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Abstract

We present a formulation of relativistic classical and quantum me-
chanics in the Hilbert space with a linkage through the Ehrenfest
quantization. We start with the covariant form of the Lorentz force
and consistently derive the Dirac equation along its classical counter-
part as a classical spinorial equation. This equation fills a missing
link between relativistic quantum and classical mechanics and takes
the role of the Koopmann-von Neumann equation in the relativistic
regime.

1 introduction

One of the first attempts to describe classical mechanics in terms of
the Hilbert space was done by Koopman and von Neumann [1, 2].
This approach was further explored by Deoto and Mauro [3, 4, 5], and
more recently enriched with the help of the Ehrenfest theorem in [6].
A different approach based on the formulation of classical/quantum
mechanics in terms of the Algebra of Physical Space (APS), as a ge-
ometric algebra variety, provided new insights on the appearance of
the spin in a classical relativistic framework [7, 8, 9, 10, 11]. This
work carries further the Ehrenfest quantization method described in
[6] by developing a covariant relativistic formulation of quantum and
classical mechanics. Our formulation starts from the covariant form
of the Lorentz force, which allows us to deduce the Dirac equation as
well as the corresponding equation that appears in the classical limit.
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This classical equation, which constitutes the most important novelty
introduced in this paper, is a relativistic classical spinor equation in
the time-extended phase-space that shows the remarkable presence of
the interaction of the spin with the external electromagnetic field and
a spin-orbit interaction.

2 Background: The Lorentz force

The Lagrangian of the relativistic particle in an electromagnetic field
is

L =
m

2
uµuµ + eAµuµ +

m

2
, (1)

where uµ = dxµ

ds
is the four velocity also known as proper velocity and

the Minkowski metric is taken with diagonal elements {1,−1,−1,−1}.
More precisely, this is the time-extended form of the Lagrangian of a
particle with electromagnetic interaction. In this formalism the con-
dition

uµuµ = 1 (2)

is not enforced as a constraint but recovered as an integration condi-
tion in the moment to find physical solutions.

The canonical momentum is denoted with covariant indices as

pµ ≡ ∂L
∂uµ

= muµ + eAµ (3)

Let us remember that the physical momentum and four-vector po-
tential are denoted with contravariant indices pµ = (E,p) and Aµ =
(φ,A), where bold symbols stand for vectors in the standard Euclidean
space.

The time-extended Hamiltonian is

H ≡ pµu
µ − L =

(pµ − eAµ)(pµ − eAµ)

2m
− m

2
. (4)

This Hamiltonian does not depend on the parameter s explicitly, so it
is a dynamic invariant integral. The integration that leads to physical
solutions occurs when

H = 0, (5)

which implies (2).
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The equation of motion can be obtained accordingly with the ap-
plication of the time-extended Poisson brackets defined as

{F,G} =
∂F

∂xµ
∂G

∂pµ
− ∂G

∂xµ
∂F

∂pµ
(6)

such that
dF

ds
= {F,H} (7)

The four-velocity is recovered as

dxµ

ds
=

∂H
∂pµ

dxµ

ds
=

pµ − eAµ

m
(8)

and the canonical four-force equation is

dpµ
ds

= − ∂H
∂xµ

=
e

m
(∂µAν)(p

ν − eAν)

dpµ
ds

= e(∂µAν)u
ν (9)

The left side of this equation can be expressed as

dpµ
ds

= m
duµ
ds

+ e
dAµ

ds
= m

duµ
ds

+ e
∂Aµ

∂xν
dxν

ds
= m

duµ
ds

+ e
∂Aµ

∂xν
uν (10)

and introduced in (9) to obtain the covariant form of the Lorentz force

m
duµ
ds

= e(∂µAν − ∂νAµ)u
ν

m
duµ
ds

= eFµνu
ν , (11)

where the Faraday electromagnetic tensor is defined as Fµν = ∂µAν −
∂νAµ.

3 The Derivation of the Dirac Equa-

tion

According to (9) and (8), the dynamical equations in consideration
are

dpµ
ds

=
e

m
(∂µAν)(p

ν − eAν), (12)

dxµ

ds
=

pµ − eAµ

m
. (13)
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The average of these equations over an assemble of particles written
in the Hilbert space formalism (see, e.g., [6]) takes the form of the
Ehrenfest theorems

d〈Ψ(s)|p̂µ|Ψ(s)〉
ds

= 〈Ψ(s)| e
m

(∂µÂν)(p̂
ν − eÂν)|Ψ(s)〉, (14)

d〈Ψ(s)|x̂µ|Ψ(s)〉
ds

= 〈Ψ(s)| p̂
µ − eÂµ

m
|Ψ(s)〉. (15)

Stones’s theorem gives

~
d|Ψ(s)〉
ds

= iG|Ψ(s)〉, (16)

which can be viewed as the definition of the generator of motion G.
Following the non-relativistic case [6], we transform the Ehrenfest the-
orems (12) and (13) into the following general commutator equations

i

~
[p̂µ, G] =

e

m
(∂µAν)(p̂

ν − eÂν), (17)

i

~
[x̂µ, G] =

p̂µ − eÂµ

m
. (18)

Assuming that G = D(x̂µ, p̂µ) and the following commutation rela-
tions

[x̂µ, p̂ν ] = −i~δµν , (19)

we get the differential equations for the generator

∂D

∂x̂µ
= − e

m
(∂µÂν)(p̂

ν − eÂν), (20)

∂D

∂p̂µ
=

p̂µ − eÂµ

m
. (21)

The solution for the generator D has the same form as the classical
time-extended Hamiltonian (4), which reads

D =
1

2m
(p̂µ − eÂµ)(p̂µ − eÂµ)−

m

2
. (22)

Assuming that the underlying Hilbert space is four-component, we
can upgrade the operator D to the product of operators in a Clifford
algebra with basis γµ obeying

γµγν + γνγµ = 2gµν × 1 (23)
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such that the generator takes the form

D → D =
1

2m

(

γµ(p̂µ − eÂµ) +m
)(

γν(p̂ν − eÂν)−m
)

. (24)

This step looks more natural observing that, for commuting operators
or classical variables, one would have D = D × 1, or in other words
D = 1

4
Tr(D).

The Dirac generator can also be written as

D =
1

2m
(p/− eA/+m)(p/− eA/−m). (25)

The wave function equation that is consistent with the condition (5)
leads to the following expression known as the quadratic form of the
Dirac equation

(p/− eA/+m)(p/− eA/−m)Ψ = 0, (26)

which is the composition of the more fundamental first order Dirac
equation for positive and negative mass, respectively

(p/− eA/−m)Ψ = 0, (27)

(p/− eA/+m)Ψ = 0. (28)

4 The Derivation of the Relativistic

Koopman-von Neumann Equation

The relativistic form of the Koopman-von Neumann equation can be
obtained starting from the general commutator equations

i[P̂µ, G] =
e

m
(∂µÂν)(p̂

ν − eÂν), (29)

i[X̂µ, G] =
P̂µ − eÂµ

m
, (30)

supplied with the commutation relationship for the position and mo-
mentum operators

[X̂µ, P̂ν ] = 0. (31)

Assume the dependence of the classical generator G = K(X̂µ, P̂µ, Λ̂µ, Θ̂
µ)

on two additional operators Λ̂µ and Θ̂µ that satisfy the following com-
mutation relations

[X̂µ, Λ̂ν ] = −iδµν , (32)

[P̂µ, Θ̂
ν ] = −iδνµ, (33)

[Λ̂µ, Θ̂
ν ] = 0. (34)
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Then, the commutator equations reduce to the system of differential
equations

∂K

∂Θµ
=

e

m
(∂µÂν)(P̂

ν − eÂν), (35)

∂K

∂Λµ

=
P̂µ − eÂµ

m
, (36)

whose solution is

K =
1

m
(P̂µ − eÂµ)(Λ̂µ + e∂νÂµΘ̂

ν) + f(X̂, P̂ ), (37)

with f as an arbitrary function of the classical operators X̂µ and P̂µ.
Finally, the relativistic Koopman-von Neumann equation can be

readily stated as
Kψ = 0, (38)

with the substitution of Λ̂ν and Θ̂ν by the corresponding differential
operators that preserve the commutation relations (32)–(34).

5 The Derivation of the Vlasov Equa-

tion

The classical dynamics of a relativistic particle can be expressed in
terms of coordinates and velocities instead of coordinates and mo-
menta, which is in fact more common, such that

m
duµ
ds

= eFµνu
ν (39)

dxµ

ds
= uµ. (40)

The application of the Ehrenfest quantization leads to the following
commutation equations

i[ûµ, G] = eFµν û
ν (41)

i[x̂µ, G] = ûµ. (42)

The rest of the derivation of the generator resembles the case treated
in the previous section with a generator G = V(x̂µ, ûµ, Λ̂µ, Θ̂

µ), such
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that

∂V
∂Θ̂µ

= eFµν û
ν , (43)

∂V
∂Λ̂µ

= ûµ. (44)

This differential equation can be readily integrated, obtaining the fol-
lowing generator

V = ûµΛ̂µ + eFµν û
νΘ̂µ + f(x, u). (45)

This equation can be upgraded into a different context for the descrip-
tion of a plasma without collisions and with long range interactions. In
this case, Fµν takes into account both the external field and the effec-
tive field created by the particles in a self-consistent fashion. Choosing
f(x, p) = 0, the Vlasov equation [12] for the density ρ in the context
of the description of plasma reads

uµ∂µρ+ eFµνu
ν ∂ρ

∂uµ
= 0. (46)

6 The Derivation of the Koopmann-

von Neumann-Dirac Equation

The commutator relations from the Ehrenfest quantization are

i

~
[p̂µ, G] =

e

m
(∂µÂν)(p̂

ν − eÂν), (47)

i

~
[x̂µ, G] =

p̂µ − eÂµ

m
. (48)

Assuming the dependence of the generator G = W (x̂µ, p̂µ, λ̂µ, θ̂
µ) on

the quantum operators x̂µ and p̂µ as well as on the auxiliary operators

λ̂µ and θ̂µ obeying the commutation relations

[x̂µ, p̂ν ] = −i~κδµν , (49)

[x̂µ, λ̂ν ] = −iδµν , (50)

[p̂µ, θ̂
ν ] = −iδνµ, (51)

[λ̂µ, θ̂
ν ] = 0, (52)
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one reaches the following differential equations

i

~

(

i~κ
∂W

∂xµ
− i

∂W

∂θµ

)

=
e

m
(∂µÂν)(p̂

ν − eÂν), (53)

i

~

(

−i~κ∂W
∂pµ

− i
∂W

∂λµ

)

=
p̂µ − eÂµ

m
. (54)

The solution of these equations reads

W =
1

2mκ
(p̂µ−eÂµ)(p̂µ−eÂµ)−

m

2
−f(xµ+~κθµ, pµ−~κλµ), (55)

with f as an arbitrary function. Retracing the steps when obtaining
the Dirac equation, we upgrade the generatorW to the Clifford algebra
spanned by the γµ matrices

W → W =
1

2mκ
γµ(p̂µ−eÂµ)γ

ν(p̂ν−eÂν)−
m

2
−f(xµ+~κθµ, pµ−~κλµ).

(56)
The classical generator is obtained in the limit κ→ 0 if f is chosen to
be

f =
1

2mκ
γµ(p̂µ−~κλ̂µ−eÂµ(x̂+~κθ̂))γν(p̂ν−~κλ̂ν−eÂν(x̂+~κθ̂))−m

2
,

(57)
along with the following transformation of operators from the current
quantum operators to a new set of classical operators (34)

x̂µ = X̂µ − ~κ

2
Θ̂µ, (58)

p̂µ = P̂µ +
~κ

2
Λ̂µ, (59)

λ̂µ = Λ̂µ, (60)

θ̂µ = Θ̂µ, (61)

which have the remarkable property of preserving the commutation
relations of the original quantum operators. The connection between
quantum and classical operators are schematically represented in Fig-
ure 1

The quantum generator, written in terms of the classical operators,
is

W =
~

m
γµP̂µγ

νΛ̂ν +
1

mκ
γµP̂µγ

ν(Â+
ν − Â−

ν )

− ~

2m
γµΛ̂µγ

ν(Â+
ν + Â−

ν ) +
e2γµγν

2mκ
(Â−

µ Â
−
ν − Â+

µ Â
+
ν ),(62)
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Figure 1: Schematic layout of the quantum and classical operators.

with Â+
ν = Â+

ν (X̂
µ + ~κ

2
Θ̂µ) and Â−

ν = Â−
ν (X̂

µ − ~κ
2
Θ̂µ).

From (62), we get
~K = lim

κ→0
W, (63)

leading to

~K =
~

m
γµP̂µγ

νΛ̂ν +
~

m
γµP̂µγ

ν(∂αÂνΘ̂
α) (64)

− ~

m
γµΛ̂µγ

νÂν −
~e2

2m
γµÂµ∂αγ

νÂνΘ̂
α, (65)

which can be arranged to derive the classical limit of the Dirac gen-
erator

K =
1

m
γµ(P̂µ − Âµ)γ

ν(Λ̂µ + ∂αÂνΘ̂
α)− e2

2m
[γµΛ̂µ, γ

νÂν ]. (66)

The commutator can be manipulated as

[γµΛ̂µ, γ
νÂν ] = i[γµ, γν ]Fµν + [γµ, γν ]ÂνΛ̂µ, (67)

revealing the interaction of the classical spin with the external elec-
tromagnetic field on the left and the classical spin-orbit coupling on
the right.
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7 General features of the Koopmann-

von Neumann-Dirac equation

The Koopmann-von Neumann-Dirac equation (KND) is defined in
terms of the application of the generator (66) on a spinor field

KΨ = 0. (68)

In particular, the KND equation without spin interaction can be writ-
ten in terms of the APS representation of the geometric algebra within
the phase space as

K =
1

m
(P −A)

(

∂ + ∂αA
∂

∂Pα

)

, (69)

where the spinor Ψ is represented by a 2× 2 complex matrix with the
current and density in this representation as

j = ΨΨ†, (70)

ρ =
1

4
Tr(ΨΨ†). (71)

Not every solution of the KND equation represents a consistent
classical system. A necessary condition for a truly classical solution
is that the current needs to satisfy the KND equation

KΨΨ† = 0 ⇒ Ψ ∈ classical world. (72)

Hence, the KND equation can be reformulated as the equation for the
current

Kj = 0, (73)

which constrains the form of the spinor Ψ. According to the singular
value decomposition, the spinor can always be written as the product
of a Hermitian part B and a unitary part U such that

Ψ = BU. (74)

Applying the KND operator on the corresponding current leads to

Kj = KB2, (75)

which implies that if a solution Ψ of the KND equation is purely
Hermitian, then the corresponding current satisfies the KND equation
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as well. In other words, the Hermiticity of the spinor is a sufficient
condition to be a classically valid solution

Ψ† = Ψ ⇒ Kj = 0 ⇒ Ψ ∈ Classical solution. (76)

A less restrictive sufficient condition for the current to satisfy the KND
equation reads

[Ψ,Ψ†] = 0 ∧KΨ† = 0 ⇒ Ψ ∈ Classical solution (77)

The KND equation must be invariant under gauge transformations
A → A + ∂χ. This fact can be translated into the possibility to be
able to act on any spinor Ψ with the following operator

R = exp

(

e∂µχ
∂

∂pµ

)

, (78)

and still maintaining RΨ as a valid solution of the KND equation.
The KND equation is in general very difficult to solve but some

particular analytical solutions can be found for cases involving con-
stant electromagnetic fields. The case of a constant electric field along
the x3 direction demands the following equation to be solve

(

∂ + e∂3φ(x
3)

∂

∂p3

)

Ψ = 0, (79)

with ∂3φ(x
3) = −E0. A specific spinor solution can be pursued in the

form
Ψ = f(x, p)

√
u, (80)

with f(x, p) as a real scalar function and a constant Hermitian spinor√
u. Introducing (80) into the KND equation, the differential equation

for f(x, p) is

∂0f − eE0

∂

∂p3
f = 0, (81)

which has the following solution

f = f(p0, p1, p2, p3 + E0x
0 − p3), (82)

with p3 as a constant and the shell condition for physically allowed
solutions

(p0 − φ(z))2 − (p1)
2 − (p2)

2 − (p3)
2 = m2 (83)
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A particular solution in the configuration space where all the particles
have an initial four-momentum p = p0 + p1 + p2 + p3 at time x0 = 0
can be found by selecting

u =
p

m
, (84)

where the square root can be calculated with the help of formula (112)
such that the final solution is the following Hermitian expression

Ψp = f(p0, p1, p2, p3 + eE0x
0 − p3)

√

p

m
(85)

The particle current is calculated as

jp = ΨΨ† = f(p0, p1, p2, p3 + eE0x
0 − p3)

2 p

m
, (86)

which is also a solution of the KND equation. In this case, the density
of particles is identified as

ρ =
1

4
Tr(ΨΨ†) = f(p0, p1, p2, p3 + eE0x

0 − p3)
2 p0

m
, (87)

where p0 is obtained from the shell condition. If f represents a
Dirac delta function, the solution corresponds exactly with the single-
particle solution because the particle is constrained to be located at

− p3 + eE0x
0 − p3 = 0. (88)

For example, if the particle starts at the rest, this condition can be
written as

γ
dx3

dx0
=
eE0

m
x0, (89)

with γ =
√

1− (dx
3

dx0 )2. Further arrangement of this equation leads to

dx3

dx0
=

x0 eE
m

√

1 + (x0 eE
m
)2
, (90)

which can be integrated to obtain a well known result

x3 =

√

( m

eE

)2

+ (x0)2, (91)

for the initial condition x3(0) = | m
eE

|.
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8 Conclusions

We developed a unified formulation of relativistic quantum and clas-
sical mechanics in the Hilbert space. We applied the Ehrenfest quan-
tization based on the classical covariant Lorentz force to obtain the
Dirac equation as well as the Koopman-von Neumann-Dirac (KND)
equation in the classical limit as a relativistic classical spinor equation.
The existence of this equation has important consequences concerning
the nature of the spin and its full consistency within the framework
of classical mechanics.

A Canonical commutation relations

The commutation relation

[x̂µ, p̂ν ] = −iδµν~, (92)

are satisfied with the following substitution

x̂µ → xµ (93)

p̂µ → i~
∂

∂xµ
(94)

which is in agreement with the standard representation

E → i~
∂

∂t
(95)

p → −i~∇ (96)

Similarly, the following commutator relation

[x̂µ, λ̂ν ] = −iδµν , (97)

is satisfied with

x̂µ → xµ (98)

λ̂µ → i
∂

∂xµ
(99)
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B Standard relativistic Lagrangian

The action on both forms must the the same
∫

Lds =

∫

Ldt (100)
∫

Lds
dt
dt =

∫

Ldt (101)

so, up to exact differentials one has

L = Lds
dt
, (102)

which leads to the more familiar form of the relativistic Lagrangian,
where uµuµ = 1 is enforced as a constraint.

C APS representation

The APS algebra can be represented in terms of the Pauli matrices,
such that a general expression can be faithfully represented as a 2x2
complex matrix. The four-gradient is slitted in temporal and spatial
components

∂ = ∂0 +∇ (103)

∂ = ∂0 −∇, (104)

with
∇ = σ1∂1 + σ2∂2 + σ3∂3 (105)

In similar way, the four-vector potential can be represented as

A = ∂0 −A (106)

A = ∂0 +A, (107)

with
A = σ1A

1 + σ2A
2 + σ3A

3. (108)

For the sake of concreteness, the gradient can be fully expanded as

∂ =

(

∂0 + ∂3 ∂1 − i∂2
∂1 + i∂2 ∂0 − ∂3

)

(109)
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The bar conjugation, also known as Clifford conjugation has the fol-
lowing effect on any general expression

Ψ =

(

ψ11 ψ12

ψ21 ψ22

)

⇒ Ψ =

(

ψ11 −ψ12

−ψ21 ψ22

)

(110)

The four-velocity also known as proper velocity is defined as the
derivative respect with the proper time τ

u =
dx

dτ
= γ(1 + v), (111)

where v is the spatial velocity. The square root of the proper velocity
can be calculated as √

u =
u+ 1

√

2(1 + γ)
(112)

Other important useful elements are the following complementary pro-
jectors

P3 =
1

2
(1+ σ3) (113)

P3 =
1

2
(1− σ3) (114)

The gamma matrices in the Weyl representation can be expressed in
terms of the Kronecker product of Pauli matrices

γ0 = σ1 ⊗ 1 (115)

γk = iσ2 ⊗ σk (116)

The fundamental Dirac generator can be rewritten as

iγµ(∂µ + eAµ)−m = iγ0∂0 + iγk∂k + γ0A0 + iγkAk −m (117)

= σ1 ⊗ 1(i∂0 +A0) + iσ2 ⊗ σk(i∂k +Ak)−m(118)

=

(

−m i∂ +A
i∂ +A −m

)

(119)

The four-column spinor can be written as

ψ =

(

Ψ
†P3

ΨP3

)

, (120)
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such that the Dirac equation is equivalent to the following coupled
equations

(i∂ +A)ΨP3 = mΨ
†P3 (121)

(i∂ +A)Ψ
†P3 = mΨP3. (122)

Conjugating the latter equation and arranging the terms we obtain

(i∂ +A)ΨP3 = mΨ
†P3 (123)

(−i∂ +A)ΨP3 = mΨ
†P3 (124)

The negative sign on the second equation can be absorbed as

i∂Ψσ3P3 +AΨP3 = mΨ
†P3 (125)

i∂Ψσ3P3 +AΨP3 = mΨ
†P3, (126)

which allows to write the Dirac equation in the following compact
form

i∂Ψσ3 +AΨ = mΨ
†

(127)
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