17	0.994 31	0.996 6(116)	
23				Case2	0.997 83	0.998 38	0.995 6(93)	
24	HEU-SOL-THERM-004	重水反射	dd2o	Case1	0.985 51	0.986 01	1.000 0(65)	
25				Case2	0.981 01	0.981 36	1.000 0(71)	
26				Case3	0.987 97	0.988 39	1.000 0(78)	
27				Case4	0.990 53	0.990 93	1.000 0(91)	
28				Case5	0.988 80	0.989 32	1.000 0(104)	
29				Csae6	0.985 27	0.985 86	1.000 0(117)	
30	HEU-COMP-THERM-017	7 重水慢化	dd2o		1.006 64	1.008 30	1.000 0(69)	
31	LEU-MET-THERM-001	重水慢化	dd2o		0.998 64	0.999 26	0.999 0(57)	
32	HEU-MET-FAST-7	聚乙烯慢化	poly	Case9	1.003 69	1.003 57	0.999 5(56)	
33		聚乙烯反射、慢化		Case42	1.003 05	1.003 27	1.001 6(9)	
34	HEU-MET-FAST-48	油反射	poly	Casel 详	1.003 08	1.003 11	1.000 0(30)	
35				Casel 简	1.003 12	1.003 00	1.000 0(30)	
36	HEU-MET-THERM-1	聚乙烯反射、慢化	poly	详细模型	1.017 43	1.016 84	1.00 10(60)	
37				简化模型	1.006 46	1.006 40	1.001 0(60)	
38	HEU-MET-MIXED-2		poly		1.006 82	1.006 70	1.000 0(37)	
39	IEU-COMP-INTER-1		poly		0.98173	0.981 70	0.969 0(50)	
40	PU-MET-FAST-36		poly		1.006 50	1.006 45	1.000 0(31)	
41	PU-COMP-MIXED-2	PuO2堆芯,聚乙烯反射层	poly	Case1	1.028 31	1.030 81	0.999 0(46)	
42				Case2	1.028 81	1.029 17	0.999 0(46)	
43	U233-MET-FAST-1		obeo, beeo	Jezebel-23	0.994 33	0.994 30	1.000 0(10)	
44	U233-MET-FAST-5		obeo, beeo	10 kg ²³³ U	0.994 20	0.994 30	1.000 0(30)	
45				7 kg ²³³ U	0.992 65	0.992 54	1.000 0(30)	
46	HEU-MET-INTER-6	Zeus	grph	Casel	0.993 69	0.994 45	0.9977(8)	
47				Case2	0.996 40	0.996 59	1.000 1(8)	
48				Case3	0.99974	0.999 58	1.001 5(9)	

原子能科学技术 第44卷

从表 2 可看出,在所选的 48 个基准模型 中,基于 ENDF/B-\I制作的 MCNP 程序自带 库 sab2002 与基于 ENDF/B-\II.0 自制库计算 得到的 k_{eff}整体差异不大。其中,k_{eff}最大偏差 出现在基准模型 ICT2 上,为 371 pcm;偏差小 于 100 pcm 的有 37 个,占所选基准模型的 77%;平均偏差为 65 pcm。

3 结论

通过散射介质的非弹截面比较可看出, ENDF/B-W.0 评价库的热散射律子库中部分 核素的评价数据得到了较明显改进;从48个临 界基准模型的计算 k_{eff}比较可看出,MCNP 程 序自带热散射库 sab2002 与自制库 thb70 计算 k_{eff}偏差不大,所选基准装置计算 k_{eff}平均偏差 小于 0.07%。因此,可得出结论:本文制作的 供MCNP程序使用的热散射数据库是正确的, 可供用户使用。

参考文献:

- [1] CHADWICK M B, OBLOŽINSK Y P, HER-MAN M, et al. ENDF/B-W.0: Next generation evaluated nuclear data library for nuclear science and technology[J]. Nuclear Data Sheets, 2006, 107: 2 931-3 060.
- [2] THOMAS E B, JOHN T G, AVNEET S, et al. MCNP—A general Monte-Carlo N-particle transport code, Version 5, Volume II, LA-CP-03-0245
 [R]. New Mexico: Los Alamos National Laboratory, 2003.
- [3] 陈朝斌,陈义学,胡泽华,等. 基于 ENDF/B-Ⅲ.0 核评价库 ACE 格式参数制作与初步检验[J]. 原 子能科学技术,2009,43(9):834-838. CHEN Chaobin, CHEN Yixue, HU Zehua, et al. Verification and validation of ACE-format library created from ENDF/B-Ⅲ.0[J]. Atomic Energy Science and Technology, 2009, 43(9): 834-838 (in Chinese).
- [4] 陈义学,陈朝斌,吴军,等. 基于 ENDF/B-Ⅲ.0

评价库的多群参数库 MUSE1.0 的开发与初步 验证[J]. 核动力工程,2010,31(2):6-10.

CHEN Yixue, CHEN Chaobin, WU Jun, et al. Verification and validation of multi-group library MUSE1.0 created from ENDF/B-WL.0[J]. Nuclear Power Engineering, 2010, 31(2): 6-10(in Chinese).

[5] 杨寿海,陈义学,陈朝斌,等. ENDF-B/Ⅲ多群截 面库 MUSE1.0 在压力容器基准实验分析中的 初步应用[J].原子能科学技术,2009,43(12): 1 081-1 085.

YANG Shouhai, CHEN Yixue, CHEN Chaobin, et al. Preliminary analysis of RPV benchmark for PWR with MUSE1.0 ENDF-B/ Ⅶ.0 multi-group library[J]. Atomic Energy Science and Technology, 2009, 43(12): 1 081-1 085(in Chinese).

- [6] MACFARLANE R E, MUIR D W. The NJOY nuclear data processing system: Version 91, LA-12740-M[R]. New Mexico: Los Alamos National Lab, 1994.
- [7] THOMAS E B, JOHN T G, AVNEET S, et al. MCNP—A general Monte-Carlo N-particle transport code, Version 5, Volume Ⅲ, LA-CP-03-0284[R]. New Mexico: Los Alamos National Laboratory, 2003.
- [8] ALDAMA D L, NICHOLS A L. ADS-2.0: A test library for accelerator driven systems and new reactor designs, INDC(NDS)-0545[R/OL]. Vienna: International Atomic Energy Agency, 2008[2008-12-01]. http://www-nds.iaea.org/ ads/.
- [9] ENDF/B- \[thermal data:D in D₂O ace files[DB/ OL]. New Mexico:Los Alamos National Laboratory,2007[2007-12-18]. http://t2.lanl.gov/data/data/ENDFB-\[thermal-ace/DinD2O/ct00.
- [10] BLAIR J B, MICHAEL A T, YOLANDA R, et al. International handbook of evaluated criticality safety benchmark experiments, NEA/NSC/DOC (95)03[R]. North Fremont: Nuclear Energy Agency, 2006.