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Constraining density functional approximations to yield self-interaction free

potentials.
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Self-interactions (SIs) are a major problem in density functional approximations and the source
of serious divergence from experimental results. Here, we propose to constrain the effective local
potential to be SI free, even though it may correspond to a total energy that is contaminated with
SIs. More specifically, we constrain the screening potential to be the electrostatic potential of a non-
negative screening density of N − 1 electrons. In this way, the optimal effective potentials exhibit
the correct 1/r asymptotic decay resulting in significantly improved one-electron properties.
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It is already thirty years since Perdew and Zunger
in a seminal contribution [1] proposed to cure the self-
interaction (SI) error in density functional approxima-
tions (DFAs). The SI error arises from the incomplete
cancellation of the self-repulsion of the electron density ρ
in the direct Coulomb or Hartree energy U [ρ] by the ap-
proximate exchange energy functional EDFA

X [ρ]. SI errors
manifest in inaccuracies of DFAs [2] in many ways, e.g.
in the calculation of binding energies[3], underestimation
of activation energy barriers[4, 5], and in single-particle
properties like ionization potentials (IPs) [6, 7], electron
affinities (EAs) (unbound anions) [8] and band gaps of
solids[9].

Perdew and Zunger [1] proposed a many-body SI cor-
rection energy term which, in the limit of a single elec-
tron, eliminates the SI error exactly. Their work initi-
ated the field known as self-interaction corrected density
functional theory (SIC-DFT). Unfortunately, the many-
body generalization of the one-electron SI energy correc-
tion is not unique and to date an unambiguous definition
is not available. Rigorously, we have a sufficient condi-
tion for an approximate exchange and correlation (XC)
energy density functional EXC[ρ] to be N -representable
[10] and thus free from many-body SI errors. An im-
portant development in this area is the appreciation of
the underlying relationship between the SI error with the
fractional charge error [10]. The approximate treatment
of many-body SI errors with SIC-DFT leads to single-
particle equations with orbital dependent potentials, i.e.
the minimization problem is significantly more compli-
cated than an iterative diagonalization. For solids, SIC-
DFT is expressed in terms of maximally localized Wan-
nier states. An advantage of removing SI errors is that it
improves orbital energies[11, 12]. These orbital energies,
are commonly obtained as the eigenvalues of the non-
diagonal Lagrange multiplier matrix employed to enforce
orbital orthogonality, although the diagonal values of this
matrix have also been proposed as appropriate [13]. De-
spite complications, SIC-DFT has been extensively de-
veloped and applied to a large variety of systems[14–19].

Probably the most serious flaw caused by SI errors lies

in the asymptotic behavior of the Kohn-Sham (KS) po-
tential [20]. If the cancellation of SI terms was complete
then at infinity, the electron-electron contribution to the
KS potential (Hartree and XC) should be (N−1)/r where
N is the number of electrons. The physical meaning is ob-
vious, at infinity each electron feels the screening of the
nuclear charge by the remaining N − 1 electrons. The
components of the Hartree potential vH and of the ex-
act XC potential vXC to the asymptotic decay are N/r,
and −1/r respectively. However, the asymptotic decay
of vDFA

XC in typical DFAs, like the local density approxi-
mation (LDA) or the generalized gradient approximation
(GGA), does not follow a power law (−c/r), but is ex-
ponentially fast (c = 0). Consequently an electron at in-
finity is over-screened by N rather than N − 1 electrons.
The incorrect asymptotic behavior has dramatic conse-
quences on one-electron properties like the IPs, EAs and
the fundamental gaps. It also impairs the optical spec-
trum through linear response in time dependent DFT.
Aiming to deal in an unambiguous manner with SIs

in finite systems we decided, rather than focusing on the
approximate Hartree (U) and EXC energies (which re-
main contaminated with SI errors), to turn our attention
instead to the effective local potential. On the latter
physical constraints can be imposed in order to remove
any effect of SI errors.
In KS theory, vHXC = vH + vXC screens the nuclear

attraction felt by a KS electron. By virtue of Poisson’s
equation,

∇2vHXC(r) = −4πρHXC(r) . (1)

ρHXC is the density with electrostatic potential vHXC.
From the asymptotic behavior of vDFA

HXC in LDA or GGA,
we argued that

∫
ρDFA
HXC = N and the nuclear charge is

over-screened in these approximations.
In our KS equations, we introduce the screening po-

tential vscr in place of vDFA
HXC. We constrain vscr to be the

electrostatic potential due to the density ρscr(r) ≥ 0 of
some N − 1 electrons that screen the nuclear charge:

vscr(r) =

∫
dr′

ρscr(r
′)

|r− r
′|

(2)
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In contrast to vHXC
.
= δ(U [ρ]+EXC[ρ])/δρ, the potential

vscr is not the functional derivative of U [ρ] + EXC[ρ].
Following the optimized potential method (OPM) [21–

24], our single-particle KS equations have in place of
vDFA
HXC, the potential vscr (2) which satisfies the con-
straints: ∫

dr ρscr(r) = N − 1 , (3)

ρscr(r) ≥ 0 . (4)

As in the OPM, our KS equations yield orbitals whose
N -electron ground state density ρ minimizes the approx-
imate KS total energy.
Eq. (3) is equivalent to constraining the XC density

ρXC (= ρHXC − ρ) [25, 26] to integrate to −1 [25]. The
normalization of the total screening charge (3) is nec-
essary for the absence of SIs from the screening poten-
tial, since if each electron repelled itself partly, the total
screening charge would exceed N − 1. However, Eq. (3)
is not sufficient for the absence of SI effects in vscr, as
it would be energetically favorable to have SIs and over-
screening of the nuclear charge locally near the system,
plus a compensating negative charge far away from the
system to satisfy (3).
Including condition (4), the non-negative ρscr(r) rep-

resents a physical density of N − 1 electrons that screen
the nuclear charge. There is no longer any freedom to
have SIs and over-screening locally with a compensating
negative charge at large distances. Hence, eqs. (3), (4)
together become sufficient to ensure that vscr is SI free.
In a forthcoming publication we argue that the screening
density of the exact KS potential (1) satisfies constraints
(3), (4), and consequently the latter do not constitute an
additional approximation.
We warn that if the screening density is expanded in

a small finite basis set it is possible that employing (3)
alone may result in a solution that appears physical. This
is an artifact of the smallness of the basis set, and by
increasing the size of the screening density basis set, the
pathology of not having a sufficient condition will emerge.
The system of constraints (3), (4) is equivalent to the

(numerically) simpler system (3), (5), with:∫
dr |ρscr(r)| = N − 1 . (5)

Our search for the screening potential will be per-
formed by expanding it in a basis

vscr(r) =
∑
l

vl ξl(r), with ξl(r) =

∫
dr′

χl(r
′)

|r− r
′|

(6)

where χl(r) is an auxiliary basis set, for example localized
gaussians.
The minimization of the approximate total energy,

EDFA, with respect to vl under the conditions (3) and
(5) leads to the variation equation

δEDFA

δvl
= µ Xl + λ X̄l , (7)

with Xl =
∫
dr χl(r), X̄l =

∫
dr χl(r) |ρscr(r)|/ρscr(r)

and µ, λ are Lagrange multipliers to satisfy (3, 5).
The derivative on the left hand side is obtained, as

in OPM, through a chain rule involving derivatives with
respect to orbitals and the derivative with respect to the
potential.

δEDFA

δvl
= 2

∑
ia

vHXC
ia − vscria

ǫi − ǫa
S
(l)
ia (8)

where i runs over occupied, a over unoccupied eigenor-
bitals of vscr, with ǫi and ǫa the corresponding eigen-
energies. vscria and vHXC

ia are the matrix elements of the
potentials vscr and vDFA

HXC(
.
= δ(U [ρ]+EDFA

XC [ρ])/δρ) respec-
tively. Finally,

S
(l)
ia =

∫
dr φa(r) φi(r) ξl(r) . (9)

Eqs. (7) and (8) define a non-linear system of equations
with respect to vl. This system can be solved, using an
iterative scheme of two steps. In the first step, a lin-
ear system is solved by keeping the quantities φi, φa, ǫi,

ǫa, v
HXC
ia , and S

(l)
ia frozen. In the second step, a single-

electron Hamiltonian problem is solved with the potential
obtained in the previous step and the quantities φi, φa,

ǫi, ǫa, v
HXC
ia , and S

(l)
ia are updated. Our numerical imple-

mentation proved that this scheme is very efficient and
usually only a few iterations are required to converge
using a mixing scheme similar to Kohn-Sham iterative
procedure. The potential obtained at the first step, i.e.
when orbitals are frozen to the Kohn Sham orbitals is
already a very good approximation to the local poten-
tial. The linear system that needs to be solved in each
iteration has the form

∑
l

Aklvl = bk + µ Xk + λ X̄k , (10)

with

Akl =
∑
ia

S
(k)
ia S

(l)
ai

ǫi − ǫa
, and bkl =

∑
ia

S
(k)
ia vHXC

ia

ǫi − ǫa
(11)

The Lagrange multipliers µ, λ are given by the solution
of a simple 2×2 linear system obtained from Eq. (10) by
multiplying both sides by the inverse of A, then by Xk

(or X̄k) and summing over k, and using Eqs. (3, 5).
Eqs. (10) and (11) constitute a simple problem in the

OPM. The solution of Eq. (10) is complicated because of-
ten the matrix A is singular. This problem is well known
in the OPMwith finite basis sets [27–31], and the solution
involves the inversion of A in the space of its non-singular
eigenvectors, usually with a singular value decomposition
(SVD). However, even after the SVD, and depending on
the particular basis sets, the resulting effective potential
may look unphysical. In a separate publication, we argue
that behind the known mathematical problem lies a dis-
continuity of the optimal potential, when the orbital basis
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Figure 1: The effective potential and screening charge density
(inset) for Ne atom. The effective potential EXX (from Ref.
[29]) as well as −1/r are shown. (X-Y) notation stands for
cc-pVXZ and cc-pVYZ uncontracted for the orbitals and the
auxiliary basis sets respectively.

set is truncated with a finite basis [32]. In the present
work, this discontinuity is reduced by the restriction of
the admissible potentials to satisfy conditions (3), (5).

To perform the SVD of A, we divide the space spanned
by the eigenvectors of A in the null space (eigenvalues as-
sumed zero) and the rest, using a small parameter θ as
cut-off. In the non-singular subspace of eigenvectors we
perform a usual inversion of the matrix. For the null sub-
space all eigenvalues of the inverse are set to zero. Some-
times this division is obvious, i.e. there is a clear gap
in the eigenvalues of a few orders of magnitude. There
are cases however, where the eigenvalues of A approach
zero smoothly. Then, the potential changes slightly when
the assumed non-singular space increases by lowering θ.
There is a point however beyond which unphysical wig-
gles appear in the potential. Our strategy is to use a
value of θ that is as small as possible without introduc-
ing unphysical features in the potential. For the systems
and basis sets we considered, θ = 10−6 has proven a rea-
sonable choice.

To illustrate our approach we chose the LDA
functional[33] and we refer to the combined method as
constrained LDA (CLDA). In Fig. 1, we show the LDA
and CLDA potentials for Ne atom using finite basis sets
as well as the screening density. Evidently, the effective
potential obtained with CLDA has the correct asymp-
totic behavior. Also, the screening density with respect
to the different basis sets is also converged. Potentials
with the correct asymptotics are also obtained for larger
systems like CO molecule as shown in Fig. 2. In the
inset of Fig. 2 we show that the IP value for CO is es-
sentially independent of θ. In the top of Table I, we
show the IPs calculated with CLDA and with LDA, for
various atomic and molecular systems, obtained as the
negative of the one-electron energy, EH, for the highest

Basis Qn ∆E IP(LDA) IP(CLDA) Exp

He T-Q 0 1.5 · 10−3 15.46 23.14 24.6
Be T-T 3.0 · 10−4 1.1 · 10−4 5.59 8.62 9.32
Ne T-T 0 2.7 · 10−5 13.16 18.94 21.6
H2O T-T 6.0 · 10−5 1.1 · 10−5 6.96 11.24 12.8
NH3 T-T 6.0 · 10−5 8.2 · 10−6 6.00 9.81 10.8
CH4 D-D 1.5 · 10−3 2.7 · 10−4 9.28 12.52 14.4
C2H2 D-D 1.9 · 10−4 4.1 · 10−5 7.02 10.63 11.5
C2H4 D-D 3.9 · 10−3 1.1 · 10−3 6.67 9.57 10.7
CO D-D 2.0 · 10−5 3.6 · 10−4 8.75 12.73 14.1
NaCl D-D 1.2 · 10−2 6.8 · 10−4 5.13 7.87 8.93

F− Ta-T 1.0 · 10−4 2.7 · 10−5 EH > 0 2.23 3.34
Cl− Ta-T 1.0 · 10−5 1.6 · 10−4 EH > 0 2.61 3.61
OH− Ta-T 4.0 · 10−5 1.4 · 10−4 EH > 0 0.99 1.83
NH−

2
Ta-T 4.0 · 10−5 8.2 · 10−4 EH > 0 0.18 0.77

CN− Ta-T 1.0 · 10−5 1.1 · 10−4 0.13 2.87 3.77

aFor negative ions, aug-cc-pVXZ basis sets were used for the or-

bital expansion.

Table I: The total energy difference ∆E of CLDA from
plain LDA the total negative screening charge Qn (in e) and
the IPs for selected atoms, molecules (top) and negative ions
(bottom). Basis set notation is explained in the caption of
Fig. 1. For the neutral systems we compare with experimental
values of the IP, while for the negative ions with experimental
values of the EA of the corresponding neutral system. All
energies are in eV.

occupied molecular orbital. The IPs from CLDA are on
average roughly 10% underestimated. This divergence
should be contrasted to the dramatic 40% errors of plain
LDA. Given the severe underestimation of IPs and the
fundamental gaps of solids by LDA and GGA, our ap-
proach offers a significant qualitative improvement. Con-
trary to LDA, negative ions are predicted to be bound by
CLDA as shown in the bottom of Table I. Even though
EAs of neutral systems (predicted as −EH of the cor-
responding negative ions), are underestimated compared
to experiment by about 40%, it is nevertheless encourag-
ing that qualitatively correct EAs can be obtained with
CLDA.

The differences of the total energies obtained with
CLDA from those obtained with LDA are also shown
in Table I. These differences are very small for all sys-
tems i.e. the additional constraint on the potential does
not change the total energy. The total negative screening
charge, Qn, is shown in Table I as a measure of how well
the positivity condition is fulfilled by the optimal poten-
tial. Although we did not manage to eliminate it com-
pletely, Qn is very small compared to the total screening
charge and does not affect the quality of our effective
potential.

Until now, the main errors stemming from SIs were
not in the total energy but resulted from deficiencies of
the local potential. In passing we remark that splitting
EXC = EX + EC as a sum of exchange and correlation
energies and then treating exchange exactly (EXX) is not
necessarily the best strategy [34]. The main advantage of
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Figure 2: The effective potential for CO molecule along the
molecular axis. Green dashed lines indicate the correct ±1/r
asymptotic behavior with r measured from the molecular cen-
ter. In the inset, the EH as a function of the SVD parameter
θ is shown with the horizontal blue line indicating the exper-
imental value of the IP.

employing EXX is the cancellation of SIs and the qual-
ity of the KS potential, however at a computational cost
compared with LDA/GGA, and an ensuing complicated

description of correlation through non-local orbital func-
tionals [35]. In fact an appropriate non-local EC[ρ] of
cost no-higher than EXX is not available yet.

Attempting to address the SI problem in DFAs for fi-
nite systems, we noted the ambiguity in the quantifica-
tion of the SI error in the Hartree and XC energies. Nev-
ertheless, we proposed unambiguous constraints for the
KS potential which keep the scaling of computational
cost at the level of the corresponding DFA and are suf-
ficient to eliminate any effects of SIs from the potential
(where it matters) with a minimal increase of the total
energy. For LDA, the constrained KS potentials have
the correct asymptotic behavior and give significantly
improved IPs over the unconstrained LDA results. At
the same time, we have kept the description of XC to-
gether which has advantages, for example it exploits the
cancellation of errors in EXC and provides an improved
description of electron-pair bonds [34].

Interesting questions regarding our approach are how
it applies to extended systems (N , N − 1 are the same)
and the implication of our constraints to the dissocia-
tion of diatomic molecules and to size-consistency. These
questions are related to the localization or not of the XC
density ρXC in the solid or as the molecule dissociates at
large distances between the fragments.
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