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At low temperatures, spin ice is populated by a finite densitynagnetic monopoles—pointlike topologi-
cal defects with a mutual magnetic Coulomb interaction. \geubs the properties of the resulting magnetic
Coulomb liquid in the framework of Debye Hiickel theory, fehich we provide a detailed context-specific
account. We discuss both thermodynamical and dynamicahgiges, and compare Debye Hiickel theory to
experiment as well as numerics, including data for speciat fand AC susceptibility. We also evaluate the
entropic Coulomb interaction which is present in additiotite magnetic one and show that it is quantitatively
unimportant in the current compounds.

I. INTRODUCTION acting particles—a (magnetic) Coulomb liquid as first noted
in Ref.[12.

Spin systems with long-range interactions, where each spin The transformation is extremely helpful as much is known
interacts with all others, present a formidable challenghe- ~ about Coulomb liquids, with a venerable history spanning
oretical analysis. While simplifications occur in the linit ~ fields from statistical physics all the way to the chemistfy o
infinite range interactions, the case of dipolar interaxtiom  €lectrolytes. Indeed, the known properties of the Coulomb
three spatial dimensions is particularly complex due tdrthe liquid have led to an explanation of the ‘liquid-solid’ pleas
(non-integrable) algebraic decay combined with angular detransition of spin ice in &l11] field*?, as well as of its mag-
pendence on the Spin directfomAs the determination of the netic Specific heé? in zero field. More recently, much atten-
behaviour of even a spin model with only short ranged comtion has been devoted to the study of the “magnetriéftri
peting interactions can pose a non-trivial problem, itisiap ~ these “magnetolyte€?, the equilibrium and non-equilibrium

not obvious how long-range interactions can be treated. ~ behaviour of such a magnetic Coulomb liquid, inspired by the
A remarkable counterexample to this case for pessimisn@nalOQQUS electric phengmena such as t.he Wien %Ct
is provided by spin ic& a dipolar Ising magnet on the py-  In this paper, expanding on our previous work in R&f.

rochlore lattice that fails to order down to the lowest tempe Wwe develop a low-energy theory for spin ice in the framework
atures accessed. To a fine approximation, which we detaf}f the Debye-Huckel (DH) theory of a dilute Coulomb lig-
below, spin ice is governed by a model dipolar Hamiltonianuid. DH theory will be familiar to readers from many diffeten
about which quite a lot is known. disciplines but to our knowledge has never been applied to a
Most prominently, the model Hamiltonian has an extensive_three-dimensional magnetic material before the advergiof s
set of ground states which can be specified by a purely locdfe-
“ice rule”. Their entropy is known to an excellent approxima  The purpose of this paper is two-fold. First, it gives a de-
tion due to Pauling’s work already in the context of water icetailed and context-specific account of the DH theory for spin
and it has been observed experimenfallfhe T — 0 static  ice. Second, its ability to model experimental data is un-
correlations are averages over this ground state manifald a derlined. In particular, we show that an existing framework
their long distance forms are known as they are described bip describe the dynamics of spin ice, when supplemented by
an emergent gauge field in the Coulomb pHAdsevhich have  DH theory, provides improved agreement with existing exper
also been observed experiment&ihy. imental and numerical data on the AC-susceptibility of spin
At low temperatures the physics of the system turns outcet’2.
to allow a further simplification. The excitations about the Thisis perhaps as good a point as any to digress and address
ground state manifold take the form of magnetic monopoles—the concerns of readers who may be worried that our replace-
pointlike defects that interact via a magnetic Coulombrinte ment of spins by monopoles is too good to be true. Here three
action energy which is independent of the background spimoints are in order. First, as we have already noted aboge, th
staté?. In this regime, the magnetic monopoles are sparsespins do enter the static correlations but in a manner that is
as their number is suppressed on account of their excitationnderstood. Second, a given monopole configuration can be
gap. This in turn has two implications. Firstly, the static “dressed” by many spin configurations. However summing
correlators continue to be dominated by their kndivn= 0 over these dressings generates an effective entropic @daulo
forms up to the inter-monopole separation, whereupon thewgttraction between the monopoles at long wavelengths (see
match onto the asymptotics of the paramagnetic piaSec-  e.g., Refl 22) which caalsobe included in the Coulomb/DH
ondly, the low temperature thermodynamics of spin ice carframework. We will address this point is S&d. V and find that
be transformed from that of a dense selaifaliseddipolar  the entropic effect can be ignored for the present set of spin
spins to that of a dilute set dfinerant Coulombically inter- ice compounds. Third, there is still a remaining issue that
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not all monopole configurations are in fact compatible with A. Non-interacting monopoles
some spin configuration, and moreover the spins can induce

non-trivial structure to the monopole energy landscapewhi  Tq |ay the foundation, let us start by considering the sim-
in turn can significantly alter dynamical properties of sg®  ple case of non-interacting monopoles, corresponding to a
out of equilibriun®®. However, these are weak constraints ONpearest-neighbour spin ice model. Since the monopole de-
the Coulomb framework and it seems highly unlikely that theyscription of spin ice is valid only when the density of defeet
play any role in determining equilibrium properties. tetrahedra is sufficiently small, i.e., at low temperatuves

We close the introduction by remarking on the range of apgonsider only the less costly defects (3in-lout and 3ouit-1i
plicability of the Coulomb liquid/DH theory framework inéh  tetrahedra) and neglect charge 2 excitations altogettier (4
actual compounds (see Fig. 1). At high temperatures, above@out and 4out-0in) as they cost four times as much energy.

scaleT),, we are in a conventional paramagnetic regime wherghe internal energy/ of the system is thus proportional to
the monopoles are dense. Beld@ly the monopoles become the number of monopoley,

sufficiently dilute that they can be treated by DH theory. At

a much lower temperaturg;, the Coulomb phase is unsta- U=NA=NipA, (2.1)
ble to ordering transitio?4-2% the details of which are not whereA is the energy cost of an isolated monopole (assumed
entirely settled. For the model Hamiltoniaf; = 0. While  in the following to be measured in Kelvin) apd= N/N; is

the Coulomb liquid framework should thus apply in the rangethe monopole density per tetrahedron.

T, < T < T,, the equilibrium DH treatment runs into prob- ~ The number of configurations that an ensembl&'¢2 pos-
lems around a temperatu?g > T, where the system falls itive (hard-core) monopoles and/2 negative ones can take
out of equilibrium before any ordering is visible. Much oéth on a lattice ofV; sites (V; being the total number of tetrahedra
interest in the spin ice compounds Jy>.O; and HgTi,O; in the system) is given by

derives from the fact thaly, Ty < T}, so that there is a win- N,

dow where Coulomb physics is well visible. W= (N/2 N/2 (N, — N))

Using Stirling’s approximation in the larg®, and largeN

2.2)
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Q0 o e
TISILLLILLISLL IS SIS LIS LIS SIS TF I IFTT SIS SIS SIS SIS IS LSS 7777
00 S/kp = —N¢[2(p/2)In(p/2) + (1 — p)In(1 — p)] (2.3)
/?////////////////////////////////////////////////////////////////
TEBUMK 00 e 2 K ; i i
s with a concomitant free energy per spin

\W//////////////////////////////////////////////////./ ’ F TS
\\\ T,~ 500 mK T m U-— 2.4)

I NskB N NS
out of equilibrium (expm.)
where the number of spins is twice the number of tetrahe-
dra, Ny = 2N,. Minimizing with respect tg, we obtain the
FIG. 1. Schematic illustration of the different temperatuegimes ~known expression for the total monopole density
in spin ice, separated WY, T, andT), as explained in the text. 2exp(—A/T)
The putative o_rdering beloW,; appears to be prevgnted by freezing Pnn = 1+ 2exp(—A/T) (2.5)
of the magnetic degrees of freedom beldy as evidenced e.g., by
a discrepancy between field-cooled and zero-field-cooleghetisa- ~ For smallT’, and hence small,y, pnn =~ 2exp(—A/T). For
tion. At temperatures of aboft,, the materials cross over to a trivial largeT’, Eq. [2.5) tends asymptotically to the vay, which
paramagnetic behaviour. is clearly incorrect — as expected since random Ising spins o
a pyrochlore lattice yield a densipyangom = 5/8 of defective
The remainder of this paper is organised as follows: weetrahedra due to the existence of charge-2 monopoles.
first provide DH background, discuss specificities of its ap-
plication in the spin ice setting, discuss its range of vglid
and finally apply it to experiment. In addition, we discuss
two other topics of import in this context. Firstly, we deter
mine the size of the entropic Coulomb interaction between One of the major approximationsin Sec. 11 A is the fact that
monopoles. Secondly, we compute the low-temperature mdhe long range Coulomb interactions between the monopoles
bility of magnetic monopoles in spin ice with a single-spip fl were entirely neglectdd Taking advantage of the analogy
dynamics believed to be appropriate for experimental combetween spin ice defects and a two-component Coulomb lig-
pounds DyTi,O; and HgTi»Ox. uid (in the absence of appplied magnetic fields), we can use
the Debye approximation to estimate the magnetostatic con-
tribution to the free energy (in degrees Kelvin per sgi):

Il. DEBYE-H UCKEL FREE ENERGY o NT (agk)?
Nykp ~ 4Nsrpyad [ 2

We now turn to the application of DH theory to spin ice.
The reader not interested in details of the formalism cap ski o — Hoq*pv (2.6)
ahead to Sectidn V. kT ~’ '

B. Debye-Hickel contribution

— (agr) + In(1 + aqrk)
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wherepy = N/V is the dimensionful volume density of  Unfortunately, Eq.[{2.13) cannot be solved analyticallgl an
monopoles and, is the distance between the centres of twoone has to resort to numerical methods to obdif). We
neighbouring tetrahedra (i.e., the dual diamond lattice-co find that the recursive approach

stant).
It is convenient to express the dimensionless quantity P 2exp(—A/T)
in terms of the Coulomb energy between two neighbouring 14 2exp(—A/T)
monopolest,,,, = poq?/(4raq k), 2 exp [_ (é By e )}
T 2T T+on/pe
E.. 3 Po+1 = NN (2.14)
aQgr = V 47T T(pvad) (2.7) 1 —+ 2eXp |:_ (T _ 2%:) 1+a\/p7):|

Hereq stands for the magnitude of the monopole chatge (

21/ aq, wherey is the rare earth magnetic mom&t Substitutingy = pe_see ~ ps into Eq. [Z2I2) we obtain nu-

T_here are8 diamond lattice sites in B-spin cubic unit cell merically the approximate free energy of dipolar spin ica as
of side (4/v/3) aq. The total volume of the system can then function of temperature.

converges with acceptable accuracy in less théerations.

be written ad/ = (N;/8)(4/V/3)* a}; and Between Eqns[{Z:12) and(2113) we have obtained the free
N 33 energy for monopoles in the DH approximation. From this
pval = —5 = ——p. (2.8)  one can compute several thermodynamic quantities of isitere
V/aq 8 (see e.g., SeE.VIA).
As a result, we arrive at
Fcl T (adli)Q
= — — (agk) + In(1 + agk) lll.  SPIN ICE PARAMETERS AND DH INTERNAL
Nskp 3V3r [ 2 CONSISTENCY
(2.9)
331 We first derive the parameters describing the DyO, and
agk = T’““ Ve = ao(T)/p, (2.10)  Ho,Ti,O7 spin ices within the dumbbell modélin the sub-

sequent subsection. Following the determination of the pa-
where the last equation defines the functieff"). In the rameters, we discuss the range of temperatures over whdch th
low temperature limit, the magnetostatic contributionlssa treatment is valid.
asp®/2, namely

Fcl T (adn)3 - .
~ — A. Spin ice parameters in the dumbbell model
NskB

3vV/3r 3
~— LB/ Enn 032, (2.11) The usefulness of the dumbbell model lies in the fact that it
8v/3 T correctly captures the long-distance form of the dipol&erin
We can then combine Eq§.(2.9) afid (2.10) with @(2.4)€:1ction —aswell as thg magnetiq Coulomb interaction betwegn
from Sec[IIA to obtain a mean field free energy — per spin int'€ Monopoles —while preserving the degeneracy of the spin
degrees Kelvin — of an ensemble§fmonopoles on a lattice  'C€ states. At the same time, a model of such simplicity can-

with long range Coulomb interactions: not do justice to_the full short-distance structure of thierin
actions present in the real compound, which include further
F o p Tp p/2 T _ neighbour superexchange as well as quadrupolar interactio
==-A+ In{——— |+ =In(l-)p) . ; A .
Nskp 2 1—0p 2 terms between the spins. We will thus find in the following
T a2(T) p sections that the best fit to both numerics and experiment re-
- 3V3 {T —a(T)y/p+Inl + OZ(T)\/E]} quires slight adjustments to the dumbbell model param#gers
T obtain quantitatively optimal fits.
3vV37En, We also take this opportunity to caution the reader that the
o(T) = —or (2.12) 'microscopic’ parameters themselves are subject to change

) ) S the level of a few percent as experiments and their detailed n
Note that this reduces to the non-lnteraCtlng limit if we Setmerica| mode”ng evolve (and, hopefu”y’ improve) overdim

B = 0. . . . Such changes can be innocuous (e.g. a 1% change to the dia-
Minimizing with respect to the defect densjtyone obtains  mond lattice constant) but since some of the resulting joisysi
a self-consistent set of equations: is rather delicate, they can feed through to relativelydarg
d(F/N,kp) ATl ( p/2 ) Enw a(T)/p colrrectif(;??é;?é)st prominently as a factim the estimated
—_— = n|——->- Y & value of Ty!<>
dp 1=» 2 1+a(l)vp From the pyrochlore lattice constamt= 3.54 A one ob-
2exp [— (% — Lan li&/\ﬁ/ﬁ)] tains the diamond lattice constant = /3/2a = 4.34 A,

P= 5 a7 (213)  Combined with the spin magnetic moment 105 (up =
1+ 2Zexp {_ (T - 3T )} 9.2710~24 J/Tesla), this gives the monopole charge~



4.6 up/A ~ 4.2810713 J/(Teslam) (see Ref. 12 and Sup-
plementary Information therein).
Inserting the dipolar coupling constant

2
Ho M 141K

- drkp a3

(po/4m = 10~7" N/A?%, kp = 1.38 10~ 23 J/K) and the nearest-
neighbour exchange coupling ~ —3.72 K for DysTi» O
(J ~ —1.56 K for Ho,Ti2O7) into the expression for the bare
cost of a single isolated monopole in Refl 12, we obtain

2
1 z
+\/;

4.35K for DygTi207 (J =-3.72 K)
5. 79K for HoyTizO; (J = —1.56K)
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The energy of two monopoles at nearest neighbour distance

is:
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FIG. 2. Plot of the Debye screening length vs temperaturagube
density from the numerical solution to the Debye-Hiickétaimtion
in Sec[1IB.

Therefore, the creation of two neighbouring monopoles by a

single spinflip eventin a spin ice configuration where atitet
hedra satisfy the 2in-2out rules incurs an energy cost

5.64K for DygTi207

. . 3.3)
8.52K for HO,TisO7

A5—2A—Enn2{

~

Firstly, aboveT 1 K the screening length becomes
shorter than the lattice spacing. This artefact arisesuseca
the DH term in the free energy was derived in the contin-
uum. ForT' 2 1 K one thus needs to consider the DH results
with caution. Having said this, once the screening length ge
very short, the long range nature of the Coulomb interaction

As afinal remark, it is interesting to compare the force be-becomes less important. One can then reliably truncate the

tween two monopoles at nearest neighbour distance,

Ho ¢°

Fon = ~9.74107 N,
47 a?

(3.4)

to that between two eletrons at the same distadée, ~

interactions to short range and use alternative approaoches
compute the free energy and other thermodynamic quantities
as illustrated for instance in AppendiX A.

Secondly, a§” approaches the Curie-Weiss temperature of
about 2K, the average separation between monopdles,

1.22107?N, four orders of magnitude stronger! By contrast, aq p~'/3, becomes comparable to the lattice constgnand
a pair of Dirac monopoles would experience a force of almosthe monopole picture is no longer appropriate to describve sp

10—°N.

B. Internal consistency: screening length vs. monopole

separation and lattice constant

The Debye screening lengenye is given by the inverse
of the constant in Eq. [2.10). In units of the diamond lattice
constant:, this amounts to

2 1
3vV31Fnn \/ﬁ
The dependence @henye/aq ON temperature, after substi-

tuting p(T') from the numerical solution of E.(2113) is illus-
trated in Fig[2 (using for instana® = 4.7 K).

gDebye _ 1

aqkr

(3.5)

Gaq

We anticipate here that there is a systematic discrepancd® the rati@penye/ Pv
between the DH approximation and the MC simulation resultof interest. IndeengcbyC/pV

on the heat capacity faf > 1 K (see Fig[#4). To understand
this, we note the following.

ice — monopoles are useful as long as they are sparse, other-
wise it is more efficient to work directly with the microscaopi
spin degrees of freedom. (In addition, for even higher val-
ues ofT, the neglect of doubly-charged monopoles becomes
problematic.) For instance, it would be more appropriate to
use a conventional high-temperature series expansion.

Another parameter of physical relevance is the ratio of
screening length to monopole separation: the larger this ra
tio, the more appropriate a continuum description is. The di
mensionful monopole density;, can be expressed in terms
of the monopole density per tetrahedrpn(which appears
in the DH caluclations in Se&.lll) using the relatippr =
3v/3p/(8a3). From it, we can obtain the average monopole

separatiorp;l/3. By comparing these two length scales, one
observes that DH theory is near an ‘internal’ limit of vatidi
is close to one throughout the range
2 1 only below300 mK,
dropping by a factor three towards its minimum1ak (not
shown).
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IV. COMPARISON OF DH WITH MONTE CARLO system in units of J mol'K—! via the thermodynamic rela-
tion
~We compare the DH rgsplts above with Monte Carlo (MC) cv = —NakpT 82(F/Nokp), (4.1)
simulations using the spin ice parameters in Ref. 29, report
in the previous section. The Ewald summation techniquevhereN 4 is Avogadro’s number} = 1/kgT, andkp is the
was used for the long range dipolar interactions between thBoltzmann constant.

sping. We used systemz of siz6é > = 3456 spins L = 6) In MC simulations, ¢yy can be obtained by the usual
and single spin flip updates. fluctuation-dissipation route, measuring the averageggner
(e) and its fluctuations,
. RN,
A. Monopole density v =5 [(e*) = (e)?]. (4.2)

A first comparison between the non-interacting limit and _ A comparison between the non-interacting calculations,
the DH approach can be done by looking at the resultind?d- (2.3) and Eq.[(2l4), the DH calculations, EQ. (2.13)
monopole density as a function of temperature, Eql (2.5) an@"d Eq. [2.12), the single tetrahedron approximation in Ap-
the numerical solution t6 {Z.13), illustrated in Fig. 3 ttge pendix[A, and Monte Carlo simulations is shown in Hig. 4.
with the monopole density from Monte Carlo simulations of
dipolar spin ice.
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FIG. 4. Heat capacity from numerical simulations (greeangies),
compared to the analytical result in the non-interactingraxima-
FIG. 3. Monopole density from numerical simulations (gréen  tion (dashed red line) and in the DH approximation (solicedine).
angles), compared to the analytical result in the non-dnfitng ap-  Note that there are no fitting parameters. Like for the dgr(sit
proximation (dashed red line) and in the DH approximatialids  Fig.[3), improved agreement between the simulations andthe
blue line). Note that there are no fitting parameters. An owed  solution is obtained for a bare monopole casic = 4.7 K (black
agreement between the simulations and the DH approximatien  dotted curve). The single-tetrahedron approximationudised in
tains if we adjust the bare monopole costdaic = 4.7 K (black  Appendix[A can only be made to agree with the experimental re-
dotted curve). sults on a very narrow temperature range, even if we.ugeas a
fitting parameter (dash-dotted yellow line).
The agreement between DH and MC results is already quite
reasonable yet it improves considerably if we tune the bare Consistently with the monopole density results, a compari-
monopole cost td\\ic = 4.7 K. As mentioned above, we be- son of the heat capacity from DH theory and simulations also
lieve the origin of this adjustment to be in the short-dis&n shows improved agreement usidgc = 4.7 K instead of
physics beyond the dumbbell model of Ref. 12. In quantitiesa = 4.35 K. We shall see in SeE_VI that an 8% larger value
sensitive to such short range details, sucthashis 8% dis-  of A with respect to Eq[{3]1) is also consistent with the com-
crepancy is not unreasonable. parison between DH theory and experimental results.
The results in Fig13 and in Fif] 4 clearly show that: (i) a
. theory of point-like Coulomb-interacting charges (in jpart
B. Heat capacity lar with the improved value of the bare monopole cost) goes
a long way into capturing the physics of spin ice, much better
Given the DH free energy (expressed in units of degreehan conventional approaches based on truncated cluster ex
Kelvin per Dy ion), one can obtain the heat capacity of thepansions of the free energy of the system; (ii) the long-eang



nature of the interactions is necessary for understandlieg t dimensions, for the entropic Coulomb gas encountered in the
low-temperature properties of spin ice materials. square lattice monomer-dimer mod&l.

V.  ENTROPIC CHARGE: ROLE OF THE UNDERLYING VI. EXPERIMENT
SPINS
We now proceed to compare the DH results with experi-
mental data on DyTi>O,;. We find good agreement, which is
further improved if we use the latest material parametens fr
Ref. 26 instead of those in Ref.|29. Namely, the magnetic mo-

In disregarding the underlying spins in the Debye-Hiickel
approximation to the free energy of spin ice, we fail to ac-
count for quadrupolar corrections to the monopole descrip
tion*? (of which we have seen an effect in the value of the

o . t of the rare earth ions $87 up instead ofl0 up; the
bare monopole cosh). We also neglect additional spin en- men : . o | g
tropic contributions (other than the entropy of mixing oéth diamond lattice constant is38 A instead ofl.34 A; and the

monopolesS. nearest-neighbour exchange coupling varies betwegh3

The latter take the form of an entropic charge that addsand_?"%’ instead ot/ = —3.72 K.

onto the real magnetic charge (or, rather, magnetic and en-, 1"€S€ values result in a new magnetic monopole charge
tropic coupling constants add) for the monopole Coulomb inf 4:5 #B/A; a nearest-neighbour interaction strength be-
teractions. In AppendixIB we derive an analytical exprassio tween m(_)nopolesEnn =2.88K ms_tead 0f3.06 K; a dipo-

for the entropic interaction strength and confirm the relsylt lar coupling constanD N 1.32 K instead Ofl".ﬂ K; and
comparing it to Monte Carlo simulations. One can then repeaibare monopole costiin the range05, 4.23) K instead of

the DH calculations including the entropic correction. Tae 2 = 4.35 K. We reiterate that there are also small correc-
sults are shown in Fid]5 (dashed cyan lines), in comparisoﬁon.S due to further_—range supere_xchange and the quadrupo-
to the previous results (solid blue lines), for the paramsdte & interactions, which are not easily incorporate into ¢
Sec[IV with Ay — 4.7 K. The behaviour of the monopole ramework.

A. Heat capacity

specific heat (3 mol 1 K 7%

A comparison between the experimentally measured heat
capacity and the one obtained from DH theory, shows again
that the bare monopole caite (4.05,4.23) K from Eq. [3.1)
is somewhat too small. Better agreement can be obtainesd if, a
in the comparison with MC simulations, we allow for an 8%
increase in the value dk € (4.37,4.57) K (see Fig[®). This

10° &

/ monopole density per tetrahedron

10° 10

temperature (K)

K
N
o

FIG. 5. Effects of the entropic charge (dashed cyan linesjhen
Debye-Hiickel estimate of the heat capacity and monopatsitje
(solid blue lines).

density and of the heat capacity clearly show that the eittrop
contribution can be safely neglected in the low temperature

heat capacity (J mol -1 _1)
=
o

regime where the DH approximation is valid. It is worth not- 10 °F

ing that the relative strength of magnetic and entropicgbsr ‘

can in principle be tuned straightforwardly, e.g. by desieg 10° 10"
D at fixed J.g, as the magnetic monopole charge is propor- temperature (K)

tional to D, whereas the scale determining the applicability of
the monopole picture is set b

Indeed, for the nearest-neighbour model witk= 0, where ~ FIG. 6. Experimental results for the heat capacity of
there is no magnetic monopole charge, one would be consid?y2Ti2Or(black squares) from Ref. 10, in units of J/mol K, com-
ering a Coulomb gas with entropic interactions only. DebyePared to the analytical result from Debye-Hiickel theorshw =
screening in such a setting has already been considered in tvf-37 K (solid blue line) andA = 4.57 K (dashed cyan line).



is in agreement with the results presented in Ref. 10 (Fig. 1)
where a value ofA = 4.35 K12 was used.

B. ‘Dressed’ monopole energy and AC susceptibility

The bare monopole cost is half the energy required for
creating and separating to infinity a pair of monopoles ajain

their long-range Coulomb attraction. When other monopoles

are present, screening effectively truncates the rangbeof t
interactions and there is no further energy cost to separati
a pair beyond the screening length. In this case it is more
appropriate to consider the ‘dressed’ monopole enérgyas

the energy per monopole that it takes to create a pair and se|
arate it beyond the screening length. It is indeed the energ
A4 — rather tharA — that controls for instance the equilib-
rium density of the monopolgs ~ e~24/T at intermediate
temperatures.
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Given the creation energy for a nearest neighbour paiF|G.7. Experimental magnetic relaxation time scalgs a function

As = 2A — E,, and the expression for the DH screening
length, Eq.[(3.6), one obtains

2
Ho 4q
AIN(T _2A—Enn+<Enn_ 7)
d( ) 47T]€B gDebye(T)
(6.1)

aq

gDebye (T) ’

whose behaviour is illustrated in the inset of Eij. 7.

=2A — Eyy

of temperature from susceptibility data, Ref. 19 (blackropguares).
The rapid increase i at low temperatures is due to the paucity
of defects responsible for the magnetic rearrangement pfraice
configuration (namely, the monopoles). This increase dapaale-
scribed by a single exponential (activated behaviour),t @s évi-
dent for instance by comparison with the cume= 19 exp(A/T)
(dashed magenta line), say with = 4.5 K. On the contrary, a
much better agreement is obtained if we replace the bare potmo
energy A with the ‘dressed’ energy\4(7") (solid blue curve for
A = 4.37 K and solid cyan curve foA = 4.57 K). This is

A place where this screening effect of the magneticcompared tor o« 1/p, wherep is obtained from the DH approx-

monopoles becomes particularly evident is in susceptibili
measurements of magnetic relaxation time sé&&s Given

that the monopoles are responsible for any changes in ma

netisation in a spin ice configuration, the ability of the-sys
tem to respond to an applied magnetic field is affected by th
monopole density. For non-interacting monopoles, Ryzhki

imation (blue open circles faA = 4.37 K and cyan open circles
for A = 4.57 K), showing that indeed the dressing &faccounts

gqr the leading non-exponential correction in the tempeetepen-

ence in the monopole density. The microscopic time scatesst
y imposing that the analytical results pass through theéxen-
al data point att K (see Ref| 21). The inset shows the ‘dressed’

r}’nonopole energy\,; as a function of temperature (solid blue curve

showed that in the low temperature, hydrodynamic regime thg,- A — 4 37 k and solid cyan curve foA = 4.57 K).

characteristic susceptibility time scateis inversely propor-
tional to the monopole dens#$;
Vo v Tp(T), (6.2)

wherev is the mobility of the monopoles. This result is likely
to be asymptotically correct & — 0 at zero wavevector even

in presence of Coulomb interactions, although it is modified

at finite wavevectors.

In App.[Q, we show thar ~ 1/T under the assumption
that Metropolis dynamics are a good approximation to the mi
croscopic spin flip processes in spin ice. Therefore,

7o 1/p(T).

As we argued above, at intermediate temperatg(gy is
controlled by the dressed monopole enefgyT') rather than
the bare energyA. Indeed,r is poorly fitted by a single ex-
ponentiat®2such as- = 75 exp(A/T). On the contrary, the
curveT = 19 exp[Aq(T)/T], captures correctly the faster-
than-exponential grows af at low temperatures, despite the
fact that it still significantly underestimates the expeirtal
value ofr (see Fig[l7¥°

(6.3)

Given the good agreement between DH theory and experi-
ments regarding the heat capacity of the system [Fig. 6) and
given that a similarly good agreement in the heat capacity
from Monte Carlo simulations implied a good agreement also
for the monopole density (Fig] 3 and Fig. 4), one would ex-
pect thatp(T") from Debye-Huckel used in Fi@l 7 is in fact a
good estimate of the experimental monopole density. There-
fore, the fact that Eq[{6.3) underestimates the experiahent

results even when usingT') from DH theory is likely due
to corrections to the dependencex 1/p(T) arising from
Coulomb interactions at intermediate monopole densities.

At the lowest temperatures (provided of course no ordering
or freezing intervenes, as it likely would), when monopole
separation and screening length both diverge, the eftectiv
Ag — A, and hence we expect the superexponential be-
haviour to go away and the curve to follow the standard Ar-
rhenius behaviour ~ exp(A/T).

From a purely phenomenological perspective, it is interest
ing to notice that a very good agreement beween DH theory
and experiments on the susceptibility time scalat interme-
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diate temperatures) can be obtained by substituting[E8) (6. features identified for DHBj, while remaining of course only

with 7 o« 1/p"(T), with n = 3/2 for A = 4.37 K and
n =4/3for A = 4.57 K (see Fig[8). Further work is needed
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an approximation to the exact free energy of the system.

Further improvements on the DHBJjDI theory include ac-
counting for hard-core (HC) effeés It is certainly worth-
while developing the theory further in this direction, espe
cially in settings where new phenomena (e.g., a dominant pop
ulation of bound pairs), rather than only quantitative eofr
tions, ensue.

VIIl.  CONCLUSIONS

In summary, we have presented a theory for the low-
temperature physics of spin ice within the Debye-Huckel
framework familiar from the study of (electric) Coulomb-iq
uids. The success of this simple approach in treating the low
energy physics of spin ice is a testament to the power of the
‘variable transformation’ from magnetic dipoles to magnet
monopoles appropriate to the Coulomb phase with its emer-

gent gauge field.

With this first step accomplished, next on the wishlist are
a number of items some of which should push our atten-
tion beyond the framework provdided by the DH paradigm.
Firstly, a more detailed understanding of spin ice (hydro-
)dynamics; secondly, an extension of this theory to a broade
class of parent Hamiltonians, perhaps even including coher
is obtained from the DH approximation (blue upward triasgier ~ ent quantum dynamics; and thirdly, contact with all the non-
A = 4.37 Kandn = 3/2; cyan downward triangles fak = 4.57 K equilibrium experiments suggesting that not only the spars
andn = 4/3). The dashed magenta line illustrates the curveness of monopoles but also phononic physics plays a role in
T =70 exp(A/T) with A = 4.5 K, for comparison. the freezing of spin ice arounﬂf_33

temperature (K)

FIG. 8. Experimental magnetic relaxation time scalas a func-
tion of temperature from susceptibility data, Refl 19 (klapen
squares). The temperature dependence is captures vematatgu
by a phenomenological equation of the typex 1/p", wherep

to understand the reasons behind such a good overlap.
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Debye-Hiickel theory neglects the association of monapole
into neutral dipolar pairs (see Ref. 31 and referencesithere
Following Bjerrun#? (Bj) one can account for such bound
pairs, thus compensating in good part for the uncontroifed |
earisation of the Poisson-Boltzmann equation that is dtéhe ~ An alternative approximation that can be used to obtain the
sis of the DH self-consistent solution. However, whilstigei  SPin ice free energy and related thermodynamic quanties i
an overall refinement of DH, DHB;j theory leads to unreal-Use a truncated cluster expansion. Most simply, this ansount
istic features in the phase diagram of the sysfewith an  to computing explicitly the free energy of an isolated te&-a
exponential increase in the low-temperature fraction af-ne dron by direct summation over af states.

tral pairs draining the free mon0p0|e density to zero. This At this level, all interactions are nearest-neighbouromés
can (and ought to) be compensated by a further extensiolgrms of this effective short range couplirig:, the partition

to include interactions between dipolar bound pairs and fre function of a tetrahedron is

monopoles, leading to the so called dipole-ionic (DI) contr
butiort. The full DHBjDI theory indeed cures the unphysical

Appendix A: Single tetrahedron approximation

Ny

Z = [6+8e 2/ T 4 98w/ T (A1)



From this, one can estimate the partition function of théent two sublattices) as
system,

2 B, L (11 -1 -1 go
6 + 8e—2Jett/T | 9p—8Jess/T ¢ By |]=—7|1-11 -1 ! (B3)
Z = 2N T , (A2) B, V3\1 -1 -1 1 gQ
3
and thus the free energy per spin in degrees Kelvinthe stiffness coefficient can be determined tokbe= 3/8.
F/Nskp =—(T/Ng)In Z. (Note that we used a different field normalisation with respe
Substituting into Eq.[{4]11), we obtain the heat capacity ofto Ref..35, so as to preserve the underlying spins lengthlequa
the system (in units of J/K per Dy ion), tol.)

B 24kBJe2ff e6Jett/T (3 — 92/t /T 84Jeff/T)

T2 (1 — e2Jest /T 4 e4Jese/T 386Jeff/T)2 .
(A3)

The choice of/.s = 5D/3 + J/3 = 1.11 K, which corre-
sponds to the nearest-neighbour interaction strength fnem
exchange plus dipolar coupling constants, yields a very poo
agreement with the experimental data (not shown). The sit-
uation improves slightly if we take advantage of the projec-
tive equivalence between dipolar and nearest-neighbour in / -7
teractions on the pyrochlore latt®e Instead of truncating aq - ’
the dipolar contribution t&D/3, one can therefore use the S, s \ VI a3 "
effective value ofJ,, that yields the same low-energy spec- 4 S -
trum as from the long range dipolar interactions. This value \
can be derived using the dumbell decomposition in Ref. 12, S
Jeg = 1.45 K. The result is shown in Fig. 1 of Ref. |10 and S3
it is indeed in quantitative agreement with the experimienta
data at high temperatur&s > 2 K, as expected of a cluster

expansion of the free energy. . FIG. 9. Lattice conventions. The highlighted portion of thiee
Note that even if we allow to vary as a fitting parameter ¢ ne (j.e., the 16-spin cubic unit cell in spin ice) corresfoto a

inthe theory, the shape of (T") does not change significantly possible choice of the primitive unit cell in the fcc lattiemed by
and it can be brought to agree with the experimental data onlhe centres of one sublattice of tetrahedra in the pyroehlattice
over a very narrow temperature interval. By comparisors, thi (circled in green in the figure).

highlights even more how effective the Debye-Hiickel free e
ergy is at capturing the low energy fluctuations in dipolansp
ice.

v

The second term Ed.(B2) accounts for the magnetic energy
stored in a spin ice configuration (devoid of monopoles). In
this caseﬁmag(r) is the magnetic field generated by the spin
magnetic momentg ponting in the local spin directionu is
Appendix B: Entropic monopole charge the permeability of the vacuuri is the Boltzmann constant
andT is the temperature of the system).

The effective description of spin-ice in the absence of Given that the to_taquieIcB = po(H + M) is always di-
monopoles is given by the probability distribution of a vVergenceless, the field™*¢(r) can be equivalently replaced
magnetostatic-like (divergenceless) fild by the magnetisation per unit volunde, which in turn can

be obtained by coarse graining the spin magnetic moments.

[ o 2 Using the schemd (B3) already adopted ﬁﬁ‘“(r) over a
P o exp {—5%0}1/ B t(T)’ dﬂ (B1)  primitive unit cell, we have that
xexp |~ p0 [ |ame)|” el @2) i) = M| = L |Be)|. @)
2kgT Ucell

i o o Therefore, the difference between the two terms Eql (B1) and
The first term Eq.[(BLl) is purely entropic in origin. The ge- Eq. (B2) can be reduced to different coefficients
ometric field B°*t(r) is obtained from coarse graining fixed-
length vectors that identify the local direction of the pin K pop?
the system. Here,. is the volume of the primitive unit cell. Veoll kT2,
Introducing the coarse grained (dimensionless) fig{d) de-

fined at the centre of each tetrahedron (belonging to oneeof thto the same integral | Bt () |2 d3r,
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It is convenient to re-express the magnetic coefficient in
terms of the magnetic Coulomb energy of two monopoles

placed in adjacent tetrahedra (expressed in degrees Kelvin 10724
2 2
Ko g Mo [

nn — _— = — 3 (B6) c
47T/€B Qaq 7T]€B ay g

o -2.48

2 3 c 10 r
= Hol _ Enn Tag (B?) 2

kTvZ, T vy’ 5
=] ha

where we used the fact that= 24/ a4, aq being the diamond = 10725

lattice constant. By comparison with the entropic coefficie 3

we can then identify the entropic counterpart to the ne&reas 2
neighbour Coulomb energy, -2,54W

10
ent 3 . : : : :
By may _ K (B8) 0 0.1 0.2 03 0.4
T vfe“ Veell inverse monopole separation (units of pyrochlore a)
Eﬁgt K Vcell
T ay

If we finally use the fact that.); is 1/4 of the volume of
the 16-spin cubic unit cell in spin ice, = (4aq4/+/3)?, and
that with the coarse graining (B3) = 3/8, we arrive at the
result

E K16 2
T T™3v3 V3w

It is interesting to convert this value into an entropic
monopole charge :

~ 0.36755. (B10)

dragkpEEnt 13 0 001 002 003 004 005 0.667
Gent = T =1.4810 \/T inverse system size (1/L)

=1.6 VT pug/A. (B11)
. FIG. 10. Top Panel: Distribution of distances per lattice &ie-

The entropic charge of a monopole becomes larger than thgeen two monopoles in a spin ice configurationi6fx L* spins,
real magnetic charge only far 2 8 K, well beyond the limit 7 — 4. (top panel, red curve). The expected form due to
of validity of the monopole description of spin ice. In the ex the entropic Coulombic interaction i® ~ exp(ES/TR) and
perimentally relevant temperature ramige—1 K, the entropic  the solid yellow line is the linear fit ofn P(R) as a function of
contribution ranges from% to 10% of the real magnetic con- 1/R. Bottom Panel: Finite size scaling of the nearest neighbour
tribution to the energy of the monopoles. entropic interactionzeat /T vs. the inverse system si2¢L, L =

In order to confirm this analytical estimate of the entropic16; 32, 48, 64, 80, 100. The dashed black line and shaded cyan re-
Coulomb interaction strength in spin ice, we have run Montedion are a guide to the eye for a r?‘?sonable» oo extrapolation
Carlo simulations of the nearest-neighbour spin ice moded confidence interval, leading &f;'/T" ~ 0.375 £ 0.015.
sampling only configurations with two monopoles (one pos-
itive, one negative). Such configurations are all isoerterge ! , ) )
and the monopole positions can be updated at every Monte We repeated.these_ fits for_d|ffe.rent system sizes in order
Carlo step without rejection. Ergodicity was tested by com-10 account for finite size scaling (illustrated in Fig] 10bo
puting spin-spin autocorrelation functions. The disttion  [©°™ Panel). Even though the accuracy of our simulations
of separation distances between the two monopoles was th&@€s not allow for a reliable extrapolation in tie — oo
sampled both in Monte Carlo time and across different ihitia IMit: the negrest-r)e|ghbourtentrop|c interaction stearegp-
configurations and random number seeds. pears to lie in the mter_vaE,‘ﬁ’,?1 JT ~ 0_.375 + 0.015, in rea-

From Eq[BL, it follows that the entropic interaction be- SONable agreement with the analytical value in Eq. {B10),
tween the two monopoles leads to a probability distribution2/\/§” =~ 0.36755.
of the formP(R) ~ R? exp(E" /T R), whereR is the sep-
aration distance in units of the diamond lattice spacing. In

particular, if we sample the distributiquer lattice siteat dis- Appendix C: Monopole mobility
tanceR, it has a purely exponential form exp(ES2 /T R),
and one can obtain the value &F2* /T from linear fits in The mobility of the monopolesin spin ice (and thus its tem-

semi-logarithmic scale (Fig. L0, top panel). perature dependence) can be estimated from microscopic con



siderations, under the assumption that Metropolis-likeaeq
tions govern the dynamics of the syst&r#¥f.
The mobility of a particle is given by the ratio of its drift
velocity vy over the driving force streng¥, v = v/ (¢F).
Under Metropolis dynamics for a particle with chargin
a field E/, the average displacement in a single step is

1—e BV

AI:gW’

(C1)

wherel is the characteristic microscopic length scads the
potential difference for a single hopping procdsis, the prob-
ability to hop in the direction of the field, andp(—8¢V) is

the probability to hop in the opposite direction.

Note that, on a lattice, there can be several inequivalent fo

ward and backward hoppings, depending on the direction
the field. For example, while 45° field applied to charged
particles living on a square lattice is described stramhtf
wardly by the above equation (with= a/+/2, a being the

lattice spacing), 80° field on the same lattice allows for a for-

11

FIG. 11. Two examples of how the available hopping processes
depend on the direction of the applied field on a square éatéd5°
field (left) and a90° field (right).

to obtain the correct value dfz.

For convenience, we choose to define the mohilias

Ax/a (¢ 1—e BV
o CL_TQ 14 e84V (C2)
=vqFa, (C3)

fpr small values of the applied field#. Herea is the (dimen-

of.

sionful) lattice constant and, is the microscopic time scale
for a single MC step. At large temperatures with respect to
the field strength, one can expand the exponentials anakarriv
at the expression

ward, a backward, and two perpendicular hopping processes

(see FiglIll). One therefore needs to average over all of them

1 1 £1—e PV
= — - C4
g ToqFaal+e BV (€4
1 ¢V/(Ea) (BV)?
_ -t . cs5
T0a 2kpT o [ qFa (C5)

For example, the case of a generic field direction on the
anisotropic square lattice, with lattice constamtndb, gives

1 1 acosf+bsind — acosfe PaEacostd _ pgin ge—Fekbsing
V= — -
To qECL2 1+1+ e—BgEacosb + e—BgEbsin
1 1 a?cos?6+b2sin?6
~ = O (B*E). C6
o WhpT e +0 (5°E) (C6)

If the lattice is isotropic ¢ = b) the mobility is independent
of the direction of the applied field,

1
Y dkgT

The mobility of monopoles on an isotropic diamond lattice,

+ 0 (B*E). (C7)

of lattice constant,;, with respect to a generic field direction
¢é can be computed in a similar way, with the additional care
that there are now two inequivalent sublattices. With respe
to one sublatice, we obtain
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1 1 1 (é1+é2+é3) min [1, quE“d(éﬁéﬁé”/‘/ﬂ + (€1 — é3 — é3) min [1, quE“d(él_éZ_éS)/‘/ﬂ

. qFag ﬁ min [17 eﬁand(élJréeréa)/\/ﬂ + min [17 eﬁand(él—érés)/x/ﬂ

(=61 + &5 — é3) min [1, eﬁqu(_éﬁéz—éSWﬂ + (&1 — é + ;) min [1, eﬂand—él—éﬁés)/\/ﬂ

+ min {1, eﬂand(—éH‘éz—éS)/\/g} 4 min [17 quEad(_él_é2+é3)/\/§:|

N 1 1
- T0 12kBT
(€14 62— €3)2 O (=61 + &2 — &3) + (—€1 — éa + 83)° O (€1 — é2 + é3)] + O (B°E), (C8)

[(614 €24 €3)° O (614 62+ €3) + (61 — 2 — €3)> O (61 — &2 — &3)

where® . (z) = ©(—x) is the Heaviside theta function. With respect to the othbtatice, we obtain
~ 11

Y 12k T
+(—e1+ e —e3)? [1 —O(—e1 462 —&3)] + (1 — a4+ 63)° [l — O (=61 — 2+ é3)]] + O (B°E) .

(C9)

(614624 63)° [1— O (61 +é2+é3)] + (61 — é2 — é3)° [1 — O (&1 — &2 — é3)]

If we finally take the average of both sublattices, we arrive a on the field direction and we can therefore choose to compute
the mobility in a[100] magnetic field for convenience:
1 1

Y on 12kpT
+(—é1 + éo — é3)2 + (—él — €9 + é3)2}

[(é1+é2 +3)° + (&1 — &2 — é3)? 1 1 12— e BaBlaa/V3)
YT 970 qEaq /3 2 + e—BaB(aa/ V)

_ 9p—BaE(aq/V3
+ O (B*E) L Lt 9e—BaE(aa/V3)
11 1 279 qEag \/3 1 + 2e—PaE(aa/V3)
~ o ——— +0(FE), (C10) 41 1
o 27 10 kT’ (C11)
independently of the direction of the field Notice that these results are independent of whether the po-

If the magnetic monopoles on the diamond lattice are intential and field had an entropic or magnetic origin, proside
fact the collective excitations in a spin ice system, onaleee that the assumption of the field being smooth over distances
to take into account the constraint that one of the three possf the order of the lattice spacing holds. This definition of
sible hopping directions is essentially forbidden, as itldo the mobility shows in fact that it depends only on some mi-
create doubly charged excitations. Taking the averagetbger croscopic time scalg, and on the thermal energy per particle
possible forbidden directions does not introduce a deparede in the system.
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