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Abstract—The spectrum of the Laplacian matrix of a network
plays a key role in a wide range of dynamical problems associated
with the network, from transient stability analysis of power
networks to distributed control of formations. Using methods
from algebraic graph theory and convex optimization, we study
the relationship between structural features of a network and
spectral properties of its Laplacian matrix. We illustrate our
results by studying the influence of structural properties on
the Laplacian eigenvalues of the American (western states),
French and Spanish high-voltage transmission networks. Our
study suggests that for such networks the Laplacian spectral radii
and spectral moments are strongly constrained by a particular
set of local structural features, namely the degree sequence and
the so-called joint-degree distribution. On the other hand, other
structural properties that may seem important, such as the
distribution of cycles in the network, appear to have a very weak
influence on the Laplacian spectrum of electrical transmission
networks. We also show that local structural features are not
enough to characterize the Laplacian spectral gap. Therefore,
since the spectral gap is fundamental in the analysis of many
dynamical processes on networks, random models in which only
local structural features are prescribed are typically insufficient
to generate synthetic topologies in which these dynamical pro-
cesses can be studied.

I. INTRODUCTION

The eigenvalue spectrum of the Laplacian matrix of a
network provides valuable information regarding the behavior
of many dynamical processes taking place on the network.
In their seminal paper [1], Pecora and Carrol related the
problem of synchronization in a network of coupled oscillators
to the largest and second-smallest Laplacian eigenvalues of
the network (usually denoted by Laplacian spectral radius and
spectral gap, respectively). More recently, Dorfler and Bullo
derived conditions for transient stability in power networks in
terms of the spectral gap of the Laplacian matrix [2]. Apart
from their applicability to the problems of synchronization and
transient stability analysis, the Laplacian eigenvalues are also
relevant in the analysis of many distributed estimation and
control problems (see [3],[4] and references therein).

Understanding the relationship between the structure of a
complex network and the behavior of dynamical processes
taking place in it is a central question in the research field of
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network science [5]. Since the behavior of many networked
dynamical processes is closely related with the Laplacian
eigenvalues [6], it is of interest to study the relationship
between structural features of the network and its Laplacian
eigenvalues. In this paper we study this relationship, focusing
on the role played by structural features that can be extracted
from localized samples of the network structure. Our objective
is then to efficiently aggregate these local samples of the
network structure to infer global properties of the Laplacian
spectrum. Our analysis reveals that there are certain spectral
properties, such as the spectral radius and the so-called spectral
moments, that can be efficiently estimated from local structural
features of the network.

The most common approach to study the relationship be-
tween structural and spectral properties of a network is by
means of random network models. This approach has been
widely used to study the effect of the degree distribution [7],
correlations [8], or clustering [9], in a broad range of real-
world networks. Although very common in the literature, this
approach presents a serious drawback: when we prescribe the
structural feature under study in the random network model,
there are other structural features that are being indirectly
induced in the network and may be relevant in the network’s
behavior. Since those induced features are not directly con-
trolled, it is difficult (if not impossible) to isolate the role
of the structural feature under study using random network
models.

In this paper, we present a novel approach to study the
influence of certain structural features on the network Lapla-
cian eigenvalues without using random models. Our approach
builds on algebraic graph theory and convex optimization
to study relevant properties of the Laplacian spectrum. We
apply our theoretical results in the study of real electrical
transmission networks. In particular, we analyze high-voltage
transmission networks in the USA (western states), France
and Spain. Our numerical results show that, in the case of
electrical transmission networks, the Laplacian spectral radii
and spectral moments are strongly constrained by a particular
set of local structural features: the degree distribution and
the so-called joint-degree distribution. On the other hand,
other structural properties that may seem important, such as
the distribution of cycles in the network, appear to have a
very weak influence on the Laplacian spectrum of electrical
transmission networks. In our numerical experiments, we also
verify that local structural features are not enough to charac-
terize the Laplacian spectral gap, since this spectral property
measures, to a certain extent, how well a network is globally
connected. Therefore, since the spectral gap is fundamental

ar
X

iv
:1

10
7.

56
76

v2
  [

m
at

h.
O

C
] 

 1
3 

A
ug

 2
01

1



2

in the analysis of many dynamical processes on networks,
random models in which only local structural features are
prescribed, such as those in [7]–[9], are insufficient to generate
synthetic topologies in which these dynamical processes can
be studied.

The rest of this paper is organized as follows. In the
next section, we define graph-theoretical terminology needed
in our derivations. In Section III, we review some previous
results relating the eigenvalues of the Laplacian matrix of
a network to its structural features, and introduce a novel
methodology based on algebraic graph theory to derive closed-
form expressions for the so-called Laplacian spectral moments.
In Section IV, we use convex optimization to derive tight
bounds on important properties of the Laplacian spectrum
from the spectral moments. We apply our theoretical results
to the analysis of the Laplacian spectra of the American
(western states), French and Spanish high-voltage transmission
networks in Section V.

II. PRELIMINARIES

Let G = (V, E) be an undirected graph, where V =
{v1, . . . , vn} denotes a set of n nodes and E ⊆ V ×V denotes
a set of e undirected edges. If {vi, vj} ∈ E , we call nodes
vi and vj adjacent (or first-neighbors), which we denote by
vi ∼ vj . We define the set of first-neighbors of a node vi as
Ni = {w ∈ V : {vi, w} ∈ E}. The degree di of a vertex
vi is the number of nodes adjacent to it, i.e., di = |Ni|. We
consider three types of undirected graphs:

(i) A graph is called simple if its edges are unweighted
and it has no self-loops1.

(ii) A graph is loopy if it has self-loops.
(iii) A graph is weighted if there is a real number asso-

ciated with every edge in the graph.
More formally, a weighted graph H can be defined as the

triad H = (V, E ,W), where V and E are the sets of nodes and
edges in H, and W = {wij ∈ R, for all {vi, vj} ∈ E} is the
set of (possibly negative) weights.

Graphs can be algebraically represented via matrices. The
adjacency matrix of a simple graph G, denoted by AG = [aij ],
is an n × n symmetric matrix defined entry-wise as aij = 1
if nodes vi and vj are adjacent, and aij = 0 otherwise.
In the case of weighted graphs (and possibly non-simple),
the weighted adjacency matrix is defined by WG = [wij ],
where wij = 0 if vi is not adjacent to vj . We define the
degree matrix of a simple graph G as the diagonal matrix
DG = diag (di). We define the Laplacian matrix LG (also
known as combinatorial Laplacian, or Kirchhoff matrix) of
a simple graph as LG = DG − AG . For simple graphs,
LG is a symmetric, positive semidefinite matrix, which we
denote by LG � 0 [10]. Thus, LG has a full set of n real
and orthogonal eigenvectors with real nonnegative eigenvalues
0 = λ1 ≤ λ2 ≤ ... ≤ λn. Furthermore, the trivial eigenvalue
λ1 = 0 of LG always admits a corresponding eigenvector
v1 = (1, 1, ..., 1)

T . The algebraic multiplicity of the trivial
eigenvalue is equal to the number of connected components

1A self-loop is an edge of the type {vi, vi}.

in G, which we assume to be equal to one in the rest of the
paper. The smallest and largest nontrivial eigenvalues of LG ,
λ2 and λn, are called the spectral gap and spectral radius
of LG , respectively, and they play an important role in this
paper. Given a n×n real and symmetric matrix B with (real)
eigenvalues σ1, ..., σn, we define the k-th spectral moment of
B as,

mk (B) ,
1

n

n∑
i=1

σk
i .

As we shall show in Section III-B, there is an interesting
connection between the spectral moments of the Laplacian
matrix, mk (LG), and structural features of the graph.

We now define a collection of structural properties that are
important in our derivations. The degree sequence of a simple
graph G is the ordered list of its degrees, (d1, ..., dn). The p-th
power-sum of the degree sequence is defined as

Sp ,
∑
vi∈V

dpi . (1)

A walk of length k from vi1 to vik+1
is an ordered sequence

of nodes
(
vi1 , vi2 , ..., vik+1

)
such that vij ∼ vij+1

for j =
1, 2, ..., k. One says that the walk touches each of the nodes
that comprises it. If vi1 = vik+1

, then the walk is closed.
A closed walk with no repeated nodes (with the exception
of the first and last nodes) is called a cycle. Given a walk
p =

(
vi1 , vi2 , ..., vik+1

)
in a weighted graph H, we define the

weight of the walk as, ω (p) = wi1i2wi2i3 ...wikik+1
.

Finally, we define the concept of local neighborhood around
a node. Let δ (vi, vj) denote the distance between two nodes
vi and vj (i.e., the minimum length of a walk from vi to vj).
We say that vi and vj are r-th neighbors if δ (vi, vj) = r,
and define the r-th order neighborhood around vi as the set
of nodes N (r)

i , {w ∈ V : δ (vi, w) ≤ r}. By convention, we
assume that δ (v, v) = 0, hence, the first-order neighborhood
of vi satisfies N (1)

i = Ni ∪ vi. The nodes in N (r)
i induce an

(unlabeled) local subgraph G(r)i = (N (r)
i , E(r)i ) ⊆ G, where

E(r)i = {{v, w} ∈ E s.t. v, w ∈ N (r)
i }, i.e., the set of edges

connecting nodes in N (r)
i . It is worth remarking that these

local subgraphs are unlabeled; thus, it is impossible, in general,
to reconstruct the complete network G from the set of local
subgraphs {G(r)i , i = 1, ..., n}. These subgraphs are useful to
define the concept of local structural measurement. We say
that a structural measurement is local with a certain radius r
if it can be computed from the set of local subgraphs {G(r)i ,
i = 1, ..., n}. For example, the degree sequence of a graph is
a local structural measurement (with radius 1), since we can
compute the degree of each node vi from the local subgraph
N (1)

i . Similarly, one can compute the number of triangles
touching vi from N (1)

i ; hence, the total number of triangles in
G is a local measurement with radius 1. In contrast, the eigen-
value spectrum of the Laplacian matrix is not a local property,
since we cannot compute the eigenvalues unless we know the
complete graph structure. One of the main contributions of
this paper is to propose a novel methodology to extract global
information regarding the Laplacian eigenvalue spectrum from
local structural measurements of the network.
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III. SPECTRAL ANALYSIS OF THE LAPLACIAN MATRIX

The spectrum of the Laplacian matrix is relevant in a wide
range of networked dynamical processes, such as synchro-
nization of coupled oscillators [1], flocking and formation
control of multi-agent systems [3],[4], or distributed consensus
algorithms [11]. In the context of power networks, Laplacian
eigenvalues contain useful information for the analysis of
synchronization and transient stability [2]. Among the Lapla-
cian eigenvalues, the spectral radius and the spectral gap are
specially important in dynamical applications and we pay
particular attention to them.

In this paper we introduce a novel approach to study the
effect of structural properties of a network on the spectrum of
its Laplacian matrix, by using the moments of the eigenvalue
distribution. Before we introduce our approach, we first review
some of the most relevant known bounds on the Laplacian
eigenvalues.

A. Bounds on Laplacian Eigenvalues

The literature contains a large collection of upper and lower
bounds on the spectral gap λ2 and the spectral radius λn
in terms of structural features of a network, such as degree
distributions. Let us consider a simple graph G with n nodes,
e edges, and degree sequence (di)

n
i=1. Let mi be the average

degree of the neighbors of vi, i.e., mi , 1
di

∑
vj∈Ni

dj (note
that mi is a local structural measurement with radius 2).
For connected networks, we have the following upper and
lower bounds on the Laplacian spectral gap in terms of local
structural measurements (see [12] for an extensive review):

λ2 ≥
(

(n− 1)m

2
− n− 2

4

)−1
, from [13]

λ2 ≤ κe ≤ min
vi∈V
{di} , from [14],

where m , 1
n

∑
vi∈V mi and κe is the edge connectivity2

of the graph. Although many other bounds can be found in
the literature, most of them involve properties that cannot
be computed from local structural features of the network,
such as the diameter of the network or the average distance
between every pair of nodes [12]. Since the spectral gap
strongly depends on the global connectivity of the network,
bounds on the spectral gap written in terms of local structural
features usually perform poorly in practice (as we shall verify
in Section V).

Similarly, we find in the literature a large variety of upper
and lower bounds on the Laplacian spectral radius λn (see,
for example, [15] for a collection of bounds). Many of these
bounds can be written as the maximum or minimum of certain
functions defined over the set of nodes or edges. For example,

λn ≤ max
{vi,vj}∈E

di + dj +
√

(di − dj)2 + 4mimj

2
, [16],

λn ≥
√

2 min
vi∈V

(
d2i + dimi

)1/2
, [17].

2The edge connectivity of a connected graph is the minimum number of
edges whose removal renders a disconnected graph.

As we shall verify in Section V, the above upper bound on
the spectral radius is quite tight in the case of electrical trans-
mission networks, while lower bounds found in the literature
are very loose. In Section IV, we shall derive lower bounds
that outperform those found in the literature in the case of
electrical transmission networks.

B. Moment-Based Analysis of the Laplacian Spectrum

In this section, we use algebraic graph theory to relate
spectral properties of a network to a rich variety of local
structural measurements. First, we need to introduce some
preliminary results and concepts. A well-known result in
algebraic graph theory relates the diagonal entries of the k-
th power of the adjacency matrix,

[
Ak
G
]
ii

, to the number of
closed walks of length k in G that start and finish at node
vi [10]. We can generalize this result to weighted graphs as
follows:

Proposition 1: Let H = (V, E ,W) be a weighted graph
with weighted adjacency matrix WH = [wij ]. Then[

W k
H
]
ii

=
∑

p∈P (i)
k,n

ω (p) ,

where P (i)
k,n is the set of closed walks of length k from vi to

itself in the complete loopy graph3 and ω (p) is the weight of
walk p in H.

Proof: By recursively applying the multiplication rule for
matrices, we have the following expansion

[
W k
H
]
ii

=

n∑
i=1

n∑
i2=1

· · ·
n∑

ik=1

wi,i2wi2,i3 · · · wik,i. (2)

Using the graph-theoretic nomenclature introduced in Sec-
tion II, we have that wi,i2wi2,i3 ...wik,i = ω (p), for p =
(vi, vi2 , vi3 , ..., vik , vi). Hence, the summations in (2) can be
written as

[
W k
H
]
ii

=
∑

1≤i,i2,...,ik≤n ω (p). Finally, the set
of closed walks p = (vi, vi2 , vi3 , ..., vik , vi) with indices
1 ≤ i, i2, ..., ik ≤ n is equal to the set of closed walks of length
k from vi to itself in the complete loopy graph Jn (which we
have denoted by P (i)

k,n in the statement of the Proposition).

The above Proposition allows us to write the spectral
moments of the weighted adjacency matrix of a weighted
graph H in terms of the weights of closed walks, as follows:

Lemma 3.1: Let H = (V, E ,W) be a weighted graph with
weighted adjacency matrix WH = [wij ]. Then

mk (WH) =
1

n

∑
vi∈V

∑
p∈P (i)

k,n

ω (p) ,

where P (i)
k,n is the set of closed walks of length k from vi to

itself in the complete loopy graph Jn.

3The complete loopy graph Jn is the graph with node-set V = {v1, ..., vn}
and edge-set E = {{vi, vj} for all vi, vj ∈ V}.
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Fig. 1. A simple graph G4 (left) and its corresponding Laplacian weighted
graph L (G4) (right).

Proof: Let us denote by µ1, ..., µn the set of (real)
eigenvalues of the (symmetric) weighted adjacency matrix
WH. We have that the moments can be written as

mk (WH) ,
1

n

n∑
i=1

µk
i =

1

n
Trace

(
W k
H
)
,

since WH is a symmetric (and diagonalizable) matrix. We then
apply Proposition 1 to rewrite the moments as follows,

mk (WH) =
1

n

n∑
i=1

[
W k
H
]
ii

=
1

n

∑
vi∈V

∑
p∈P (i)

k,n

ω (p) .

In Subsections III-B1 and III-B2, we shall apply this result
to compute the spectral moments of the Laplacian matrix
in terms of local structural measurements. First, we need to
introduce a weighted graph that is useful in our derivations:

Definition 3.1: Given a simple graph G = (V, E), we de-
fine the Laplacian graph of G as the weighted graph
L (G), (V, E ∪ Sn,Γ), where Sn = {{v, v} for all v ∈ V}
(the set of all self-loops), and Γ = [γij ] is a set of weights
defined as:

γij ,

 −1, for {vi, vj} ∈ E
di, for i = j
0, otherwise.

Remark 3.1: Note that the weighted adjacency matrix of the
Laplacian graph L (G) is equal to the Laplacian matrix of the
simple graph G. Hence, we can apply Lemma 3.1 to express
the spectral moments of the Laplacian matrix LG in terms of
weighted walks in the Laplacian graph L (G).

Example 3.1: In Fig. 1(a) we have a simple graph with 4
nodes, G4. In Fig. 1(b) we have its corresponding Laplacian
weighted graph L (G4). Observe how the edges in G4 are also
edges in L (G4) with an associated weight of −1. Also, each
node in L (G4) presents a self-loop with a weight equal to
the degree of the corresponding node in G4. One can easily
check that the Laplacian matrix of G4 is equal to the weighted
adjacency matrix of L (G4).

Before we apply Lemma 3.1 to study the Laplacian spectral
moments, we must introduce the concept of subgraph covered
by a walk.

Definition 3.2: Consider a walk p =
(
vi1 , vi2 , ..., vik+1

)
of

length k in a (possibly loopy) graph. We define the subgraph

covered by p as the simple graph C (p) = (Vc (p) , Ec (p)),
with node-set Vc (p) =

⋃k+1
r=1 vir , and edge-set

Ec (p) =
⋃

vir 6=vir+1

{
vir , vir+1

}
, for 1 ≤ r ≤ k + 1.

Based on the above, we define triangles, quadrangles and
pentagons as the subgraphs covered by cycles of length three,
four, and five, respectively. Notice that self-loops are excluded
from Ec (p) in Definition 3.2. For example, consider a walk
p = (v1, v2, v2, v3, v3, v1, v3, v1) in a graph with self-loops.
Then, C (p) has node-set Vc (p) = {v1, v2, v3} and edge-set
Ec (p) = {{v1, v2} , {v2, v3} , {v3, v1}}. In other words, C (p)
is a simple triangle.

In the following subsections, we build on Lemma 3.1 to
derive closed-form expressions for a sequence of Laplacian
spectral moments in terms of relevant structural features of the
network. In Subsection III-B1, we provide expressions for the
first three spectral moments in terms of the degree sequence
and the number of triangles in G. In Subsection III-B2, we
compute higher-order moments in terms of longer cycles and
more elaborate structural measurements.

1) Low-Order Laplacian Spectral Moments: In this subsec-
tion we derive expressions for the first three spectral moments
of the Laplacian matrix of a simple graph using graph-
theoretical concepts.

Theorem 3.2: Let G be a simple graph with Laplacian
matrix LG . Then, the first three spectral moments of the
Laplacian matrix are

m1 (LG) =
1

n
S1, (3)

m2 (LG) =
1

n
(S1 + S2) ,

m3 (LG) =
1

n
(3S2 + S3 − 6∆) ,

where Sp is defined in (1), and ∆ is the total number of
triangles in G.

Proof: First, we apply Lemma 3.1 to compute the Lapla-
cian spectral moments of a simple graph G in terms of closed
walks in the weighted Laplacian graph L (G), described in
Definition 3.1. In particular, the first spectral moment is related
to the set of closed walks of length 1. Clearly, the only possible
closed walks of length 1 in L (G) are those using a self-loop,
i.e., P (i)

1,n = {(vi, vi) for vi ∈ V}. Since the weight ω (p) of
a walk p = (vi, vi) in L (G) is equal to di, the first spectral
moment is equal to:

m1 (LG) =
1

n

∑
vi∈V

ω ((vi, vi)) =
1

n

n∑
i=1

di =
1

n
S1.

In order to compute the second moment m2 (LG), we need
to account for two different types of closed walks of length
two:

(a) Walks in L (G) of the first type visit a self-loop twice,
i.e., p = (vi, vi, vi), and the weight of this walk is d2i . We
denote the set containing walks of this type as P (i)

2a .
(b) Walks of the second type start at a node vi, visit a

neighbor vj ∈ Ni, and return to vi. This type of walk defines
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the set P (i)
2b , {(vi, vj , vi) for vi ∈ V , vj ∈ Ni}. The weight

of any walk of this type is equal to 1.
Since P (i)

2a ∪P
(i)
2b = P

(i)
2,n and P (i)

2a ∩P
(i)
2b = ∅, the sets P (i)

2a

and P
(i)
2b form a partition of the set of walks P (i)

2,n. Hence,
from Lemma 3.1, we have

m2 (LG) =
1

n

∑
vi∈V

∑
p∈P (i)

2a

ω (p) +
1

n

∑
vi∈V

∑
p∈P (i)

2b

ω (p)

=
1

n

∑
vi∈V

d2i +
1

n

∑
vi∈V

∑
vj∈Ni

1

=
1

n

n∑
i=1

d2i +
1

n

n∑
i=1

di =
1

n
(S2 + S1) .

In order to compute the third Laplacian spectral moment,
we classify closed walks of length 3 in L (G) into sets that
partition P

(i)
3,n. In particular, we classify these closed walks

with respect to the structure of the subgraph covered by the
walk. Specifically, two walks p1 and p2 belong to the same
type if the subgraphs covered by the walks, denoted by C (p1)
and C (p2) according to Definition 3.2, are isomorphic4.
In Fig. 2, we depict the set of all possible nonisomorphic
subgraphs covered by closed walks of length 3 (in solid lines).
According to this classification, we have the following types
of walks:

(a) Walks of the first type present the form (vi, vi, vi, vi),
covering the self-loop three times. The subgraph covered
by this walk is the isolated node, represented in Fig. 2(a).
Although the walk covering this graph visits the self-loop
{vi, vi} (in dashed line in Fig. 2(a)), this self-loop is not part
of the covered subgraph (according to Definition 3.2). The
weights associated with walks of this type are equal to d3i ,
and we denote the set of this type of walks as P (i)

3a .
(b) Walks of the second type present the form (vi, vi, vj , vi)

and (vi, vj , vj , vi) with vj ∈ Ni. The subgraph covered by
these walks is the single edge in Fig. 2(b), where the self-
loops (in dashed line) are used by the walks but not included
in the subgraph. These two walks have weights di and dj ,
respectively, and are represented in Fig. 2(b). We denote this
set of walks as P (i)

3b .
(c) The last type of walk presents the form (vi, vj , vk, vi)

and (vi, vk, vj , vi) for vi ∼ vj ∼ vk ∼ vi. The subgraph
covered by these walks is the triangle (Fig. 2(c)). These walks
have weights −1 and we denote this set of walks as P (i)

3c .
Since the sets P (i)

3a , P (i)
3b , and P (i)

3c partition the set of closed
walks P (i)

3,n, we have that

m3 (LG) =
1

n

∑
vi∈V

∑
x∈{a,b,c}

∑
p∈P (i)

3x

ω (p) .

We can now analyze each of the terms in the above summation.
For convenience, we define T3x , 1

n

∑
vi∈V

∑
p∈P (i)

3x
ω (p),

and study each one of the terms T3x for x ∈ {a, b, c}:

4Two graphs G and H are isomorphic if there is a bijection between the
vertex sets V (G) and V (H), f : V (G)→ V (H), such that any two vertices
u and v of G are adjacenct in G if and only if f(u) and f(v) are adjacent
in H .

Fig. 2. Collection of possible subgraphs covered by closed walks of length 3.
Since these subgraphs are simple, by definition, they do not contain self-loops
(which are included in the figure for convenience in our derivations).

(a) For x = a, all the walks in P (i)
3a have a weight equal to

d3i . Hence, we have T3a = 1
n

∑n
i=1 d

3
i = S3/n.

(b) For x = b, the walks in P
(i)
3b have a weight equal to

either di or dj . Then, we have:

T3b =
1

n

∑
vi∈V

∑
vj∈Ni

di +
1

n

∑
vi∈V

∑
vj∈Ni

dj

=
1

n

n∑
i=1

n∑
j=1

aijdi +
1

n

n∑
i=1

n∑
j=1

aijdj

=
1

n

n∑
i=1

d2i +
1

n

n∑
j=1

d2j = 2S2/n.

(c) For x = c, we have T3c = 1
n

∑
1≤i,j,k≤n (−1) tijk,

where tijk is an indicator function that takes the value 1
when vi ∼ vj ∼ vk ∼ vi (0, otherwise). Hence, T3c =
6
n

∑
1≤i<j<k≤n (−1) tijk, where the coefficient 6 accounts for

all the possible permutations of the three indexes i, j, and k.
Hence, since

∑
1≤i<j<k≤n tijk = ∆/n (where ∆ is the total

number of triangles), we have that T3c = −6∆/n.
Finally, since m3 (LG) = T3a + T3b + T3c, we obtain

the expression for the third moment in the statement of the
theorem.

Remark 3.2: Theorem 3.2 relates purely algebraic proper-
ties – the spectral moments – to structural features of the
network, namely the degree sequence and the number of
triangles. The key concept behind the proof is the classification
of closed walks into sets according the subgraph covered
by these walks. This idea can be extended to higher-order
moments, although the combinatorial analysis becomes more
elaborate as we increase the order of the moments.

Remark 3.3: Notice that the power-sums of the degrees,
Sp, and the number of triangles, ∆, can be retrieved from
the set of first-order neighborhoods, {G(1)i for all vi ∈ V}.
Therefore, we can compute the first three Laplacian spectral
moments from local structural measurements with radius 1.
As we shall discuss below, it is possible to compute the first
2r + 1 Laplacian spectral moments of a graph whenever we
have access to the set of r-th order neighborhoods, {G(r)i for
all vi ∈ V}.

2) Higher-Order Laplacian Spectral Moments: We now
extend our analysis to the fourth- and fifth-order spectral
moments of the Laplacian matrix. We first define the col-
lection of structural measurements that are involved in our
expressions. Let us denote by ti, qi, and pi the number of
triangles, quadrangles, and pentagons touching node vi in G,
respectively. The total number of quadrangles and pentagons in
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G are denoted by Q and P , respectively. The following terms
define structural correlations that are relevant in our analysis:

Cdd ,
1

n

∑
vi∼vj

didj , Cd2d ,
1

n

∑
vi∼vj

d2i dj , (4)

Cdt ,
1

n

∑
vi∈V

diti, Cd2t ,
1

n

∑
vi∈V

d2i ti,

Cdq ,
1

n

∑
vi∈V

diqi, Ddd ,
1

n

∑
vi∼vj

didj |Ni ∩Nj | ,

where |Ni ∩Nj | is the number of common neighbors shared
by vi and vj . The above terms represent correlations between
structural variables in the graph, some of which have already
been studied extensively. For example, Cdd and Cd2d are
closely related to the widely studied assortativity coefficient
[8], which measures the preference (or aversion) of nodes to
attach to nodes presenting a similar degree. On the other hand,
we find in (4) several correlation terms that have not been
studied in such depth. For example, the terms Cdt and Cd2t

quantify the correlation between degrees and local clustering5

throughout the set of nodes. Although nontrivial variations of
local clustering with respect to degrees have been reported
in the complex networks literature [18], the effects in the
network’s behavior are not well understood.

The main result in this section relates the fourth and fifth
Laplacian spectral moments to local structural measurements
and correlation terms, as follows:

Theorem 3.3: Let G be a simple graph with Laplacian
matrix LG . Then, the fourth and fifth Laplacian moments can
be written as

m4 (LG) =
1

n
(−S1 + 2S2 + 4S3 + S4 + 8Q) (5)

+4Cdd − 8Cdt,

m5 (LG) =
1

n
(−5S2 + 5S3 + 5S4 + S5 + 30∆− 10P )

+10 (Cdd + Cd2d − Cdt − Cd2t + Cdq −Ddd)

where Sp is defined in (1), and the correlation terms Cdd, Cdt,
Cdq, Cd2d, Cd2t, and Ddd are defined in (4).

Proof: As in Theorem 3.2, the proof is based on a
classification of closed walks of length 4 and 5 with respect
to the subgraph covered by the walks. Details about this
classification and the subsequent combinatorial analysis can
be found in the Appendix.

Remark 3.4: Observe how, as we increase the order of the
moments, more complicated structural features arise in our
expressions. In particular, the fifth moment is influenced by
the degree sequence, the number of cycles of length 3 and 5,
and all the correlation terms defined in (4).

Remark 3.5: As we mentioned before, the maximum order
of the spectral moment that one can compute from local struc-
tural information depends on the radius r of the neighborhoods
that are accessible to us. One can prove that in order to
compute the k-th Laplacian spectral moment, we need to count

5The local clustering coefficient is defined as ti
/(di

2

)
, [5].

the number of cycles of length k in G. One can also prove
that access to neighborhoods of radius r allows us to count all
cycles of length up to 2r+1 in G, [19]. Hence, we can compute
the set of Laplacian moments up to the order kmax = 2r + 1
using local structural information that can be extracted from
the set of r-th order neighborhoods, {G(r)i for all vi ∈ V}.

In this section, we have derived expressions to compute
the first five spectral moment of the Laplacian matrix of
a network from local structural measurements. In the next
section, we present a series of semidefinite programs (SDP’s)
whose solutions provide optimal bounds on the Laplacian
spectral radius and spectral gap.

IV. OPTIMAL LAPLACIAN BOUNDS FROM SPECTRAL
MOMENTS

In this section, we introduce a novel approach to compute
bounds on the spectral gap and the spectral radius of the
Laplacian matrix from a truncated sequence of Laplacian
spectral moments. More explicitly, the problem solved in this
section can be stated as follows:

Problem 1 (Moment-based bounds): Given a truncated se-
quence of Laplacian spectral moments (mi (LG))

k
i=1, find

bounds on the spectral gap and the spectral radius of the
Laplacian matrix LG .

Our results are based on an optimization framework recently
proposed in [20]. In order to adapt our problem to this
framework, we need to introduce some definitions. Given a
simple connected graph G with Laplacian eigenvalues {λi}ni=1,
we define the spectral density of the nontrivial eigenvalue
spectrum as

ρG (λ) ,
1

n− 1

∑
i≥2

δ (λ− λi) , (6)

where δ (·) is the Dirac delta function. Notice how we have
excluded the trivial eigenvalue, λ1 = 0, from the spectral
density; hence, the support 6 of ρG (λ) is equal to supp(ρG) =
{λi}ni=2. The moments of the spectral density in (6), denoted
by mk (LG), can be written in terms of the spectral moments
of LG , as follows

mk (LG) ,
∫
R
λk

1

n− 1

n∑
i=2

δ (λ− λi) dλ

=
1

n− 1

n∑
i=2

λki =
n

n− 1
mk (LG) , (7)

for all k ≥ 1 (where we have used the fact that λ1 = 0, in
our derivations).

In what follows, we propose a solution to Problem 1 using
a technique proposed by Lasserre in [20]. In that paper, the
following problem was addressed:

Problem 2: Consider a truncated sequence of moments
(Mr)1≤r≤k corresponding to an unknown density function
µ (λ). Denote by [a, b] the smallest interval containing the

6Recall that the support of a density function µ on R, denoted by supp (µ),
is the smallest closed set B such that µ (R\B) = 0.
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support of µ. Compute an upper bound α ≥ a and a lower
bound β ≤ b when only the truncated sequence of moments
is available.

In the context of our spectral problem, we have a truncated
sequence of five spectral moments, (mr(LG))1≤r≤5, corre-
sponding to the unknown density function ρG and given by
the expressions (3), (5), and (7). In this context, the smallest
interval [a, b] containing supp(ρG) is equal to [λ2, λn]. There-
fore, a solution to Problem 2 would directly provide an upper
bound on the spectral gap, α ≥ λ2, and a lower bound on
the spectral radius, β ≤ λn. We now describe a numerical
scheme proposed by Lasserre in [20] to solve Problem 2. This
solution is based on a series of semidefinite programs in one
variable. In order to formulate this series of SDP’s, we need
to introduce some definitions. For any s ∈ N, let us consider
a truncated sequence of moments M = (Mr)

2s+1
r=1 , associated

with an unknown density function µ. We define the following
Hankel matrices of moments:

R2s (M) ,


1 M1 · · · Ms

M1 M2 · · · Ms+1

...
...

. . .
...

Ms Ms+1 · · · M2s

 , (8)

R2s+1 (M) ,


M1 M2 · · · Ms+1

M2 M3 · · · Ms+2

...
...

. . .
...

Ms+1 Ms+2 · · · M2s+1

 . (9)

We also define the localizing matrix7 Hs (x,M) as,

Hs (x,M) , R2s+1 (M)− x R2s (M) . (10)

The localizing matrix presents the following two properties
[21]:

P1. Hs (α,M) � 0, if the support of µ is contained in
the set [α,∞), and

P2. −Hs (β,M) � 0, if the support of µ is contained in
the set (−∞, β].

Based on these properties, Lasserre proposed the following
series of SDP’s to find a solution for Problem 2:

Solution to Problem 2: Let M = (Mr)
2s+1
r=1 be a truncated

sequence of moments associated with an unknown density
function µ. Then

a ≤ αs (M) , max
x
{x : Hs (x,M) � 0} , (11)

b ≥ βs (M) , min
x
{x : −Hs (x,M) � 0} , (12)

where [a, b] is the smallest interval containing the support of
µ.

Remark 4.1: Note that the entries of the localizing matrix
Hs (x,M) depend affinely on the decision variable x. Thus,
αs (M) and βs (M) are the solutions to two SDP’s in one
variable, which can be efficiently solved using standard opti-
mization software.

7A more general definition of localizing matrix can be found in [21]. For
simplicity, we restrict our definition to the particular form used in our problem.

Therefore, we can directly apply the above result to solve
Problem 1 by considering the sequence of moments m ,
(mr (LG))

2s+1
r=1 = ( n

n−1mr (LG))2s+1
r=1 in the statement of

the solution to Problem 2. Since this sequence of moments
corresponds to the spectral density ρG , with support {λi}ni=2,
the solutions in (11) and (12) directly provide the following
bounds on the spectral radius and spectral gap:

Solution to Problem 1: Let m , ( n
n−1mr (LG))2s+1

r=1 be
a truncated sequence of (scaled) Laplacian spectral moments
associated with a graph G. Then the Laplacian spectral gap
and spectral radius of G satisfy the following bounds:

λ2 ≤ αs (m) , max
x
{x : Hs (x,m) � 0} , (13)

λn ≥ βs (m) , min
x
{x : −Hs (x,m) � 0} . (14)

In Section III-B, we derived expressions for the first five
Laplacian spectral moments, (mr (LG))

5
r=1, in terms of local

structural measurements of the network. Therefore, we can
apply the above solution to find spectral bounds for s = 2.
Furthermore, for s = 2 we can prove that the optimal values
α2 (m) and β2 (m) are the maximum and minimum roots of a
cubic polynomial, as follows. For s = 2, the localizing matrix8

takes the form

H2 (x,m) =

 m1 − x m2 − xm1 m3 − xm2

m2 − xm1 m3 − xm2 m4 − xm3

m3 − xm2 m4 − xm3 m5 − xm4

 .
Let us first analyze the optimal value β2 (m) in (14). Note
that −H2(x,m) � 0 if and only if all the eigenvalues of
H2 (x,m) are nonpositive. The characteristic polynomial of
H2 (x,m) can be written as,

φ2 (λ) , det (λI −H2(x,m))

= λ3 + r1 (x)λ2 + r2 (x)λ+ r3 (x) ,

where rj (x) is a polynomial of degree j in the variable
x (with coefficients depending on the sequence of moments
(m1, ...,m5)). One can prove that all the eigenvalues of the
Hankel matrix H2 (x,m) are real [22]. Also, by Descartes’
rule, all the roots of φ2 (λ) are nonpositive if and only if
rj (x) ≥ 0, for j = 1, 2, and 3. Lasserre proved in [20]
that rj (x) ≥ 0 if and only if r3 (x) ≥ 0. Since r3 (x) =
−detH2 (x,m), we have that the optimal value β2 (m) in
(14) is equal to the largest root of the cubic polynomial
r3 (x) = −detH2 (x,m) = 0. Similarly, one can also prove
that the optimal value α2 (m) in (13) is the smallest root of
r3 (x). We now state this result more explicitly as follows:

Solution to Problem 1 with 5 Moments: Let m =
( n
n−1mr (LG))5r=1 be a truncated sequence of (scaled) Lapla-

cian spectral moments associated with a graph G. Then the
Laplacian spectral gap and spectral radius of G satisfy

λ2 ≤ α2 (m) = min {x1, x2, x3} , (15)
λn ≥ β2 (m) = max {x1, x2, x3} ,

where x1, x2, and x3 are the roots of r3 (x) =
−detH2 (x,m).

8We shall remove the argument LG from the Laplacian spectral moments
mr (LG), for simplicity in notation.
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Fig. 3. In (a), we plot the complementary cumulative distribution of degrees for the electrical transmission network under study. In (b), we plot the joint-degree
distribution Jd (k1, k2) in the range 1 ≤ k1, k2 ≤ 9 for the American power grid. In (c), we plot on a semilogarithmic scale the number of cycles φl in the
three transmission networks for lengths 3 ≤ l ≤ 10.

Remark 4.2: Note that it is easy, but tedious, to write down
an explicit expression for r3 (x) in terms of the Laplacian
spectral moments. Also, we can find explicit expressions for
the roots of the cubic polynomial r3 (x) using, for example,
Cardano’s rule [23]. Therefore, it is possible to derive explicit
expressions for α2 (m) and β2 (m) in terms of the Laplacian
spectral moments, but the resulting expressions are so com-
plicated that they do not provide much insight.

In this section, we have presented an optimization-based
approach to compute optimal bounds on the Laplacian spec-
tral gap and spectral radius from a truncated sequence of
Laplacian spectral moments. These spectral moments can be
written in terms of local structural measurements using (3)
and (5). Hence, our results build a bridge between structural
measurements of a network and its spectral properties. In the
following section, we use our theoretical results to analyze
spectral properties of electrical transmission networks.

V. STRUCTURAL ANALYSIS AND SIMULATIONS

Motivated by recent interest for smart grid architectures,
there is a fast-growing literature studying the structure and
function of electrical transmission and distribution networks
[24]–[26]. Most of the results found in the literature make
use of extensive numerical simulations to find relationships
between structural properties of a power grid and the behavior
of dynamical processes taking place within it. In this section,
we apply our theoretical results to study the relationship
between structural and spectral properties of the American
(western states), French and Spanish transmission networks.
Our analysis reveals that the Laplacian spectral radii and spec-
tral moments of electrical transmission networks are strongly
constrained by the degree sequence and the so-called joint-
degree distribution. We also verify that the spectral gap cannot
be efficiently bounded using local structural features only,
since this spectral property strongly depends on the global
connectivity of the network.

A. Local Structural Analysis

We examine unweighted, undirected graphs representing the
structure of high-voltage transmission networks in the USA

(western states), France and Spain (the adjacencies of these
networks are available, in MATLAB format, in [27]). The
number of nodes (buses) and edges (transmission lines) in
these networks are: nus = 4, 941 and eus = 6, 594 for the
American network, nfr = 146 and efr = 223 for the French,
and nsp = 98 and esp = 175 for the Spanish. From these data
sets, we compute a collection of structural features that are
relevant to the network’s functionality.

We begin our structural analysis by studying the distribution
of degrees in the network. In the network science literature,
it is common to classify the degree distribution by looking at
the complementary cumulative distribution function (CCDF)
of the degrees, denoted by ccdf(k). The function ccdf(k) is
defined as the probability that a node chosen uniformly at
random presents a degree higher than or equal to a given
value k. In Fig. 3(a) we plot the CCDF’s for the three
transmission networks under study. These distributions are
well approximated by exponential functions [24].

Another extensively studied structural property is the joint-
degree distribution. This distribution is related to the number
of edges connecting sets of nodes of different degrees [28],
and it is defined as follows: Consider the sets of nodes with
degrees k1 and k2, denoted by Vk1

and Vk2
; then, the joint-

degree distribution is defined as:

Jd (k1, k2) ,
1

2e

∑
vi∈Vk1

∑
vj∈Vk2

aij ,

where e is the total number of edges in the network. The
correlation terms Cdd and Cd2d defined in (4) can be explicitly
related to the joint-degree distribution, as follows

Cdd =
e

n

dmax∑
k1=1

dmax∑
k2=1

k1k2Jd (k1, k2) ,

Cd2d =
e

n

dmax∑
k1=1

dmax∑
k2=1

k21k2Jd (k1, k2) ,

where dmax is the network’s maximum degree. In Fig. 3(b), we
plot a contour plot representing the joint-degree distribution of
the American power grid (for 1 ≤ k1, k2 ≤ 9).
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TABLE I
SUMMANDS INVOLVED IN THE FIRST FIVE LAPLACIAN MOMENTS OF THE AMERICAN GRID.

k mk
δ
(1)
k
S1

n

δ
(2)
k
S2

n

δ
(3)
k
S3

n

δ
(4)
k
S4

n

δ
(5)
k
S5

n

γ
(3)
k

∆

n

γ
(4)
k
Q

n

γ
(5)
k
P

n
η

(1)
k C1 η

(2)
k C2 η

(3)
k C3 η

(4)
k C4 η

(5)
k C5 η

(5)
k C6

1 2.66 2.66 − − − − − − − − − − − − −
2 13.0 2.66 10.33 − − − − − − − − − − − −
3 87.5 − 30.99 57.29 − − -0.79 − − − − − − − −
4 742.4 -2.66 20.66 229.1 432.4 − − 1.58 − 80.12 − -18.81 − − −
5 7, 588 − -51.6 286.4 2,162 4,157 3.95 − -3.68 200.3 1,127 -23.51 -177.2 5.30 14.58

A structural distribution that is relevant in our analysis is
the number of cycles in the network (i.e., closed walks with no
repeated nodes). We denote by φl the total number of cycles
of length l in the network, and plot φl versus l for the three
networks under consideration in Fig. 3(c).

In previous sections, we have provided tools that allow
us to quantify the effects of these (and other) structural
measurements on the Laplacian spectrum. We base our subse-
quent analysis on the closed-form expressions for the spectral
moments in (3) and (5). Note that these expressions can be
written in a unified form as follows:

mk (LG) =

5∑
r=1

δ
(r)
k

Sr

n
+

5∑
s=3

γ
(s)
k

φs
n

+

6∑
t=1

η
(t)
k Ct, (16)

where Sr is the r-th power sum of the degrees, φs is the
number of cycles of length s, and Ct indicate the correlation
terms with (Ct)

6
t=1 = (Cdd, Cd2d, Cdt, Cd2t, Cdq, Ddd). The

coefficients δ(r)k , γ(s)k , and η
(t)
k are, respectively, the coeffi-

cients accompanying Sr/n, φs/n, and Ct in the expression
for the k-th moment. For example, according to (3), the third
spectral moment has coefficients δ

(2)
3 = 3, δ(3)3 = 1, and

γ
(3)
3 = −6 (and the rest of coefficients are zero).
We now use (16) to quantify the effect of relevant structural

measurements on the spectral moments of the American
power grid. In this network, the relevant structural measure-
ments are: (i) the power-sums of the degrees: (Sr)

5
r=1 =

(2.669, 10.33, 57.29, 432.4, 4157), (ii) the number of cycles:
φ3 = ∆ = 651, φ4 = Q = 979, φ5 = P = 1821, and (iii) the
correlation terms Cdd = 20.03, Cd2d = 112.7, Cdt = 2.35,
Cd2t = 17.72, Cdq = 5.30, and Ddd = 14.58. In Table I,
we include the values of each one of the summands in (16)
for the first five Laplacian moments of the American power
grid. In this table, we can detect those terms that dominate
the sum for each spectral moment. We have marked (in bold
numerals) those summands that individually account for over
10% of the total sum; the sum of these dominant terms in each
case provides a very good approximation to mk. We observe
how the power-sums of the degree sequence Sr have a large
impact on all the spectral moments. Also, the correlation terms
C1 = Cdd and C2 = Cd2d are significantly important for the
fourth and fifth moments.

From these empirical observations, we conclude that the
degree sequence plays a key role in the Laplacian spectral
moments, as expected. Furthermore, the correlation terms Cdd

and Cd2d also have an important influence on the spectral
moments. Note that these correlation terms, defined in (4),
directly depend on the joint-degree distribution, Jd(k1, k2).
We conclude that the structural measurements that are most
relevant for the Laplacian eigenvalue spectrum are:

(i) The degree distribution, via the power-sums Sr.
(ii) The joint-degree distribution, via the correlation terms

Cdd and Cd2d.
Other correlation terms and the distribution of cycles of

lengths 3 to 5 have a weak influence on the spectral moments.
Similar structural results are also observed for both the French
and Spanish transmission networks. The methodology intro-
duced here allows us to recognize the degree distribution and
the joint-degree distribution as the structural properties that
are most influential on the Laplacian spectraL moments of the
electrical grids under study.

B. Spectral Bounds from Structural Information

From the collection of structural measurements studied
above, we compute the first five spectral moments for the
transmission networks under study, seeTable II. We then use
these moments to compute bounds on the spectral gap and
spectral radius, α2 and β2, using the methodology described
in Solution to Problem 1 with 5 Moments, in Section IV.
The numerical values for these bounds, as well as the exact
values for the spectral gap and spectral radius, λ2 and λn,
are included in Table III. In this table, we also include the
values obtained for the bounds in [13] and [16] (which were
described in Section III-A).

TABLE II
FIRST FIVE LAPLACIAN MOMENTS.

m1 (LG) m2 (LG) m3 (LG) m4 (LG) m5 (LG)
USA 2.66 13.00 87.50 742.4 7,588
France 3.05 15.58 97.73 680.1 5,046
Spain 3.57 20.83 147.3 1,155 9,686

TABLE III
UPPER AND LOWER BOUNDS ON THE LAPLACIAN SPECTRAL GAP AND

SPECTRAL RADIUS, λ2 AND λn .

Network [13] λ2 (LG) α2 β2 λn (LG) [16]
USA 1.16e-4 7.59e-4 0.97 12.8 20.10 22.28

France 3.70e-3 4.24e-2 0.81 8.07 9.60 9.86
Spain 4.90e-3 7.70e-2 0.86 9.18 10.66 10.79

In Table III, we observe that β2 and the bound in [16]
strongly constrain the intervals of possible values for the
spectral radii, specially in the case of European transmis-
sion networks. In Fig. 4(a)-(c), we plot the histograms for
the Laplacian eigenvalues of the American (western states),
French and Spanish transmission networks, where we have
also included the bounds in Table III. We observe that
bounds for the Laplacian spectral gap based on local structural
measurements perform poorly in practice. The main reason
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Fig. 4. In Figs. (a), (b) and (c), we plot histograms for the Laplacian eigenvalues of the American (western states), French and Spanish high-voltage
transmission networks, respectively. In the small subfigures, we plot a histograms of the eigenvalues around the origin and indicate the spectral gap. We also
include the values of the bounds of the Laplacian spectral radius and gap from Table III.

behind this limitation is that the Laplacian spectral gap is a
global property that quantifies how ‘well-connected’ a network
is [29],[30]. Since the structural measurements used in our
bounds (degree sequence, correlation terms, etc.) have a local
nature, they do not contain enough information to determine
how well connected the network is globally.

C. Spectrum-Preserving Structural Perturbations

In this subsection, we validate our previous structural analy-
sis with numerical computations. One of our main conclusions
is that the degree and joint-degree distributions are the struc-
tural features with the strongest influence on the Laplacian
spectral moments and spectral radii of electrical transmis-
sion networks. We can empirically verify this conclusion by
studying the effect of structural perturbations that preserve
these features on the Laplacian spectrum. In what follows, we
provide an algorithmic description of a structural perturbation
that transforms an input graph Gin = (V, Ein) into a different
output graph Gout = (V, Eout) while preserving both the
degree and the joint-degree distributions:

(i) Randomly choose two degrees k1 and k2 drawn from
the joint-degree probability distribution Jd (k1, k2).

(ii) Choose two edges {vi, vj} and {vr, vs} uniformly at
random from the set of edges in Ein that satisfy di = dr = k1
and dj = ds = k2.

(iii) Build an intermediate network F = (V, E+), where

E+ , Ein + {vi, vs}+ {vr, vj} − {vi, vj} − {vr, vs} ,

i.e., remove edges {vi, vj} and {vr, vs}, and add edges
{vi, vs} and {vr, vj}.

(iv) If F is connected and has no multi-edges (several edges
connecting the same pair of nodes), we define the output
rewired network Gout , F . Else, go to step (i).

Note that the above algorithm defines a random rewiring
that maintains both the degree distribution and the joint-
degree distribution of Gin, since the number edges between
the sets of nodes with degrees k1 and k2, denoted by Vk1

and
Vk2 , is not modified. Since these structural properties have
the strongest influence on the Laplacian spectral moments,
we should expect the Laplacian spectrum to remain almost
invariant. In order to verify this statement, we recursively
apply this random rewiring 5, 000 times to the American

power grid. We can verify that, despite the large number
of rewirings, the spectral radii and spectral moments of the
resulting network, which we denote by Grw, are practically
identical to those of the American power grid. In particular,
the percentage of change in the first five spectral moments of
Grw is under 0.5%. Furthermore, the spectral radius of Grw
is 20.18, which represents a 0.36% change with respect to
the original network. As expected, the spectral property that
is most sensitive to the rewirings is the spectral gap, which
takes a resulting value of 0.016 (from a value of λ2 = 8.4e−4
for the American grid).

VI. CONCLUSIONS

This paper studies the relationship between local structural
features of large complex networks and global spectral prop-
erties of their Laplacian matrices. We have proposed a novel
approach, based on algebraic graph theory and convex opti-
mization, that allows us to quantify the effect of an important
collection of local structural features on the Laplacian spectral
moments and spectral radius. The following is a list of our
main contributions and conclusions:

1) We have derived in Section III-B explicit expressions
to compute the first 2k + 1 spectral moments of the
Laplacian matrix using local structural measurements
with radius r.

2) We have proposed an optimization framework in Section
IV to compute lower bounds on the spectral radius of
the Laplacian matrix of a network from a truncated
sequence of spectral moments. Our bounds take into
account the effect of important structural properties that
are usually neglected in most of the bounds found in the
literature, such as the distribution of cycles and structural
correlations.

3) Our analysis reveals that the local structural measure-
ments that are most relevant to the Laplacian spectrum of
electrical transmission networks are the degree sequence
and joint-degree distributions. We have numerically
verified that other structural properties that may seem
important, such as the distribution of short cycles in the
network, have a very weak influence on the Laplacian
spectrum.
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4) As expected, local structural features are not enough
to efficiently bound or estimate the Laplacian spectral
gap, since this spectral property strongly depends on the
global connectivity of the network. Since the spectral
gap is fundamental in the analysis of many dynamical
processes on networks, random models in which only
local structural features are prescribed, such as those in
[7]–[9], are not valid to generate synthetic topologies in
which these dynamical processes can be studied.

Although the mathematical tools developed here can be ex-
tended to the case of weighted networks, we have limited our
analysis to unweighted networks to isolate the role played by
the network topological structure from other factors. Ongoing
work addresses the spectral analysis of large-scale networks
with weighted edges, as well as networks with directed edges.

Finally, the analytical approach introduced is also applicable
to the analysis of spectral properties of many real networks in
other areas of science and technology, such as networks of
multi-agent systems, communication networks, as well as so-
cial and biological networks. Since the Laplacian eigenvalues
are relevant in a wide variety of dynamical processes , our
approach is useful to theoretically analyze the effect of local
structural properties on those processes.

Acknowledgement 1: We thank V. Rosato for kindly pro-
viding us with the topologies of the French and Spanish
transmission networks studied in [25].

APPENDIX

Theorem 3.3 Let G be a simple graph with Laplacian matrix
LG . Then, the fourth and fifth Laplacian moments can be
written as

m4 (LG) =
1

n
(−S1 + 2S2 + 4S3 + S4 + 8Q)

+4Cdd − 8Cdt,

m5 (LG) =
1

n
(−5S2 + 5S3 + 5S4 + S5 + 30∆− 10P )

+10 (Cdd + Cd2d − Cdt − Cd2t + Cdq −Ddd)

where Sr =
∑

vi∈V d
r
i , and the correlation terms Cdd, Cdt,

Cdq, Cd2d, Cd2t, and Ddd are defined in (4).
Proof: As in Theorem 3.2, we use Lemma 3.1 to compute

the Laplacian spectral moments in terms of weighted sums of
closed walks in the weighted Laplacian graph LG. In order
to compute the fourth Laplacian spectral moment, we classify
the types of possible closed walks of length 4 into subsets
according to the structure of the underlying graph covered by
the walk. As we explained in the proof of Theorem 3.2, two
walks of length 4 are in the same subset if the subgraphs
they cover are isomorphic (without considering self-loops).
We enumerate the possible types in Fig. 5 and we denote the
corresponding sets of walks as P (i)

4a , P (i)
4b , P (i)

4c , P (i)
4d , and P (i)

4e .
These sets P (i)

4a ,...,P (i)
4e partition the set of closed walks P (i)

4,n.
Hence, we have

m4 (LG) =
1

n

∑
vi∈V

∑
x∈{a,b,c,d,e}

∑
p∈P (i)

4x

ω (p) .

We now analyze each one of the terms in the
above summations. For convenience, we define T4x ,

Fig. 5. Collection of possible graphs covered by closed walks of length 4.

1
n

∑
vi∈V

∑
p∈P (i)

4x
ω (p) and analyze the term T4x for x ∈

{a, b, c, d}:
(a) For x = a, we have that the weights ω (p) of the walks

in P (i)
4a are all the same, and equal to d4i . Hence

T4a =
1

n

∑
i

d4i = S4/n.

(b) For x = b, the weights of the walks in P
(i)
4b are equal

to 2 + 4
(
d2i + d2j + didj

)
. Hence

T4b =
1

n

∑
vi∼vj

2 + 4
(
d2i + d2j + didj

)
=

1

n
(S1 + 4S3) + 4Cdd.

(c) For x = c, the weights of the walks in P (i)
4c (i.e., walks

that cover the two-chain graph) are equal to 4. Hence

T4c =
1

n

∑
vj∼vi∼vk

4
(i)
=

1

n

n∑
i=1

(
di
2

)
4 =

2

n
(S2 − S1) ,

where in equality (i) we have used the fact that the number
of two-chain graphs whose center node is vi is equal to

(
di

2

)
.

(d) For x = d, the weights of the walks in P
(i)
4d are equal

to −8 (di + dj + dk). Hence,

T4d =
1

n

∑
vi∼vj∼vk∼vi

−8 (di + dj + dk)

= − 8

n

n∑
i=1

n∑
j=1

n∑
k=1

3tijkdi,

where tijk is an indicator function that takes value 1 if vi ∼
vj ∼ vk ∼ vi. Since

∑n
j=1

∑n
k=1 3tijk = ti (the number of

triangles touching node vi), we have that

T4d = − 8

n

n∑
i=1

tidi = −8Cdt.

(e) For x = e, the weights of the walks in P
(i)
4e are equal

to 8. Hence,

T4e =
1

n

∑
vi∼vj∼vk∼vr∼vi
s.t. 1≤i<j<k<r≤n

8 = 8Q/n.



12

Finally, since m4 (LG) = T4a +T4b +T4c +T4d, we obtain
the expression for the fourth Laplacian spectral moment in the
statement of the theorem after simple algebraic simplifications.

In order to derive a similar expression for the fifth-order
Laplacian spectral moments, we follow an identical approach.
In this case, the algebraic manipulations become more tedious.
Below, we provide the main steps in the derivations (and omit
the details regarding the algebraic manipulations). As before,
we partition the set of closed walks P (i)

5,n according to the
subgraph covered by the walk. We show the structure of the
possible subgraphs in Fig. 6.

We now analyze each one of the terms T5x ,
1
n

∑
vi∈V

∑
p∈P (i)

5x
ω (p) for x ∈ {a, b, ..., g}:

(a) For x = a, we have

T5a =
1

n

n∑
i=1

d5i = S5/n.

(b) For x = b, we can determine all possible closed walks
of length 5 using the edge graph in Fig. 6(b) and derive that

T5b =
1

n

∑
vi∼vj

5
(
di + dj + d3i + d3j + d2i dj + did

2
j

)
=

5

n
(S2 + S4) + 10Cd2d.

(c) For x = c, the weights of walks covering the two-chain
graph are di, dj , dk. Counting the multiplicities of each type
of walk, we have that

T5c =
1

n

∑
vj∼vi∼vk

10di + 5dj + 5dk

=
10

n

n∑
i=1

(
di
2

)
di +

5

n

n∑
i=1

n∑
j=1

aij (di − 1) dj ,

where we have used that
∑

vi∼vj∼vk di =
∑n

i=1

(
di

2

)
di and∑

vj∼vi∼vk dj = 1
2

∑n
i=1

∑n
j=1 aij (di − 1) dj . Thus,

T5c =
5

n

n∑
i=1

d3i −
5

n

n∑
i=1

d2i +
5

n

∑
1≤i,j≤n

aijdidj −
5

n

n∑
j=1

d2j

=
5

n
(S3 − 2S2) + 10Cdd

(d) For x = d, we can determine all possible closed walks
of length 5 using the edge graph in Fig. 6(d) and derive that

T5d =
1

n

∑
vi∼vj∼vk∼vi

−30− 10
(
d2i + d2j + d2k

+didj + djdk + dkdi)

= −30∆

n
− 10

n

∑
vi∼vj∼vk∼vi

(
3d2i + 3didj

)
= −30∆

n
− 30

n

n∑
i=1

n∑
j=1

n∑
k=1

tijkd
2
i

− 5

n

n∑
i=1

n∑
j=1

aijbij (didj) ,

where bij ,
∑n

k=1 aikajk = |Ni ∩Nj |, the number of
common neighbors shared by vi and vj . Hence,

T5d = −30∆

n
− 10

n

n∑
i=1

tid
2
i −

10

n

∑
i∼j

aijbij (didj)

= −30∆/n− 10Cd2t − 10Ddd

(e) For x = e, the weights of walks covering the quadrangle
graph are di, dj , dk, and dr. Counting the multiplicities of each
type of walk we have that

T5e =
1

n

∑
vi∼vj∼vk∼vr∼vi

10 (di + dj + dk + dr)

=
10

n

n∑
i=1

n∑
j=1

n∑
k=1

n∑
r=1

4qijkrdi,

where qijkr is an indicator function that takes value 1 if
vi ∼ vj ∼ vk ∼ vr ∼ vi. Since

∑
1≤j,k,r≤n 4qijkr = qi

(the number of quadrangles touching node vi), we have that

T5e =
10

n

n∑
i=1

qidi = 10Cdq.

(f ) For x = f , we have 10 possible walks covering the
subgraph in Fig. 6(f). Since each walks has a weight equal to
−1, we have that

T5f =
1

n

∑
vi∼vj∼vk∼vi∼vr

−10

= −10

n

n∑
i=1

(di − 2) ti,

where in the last equality we take into account that the number
of subgraphs of the type depicted in Fig. 6(f) and centered at
node vi is equal to the number of triangles touching node vi,
ti, multiplied by (di − 2) (where we have subtracted −2 to
the degree to discount the two edges touching vi that are part
of each triangle counted in ti). Hence, we have that

T5f = −10

n

n∑
i=1

diti +
10

n

n∑
i=1

2ti

= −10Cdt + 60∆/n.

(g) For x = f , we have 10 possible walks on the pentagon
and the associated weight of each walk is −1. Hence

T5g =
1

n

∑
vi∼vj∼vk∼vr∼vs∼vi

−10 = −10P/n,

where P is the total number of pentagons in G.
Finally, since m5 (LG) = T5a+T5b+...+T5g , we obtain the

expression for the fifth Laplacian spectral moment in the state-
ment of the theorem after simple algebraic simplifications.
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Fig. 6. Collection of possible graphs covered by closed walks of length 5.
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