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THE SYMPLECTIC TOPOLOGY OF PROJECTIVE MANIFOLDS

WITH SMALL DUAL

PAUL BIRAN AND YOCHAY JERBY

1. introduction and summary of the main results

In this paper we study a special class of complex algebraic manifolds called projective

manifolds with small dual. A projectively embedded algebraic manifold X ⊂ CPN is said

to have small dual if the dual variety X∗ ⊂ (CPN)∗ has (complex) codimension ≥ 2.

Recall that the dual variety X∗ of a projectively embedded algebraic manifold X ⊂ CPN

is by definition the space of all hyperplanes H ⊂ CPN that are not transverse to X , i.e.

X∗ = {H ∈ (CPN)∗ | H is somewhere tangent to X}.

Let us mention that for “most” manifolds the codimension of X∗ is 1, however in special

situations the codimension might be larger. To measure to which extent X deviates from

the typical case one defines the defect (see [Tev2]) of an algebraic manifold X ⊂ CPN by

def(X) = codimC(X
∗)− 1.

Thus we will call manifolds with small dual also manifolds with positive defect. Note that

this is not an intrinsic property of X , but rather of a given projective embedding of X .

The class of algebraic manifolds with small dual was studied by many authors, for

instance see [Ein2, Ein1, GH2, Kle2, Sno]. These studies show that these manifolds have

very special geometry. In this paper we will show that manifolds with small dual also

exhibit unique properties from the point of view of symplectic topology.

In symplectic topology one has the class of subcritical Stein manifolds which has been

studied in many contexts [EG, Eli2, BC1, BC2]. We will first show that the class of

projective manifolds with positive defect is intimately related to the class of subcritical

Stein manifolds. Let Y be a Stein manifold. Define

ind(Y ) = min {indmax(ϕ) | ϕ : Y → R exhausting p.s.h Morse function} ,

where indmax(ϕ) = max{indz(ϕ) | z ∈ Crit(ϕ)} is the maximal Morse index of ϕ. By

exhausting we mean that the function is proper and bounded from below, and p.s.h.

stands for plurisubharmonic. We refer to the number ind(Y ) as the subcriticality index
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of Y . It is well known [EG, Eli2] that ind(Y ) ≤ dimC(Y ). A Stein manifold Y is called

subcritical if ind(Y ) < dimC(Y ), i.e. it admits an exhausting Morse plurisubharmonic

function ϕ : Y → R with indz(ϕ) < dimC(Y ) for every z ∈ Crit(ϕ). (We refer the reader

to [EG, Eli2] for the symplectic theory of Stein manifolds.) Our first result is:

Theorem A. Let X ⊂ CPN be a projective manifold with small dual and let Σ ⊂ X be

a smooth hyperplane section of X. Then the Stein manifold X \ Σ is subcritical. In fact:

ind(X \ Σ) ≤ dimC(X)− def(X).

See Theorem 8.D for a partial converse to this theorem.

Our next results are concerned with geometric properties of a smooth hyperplane section

Σ ⊂ X of a manifold X ⊂ CPN with small dual, under the additional assumption that

b2(X) = 1. (Here and in what follows we denote by bj(X) = dimHj(X ;R) the j’th Betti-

number of X .) By a well known result of Ein [Ein2] the assumption b2(X) = 1 implies

that both X and Σ are Fano manifolds.

For a space Y we will denote from now on by

H∗(Y ) := H∗(Y ;Z)/torsion

the torsion-free part of the integral cohomology H∗(Y ;Z). (We will sometime denote this

also by H∗(Y ;Z)fr.) Denote by QH∗(Σ; Λ) = (H•(Σ) ⊗ Λ)∗ the quantum cohomology

ring of Σ with coefficients in the Novikov ring Λ = Z[q, q−1] (see below for our grading

conventions), and endowed with the quantum product ∗. We prove:

Theorem B. Let X ⊂ CPN be an algebraic manifold with small dual, b2(X) = 1 and

dimC(X) ≥ 2. Let Σ be a smooth hyperplane section of X. Let ω be the restriction of the

Fubini-Study Kähler form of CPN to Σ. Then

[ω] ∈ QH2(Σ; Λ)

is an invertible element with respect to the quantum product.

We will actually prove a slightly stronger result in §5 (see Theorem 5.B and the discus-

sion after it). In Theorem 9.A in §9 we will establish a much more general, though less

precise, version of this theorem.

A classical result of Lanteri and Struppa [LS] on the topology of projective manifolds

with positive defect states that if X ⊂ CPN is a projective manifold with dimCX = n

and def(X) = k > 0 then:

bj(X) = bj+2(X) ∀n− (k − 1) ≤ j ≤ n+ k − 1.

(In §3 we will reprove this fact using Morse theory). As we will see in Corollary C below,

Theorem B implies stronger topological restrictions in the case b2(X) = 1.
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As mentioned above, under the assumption b2(X) = 1 the manifold Σ is Fano. The

quantum cohomology QH∗(Σ; Λ) = (H•(Σ) ⊗ Λ)∗ admits a grading induced from both

factors H•(Σ) and Λ. Here we grade Λ by taking deg(q) = 2CΣ, where

CΣ = min
{
cΣ1 (A) > 0 | A ∈ image (π2(Σ) → H2(Σ;Z))

}
∈ N

is the minimal Chern number of Σ. Here we have denoted by cΣ1 ∈ H2(Σ;Z) the first

Chern class of the tangent bundle TΣ of Σ. Theorem B implies that the map

∗[ω] : QH∗(Σ; Λ) −→ QH∗+2(Σ; Λ), a 7−→ a ∗ [ω],

is an isomorphism. In our case, a computation of Ein [Ein2] gives:

2CX = n+ k + 2, 2CΣ = n+ k.

(It is well known, by a result of Landman, that n and k must have the same parity.

See §2.) Define now the cohomology of X graded cyclically as follows:

(1) H̃ i(X) =
⊕

l∈Z

H i+2CX l(X), b̃i(X) = rank H̃ i(X).

Define H̃ i(Σ) and b̃i(Σ) in a similar way (note that in the definition of H̃ i(Σ) one has to

replace also CX by CΣ). Theorem B together with a simple application of the Lefschetz

hyperplane section theorem give the following result:

Corollary C. Let X ⊂ CPN be an algebraic manifold with small dual and b2(X) = 1.

Then b̃j(X) = b̃j+2(X), ∀ j ∈ Z. Moreover, if Σ ⊂ X is a smooth hyperplane section

then similarly to X we have b̃j(Σ) = b̃j+2(Σ), ∀ j ∈ Z.

A similar result (for subcritical manifolds) has been previously obtained by He [He]

using methods of contact homology.

If dimC(X) = n and def(X) = k, Theorem C implies the following relations among the

Betti numbers of X :

bj(X) + bj+n+k+2(X) = bj+2(X) + bj+n+k+4(X), ∀ 0 ≤ j ≤ n + k − 1,

bn+k(X) = bn+k+2(X) + 1, bn+k+1(X) = bn+k+3(X),

and the following ones for those of Σ:

bj(Σ) + bj+n+k(Σ) = bj+2(Σ) + bj+n+k+2(Σ), ∀ 0 ≤ j ≤ n+ k − 3,

bn+k−2(Σ) = bn+k(Σ) + 1, bn+k−1(Σ) = bn+k+1(Σ).

We will prove a slightly stronger result in §5, see Corollary 5.D.
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Example. Consider the complex Grassmannian X = Gr(5, 2) ⊂ CP 9 of 2-dimensional

subspaces in C5 embedded in projective space by the Plücker embedding. It is known

that def(X) = 2, see [Tev2]. We have dimC(X) = 6 and 2CX = 10. The table of Betti

numbers of X is given as follows:

q 0 1 2 3 4 5 6 7 8 9 10 11 12

bq(X) 1 0 1 0 2 0 2 0 2 0 1 0 1

Further implications of Theorem B are obtained by studying the algebraic properties

of the inverse [ω]−1. First note that due to degree reasons the inverse element should be

of the form

[ω]−1 = αn+k−2 ⊗ q−1 ∈ QH−2(Σ; Λ)

where αn+k−2 ∈ Hn+k−2(Σ) is a nontrivial element. Moreover, this element needs to

satisfy the following conditions:

[ω] ∪ αn+k−2 = 0, ([ω] ∗ αn+k−2)1 = 1,

where ([ω] ∗ αn+k−2)1 ∈ H0(Σ) is determined by the condition that

〈([ω] ∗ αn+k−2)1,−〉 = GWΣ
1 (PD[ω], PD(αn+k−2),−).

Here PD stands for Poincaré duality, and for a ∈ QH l(Σ; Λ) and i ∈ Z we denote by

(a)i ∈ H l−2iCΣ(Σ) the coefficient of qi in a. The notation GWΣ
j (A,B,C) stands for the

Gromov-Witten invariant counting the number of rational curves u : CP 1 → Σ passing

through three cycles representing the homology classes A,B,C with c1(u∗[CP
1]) = jCΣ.

So in our case, the fact that ([ω] ∗ αn+k−2)1 6= 0 implies that Σ is uniruled. The

uniruldness of Σ (as well as that of X) was previously known and the variety of rational

curves on it was studied by Ein in [Ein2]. Finally, note that the uniruldness of X follows

also from the results of He [He] in combination with Theorem A above.

The method of proof of Theorem B is an application of the theory of Hamiltonian

fibrations and, in particular, their Seidel elements, see [Sei]. In [Sei] Seidel constructed a

representation of π1(Ham(Σ, ω)) on QH(Σ; Λ) given by a group homomorphism

S : π1(Ham(Σ, ω)) −→ QH(Σ; Λ)×,

where QH(Σ; Λ)× is the group of invertible elements of the quantum cohomology algebra.

Theorem B follows from:

Theorem D. Let X ⊂ CPN be an algebraic manifold with small dual and b2(X) = 1.

Let Σ ⊂ X be a smooth hyperplane section of X and denote by ω the symplectic structure

induced on Σ from CPN . There exists a nontrivial element 1 6= λ ∈ π1(Ham(Σ, ω)) whose

Seidel element is given by

S(λ) = [ω] ∈ QH2(Σ; Λ).
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See Theorems 5.B and 9.A for more general statements.

Before we turn to examples, let us mention that by results of [BFS], based on Mori

theory, the classification of manifolds with small dual is reduced to the case b2(X) = 1.

Here is a list of examples of manifolds with small dual and b2(X) = 1 (see [Tev2] for more

details):

Examples. (1) X = CP n ⊂ CP n+1 has def(X) = n.

(2) X = Gr(2l + 1, 2) embedded via the Plücker embedding has def(X) = 2.

(3) X = S5 ⊂ CP 15 the 10–dimensional spinor variety has def(X) = 4.

(4) In any of the examples (1)–(3) one can take iterated hyperplane sections and still

get manifolds with def > 0 and b2 = 1, provided that the number of iterations

does not exceed the defect−1. (See §2.)

The manifolds in (1)–(3) together with the corresponding hyperplane sections (4) are the

only known examples of projective manifolds with small dual and b2(X) = 1, see [BS, Sno].

On the basis of these examples, it is conjectured in [BS] that all non-linear algebraic

manifolds with b2(X) = 1 have def(X) ≤ 4.

Organization of the paper. The rest of the paper is organized as follows: In §2 we review

basic facts on projective manifolds with small dual. In §3 we prove Theorem A. In §4 we

review relevant results from the theory of Hamiltonian fibrations and the Seidel represen-

tation. In §5 we explain the relation between manifolds with small dual and Hamiltonian

fibrations. In §6 we prove Theorems B and D. Corollary C is proved in §7. In §8 we

present more applications of our methods to questions on the symplectic topology and

algebraic geometry of manifolds with small dual. We also outline an alternative proof

of Corollary C based on Lagrangian Floer theory. In §9 we explain how to generalize

Theorem B to the case b2(X) > 1 (or more generally to non-monotone manifolds). In the

same section we also work out explicitly such an example. Finally, in §10 we discuss some

open questions and further possible directions of study.

2. Basic results on projective manifolds with small dual

Let X ⊂ CPN be an algebraic manifold of dimCX = n. Denote by (CPN)∗ the dual

projective space parametrizing hyperplanes H ⊂ CPN . To X one associates the dual

variety X∗ ⊂ (CPN)∗, which (in the case X is smooth) is defined as

X∗ = {H | H is somewhere tangent to X}.

We refer the reader to [Tev2] for a detailed account on the subject of projective duality.

In this section we will review basic properties of projective manifolds with positive defect.
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Define the defect of X to be

def(X) = codimCX
∗ − 1.

Note that when X∗ is a hypersurface the defect of X is zero. An important feature of

the defect is the following: if def(X) = k then for a smooth point of the dual variety,

H ∈ X∗
sm, the singular part sing(X ∩ H) of X ∩ H is a projective space of dimension k

linearly embedded in CPN . Thus, X is covered by projective spaces of dimension k, and

in particular there is a projective line through every point of X (see [Kle1]).

Next, the defect of X and that of a hyperplane section Σ ⊂ X of X are related as

follows (see [Ein1]):

(2) def(Σ) = max {def(X)− 1, 0} .

A well known (unpublished) result of Landman states that for manifolds X with small

dual we have the following congruence dimC(X) ≡ def(X) (mod 2) (see [Ein2, Tev2] for

a proof of this).

Later, Ein proved in [Ein2] the following. Let X ⊂ CPN be an algebraic manifold with

dimC(X) = n and def(X) = k > 0. Denote by cX1 the first Chern class of X . Then

through every point in X there exists a projective line S with

cX1 (S) =
n+ k

2
+ 1.

Of special importance is the case b2(X) = 1, which was extensively studied by Ein

in [Ein2]. In this case we have:

(3) cX1 =

(
n+ k

2
+ 1

)
· h,

where h ∈ H2(X) ∼= Z is the positive generator, which is also the class of the restriction

(to X) of the Kähler form of CPN . In particular, in this case both X and Σ are Fano

manifolds.

3. Subcriticality and projective defect

Let Y ⊂ CN be a Stein manifold. The study of Morse theory on Stein manifolds was

initiated in the classical paper [AF] of Andreotti and Frankel. Further aspects of Morse

theory on Stein manifolds where studied by various authors [EG, Eli1, Eli2, BC1]. A

function ϕ : Y → R is called plurisubharmonic (p.s.h in short) if the form Ω = −ddCϕ

is a Kähler form on Y. Here dCϕ = dϕ ◦ J , where J is the complex structure of Y . A

plurisubharmonic function ϕ : Y → R is called exhausting if it is proper and bounded

from below.
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For a plurisubharmonic Morse function ϕ : Y → R denote

indmax(ϕ) = max {indz(ϕ) | z ∈ Crit(ϕ)} ,

where indz(ϕ) is the Morse index of the critical point z ∈ Crit(ϕ). The subcriticality

index ind(Y ) of a Stein manifold Y is defined by

ind(Y ) := min {indmax(ϕ) | ϕ : Y → R is a p.s.h exhausting Morse function} .

A fundamental property of the index is that 0 ≤ ind(Y ) ≤ dimC(Y ). (See [AF, EG, Eli1,

Eli2] for various proofs of this statement.) Recall also that a Stein manifold Y is called

subcritical if ind(Y ) < dimC(Y ).

We now prove Theorem A.

Proof. Write n = dimC(X), k = def(X) and assume k > 0. Denote by Y = X \ Σ ⊂

CPN \H = CN . Denote by h(·, ·) the standard Hermitian form of CN , by (·, ·) = Reh(·, ·)

the standard scalar product and by | · | the standard Euclidean norm on CN . Fix a point

w0 ∈ CN and define ϕw : Y → R to be the function

ϕw0
(z) := |z − w0|

2, ∀z ∈ Y.

By standard arguments, for a generic point w0 ∈ CN , ϕw0
is an exhausting plurisubhar-

monic Morse function. It is well known (see e.g. [Voi]) that z0 ∈ Y is a critical point of

ϕw0
if and only if −−→w0z0 ⊥ Tz0Y . In order to compute the Hessian of ϕw0

at a critical point

z0 we need the second fundamental form. We will follow here the conventions from [Voi].

Denote by γ : Y −→ Gr(n,N) the Gauss map, γ(x) = TxY . Consider the differential of

this map Dγx : TxY −→ TTxYC
N = hom(TxY,C

N/TxY ). This map induces a symmetric

bilinear form:

Φ : S2TxY −→ CN/TxY

which is called the second fundamental form.

As h(v,−−→w0z0) = 0 for every v ∈ Tz0Y we can define a symmetric complex bilinear form:

G : S2Tz0Y −→ C, G(u, v) = h(Φ(u, v),−−→w0z0).

A standard computation (see e.g. [Voi]) shows that the Hessian of ϕw0
is given by:

(4) Hessz0ϕw0
(u, v) = 2((u, v) + ReG(u, v)), ∀u, v ∈ Tz0Y.

Next, by a result of Katz we have: rankCG ≤ n − k. (See [Tev2, Tev1] and the

references therein, e.g. exposé XVII by N. Katz in [SGA]. See also [GH2].) It follows

that dimR ker(ReG) ≥ 2k.

Denote the non-zero eigenvalues of ReG (in some orthonormal basis) by λi, i = 1, . . . , r,

with r ≤ 2n− 2k. It is well known that for real symmetric bilinear forms that appear as
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the real part of complex ones (e.g. ReG) the following holds: λ is an eigenvalue if and

only if −λ is an eigenvalue (see [Voi]), moreover the multiplicities of λ and −λ are the

same. (See e.g. [Voi] for a proof.) It follows that the number of negative λi’s can be at

most n− k.

Coming back to (4), the eigenvalues of Hessz0ϕw0
are of the form 1+λ with λ being an

eigenvalue of ReG. It follows that the number of negative eigenvalues of Hessz0ϕw0
is at

most n − k. This shows that indz0(ϕw0
) ≤ n− k for every z0 ∈ Crit(ϕw0

). In particular,

ind(Y ) ≤ n− k. �

In particular, using standard arguments one gets from Theorem A the following version

of the Lefschetz hyperplane theorem for manifolds with small dual, which was previously

known and proved by other methods in [LS]:

Corollary 3.A. Let X ⊂ CPN be an algebraic manifold with dimCX = n and def(X) = k

and let Σ ⊂ X be a smooth hyperplane section. Denote by i : Σ −→ X the inclusion. The

induced maps i∗ : Hj(Σ;Z) −→ Hj(X ;Z) and i∗ : πj(Σ, ∗) −→ π(X, ∗) are:

(1) Isomorphisms for j < n+ k − 1.

(2) Surjective for j = n+ k − 1.

Similarly, the restriction map i∗ : Hj(X ;Z) −→ Hj(Σ;Z) is an isomorphism for every

j < n + k − 1 and injective for j = n + k − 1.

Another consequence is the following refinement of the hard Lefschetz theorem.

Corollary 3.B. Let X ⊂ CPN be as in Corollary 3.A. Denote by ω the Kähler form on

X induced from the standard Kähler form of CPN . Then the map

L : Hj(X ;R) −→ Hj+2(X ;R), L(a) = a ∪ [ω],

is an isomorphism for every n− k − 1 ≤ j ≤ n+ k − 1.

Proof. This follows from Corollary 3.A together with the Hard Lefschetz theorem applied

both to Σ and X . �

4. Hamiltonian fibrations

In what follows we will use the theory of symplectic and Hamiltonian fibrations and

their invariants. We refer the reader to [GLS, MS1, MS2] for the foundations.

Let π : X̃ → B be a smooth locally trivial fibration with fiber Σ and base B which are

both closed manifolds. We will assume in addition that B is a simply connected manifold.

Further, let Ω̃ be a closed 2-form on X̃ such that the restriction Ωb = Ω̃|Σb
to each fiber

Σb = π−1(b), b ∈ B, is a symplectic form. Fix b0 ∈ B, and let ω
Σ
be a symplectic form



THE SYMPLECTIC TOPOLOGY OF PROJECTIVE MANIFOLDS WITH SMALL DUAL 9

on Σ such that (Σ, ω
Σ
) is symplectomorphic to (Σb0 ,Ωb0). This structure is a special case

of a so called Hamiltonian fibration. It is well known that under these assumptions all

fibers (Σb,Ωb) are symplectomorphic and in fact the structure group of π can be reduced

to Ham(Σ, ω
Σ
).

We will assume from now on that B = S2. We identify S2 ∼= CP 1 in a standard way

and view S2 as a Riemann surface whose complex structure is denoted by j.

4.1. Holomorphic curves in Hamiltonian fibrations. Let π : (X̃, Ω̃) → S2 be a

Hamiltonian fibration as above. Denote by T vX̃ = ker(Dπ) the vertical part of the

tangent bundle of X̃ . We now introduce almost complex structures compatible with the

fibration. These are by definition almost complex structures J̃ on X̃ with the following

properties:

(1) The projection π is (J̃ , j)–holomorphic.

(2) For every z ∈ S2 the restriction Jz of J̃ to Σz is compatible with the symplectic

form Ωz, i.e. Ωz(Jzξ, Jzη) = Ωz(ξ, η) for every ξ, η ∈ T v
z X̃ , and Ωz(ξ, Jzξ) > 0 for

every 0 6= ξ ∈ T v
z X̃ .

We denote the space of such almost complex structures by J̃ (π, Ω̃).

Denote by Hπ
2 ⊂ H2(X̃ ;Z) be the set of classes Ã such that π∗(Ã) = [S2]. Given Ã and

J̃ ∈ J̃ (π, Ω̃) denote by Ms(Ã, J̃) the space of J̃–holomorphic sections in the class Ã, i.e.

the space of maps ũ : S2 −→ X̃ with the following properties:

(1) ũ is (j, J̃)–holomorphic.

(2) ũ is a section, i.e. π ◦ ũ = id.

(3) ũ∗[S
2] = Ã.

Fix z0 ∈ S2 and fix an identification (Σ, ω
Σ
) ≈ (Σz0 ,Ωz0). The space of sections comes

with an evaluation map:

evJ̃ ,z0 : M
s(Ã, J̃) −→ Σ, evJ̃ ,z0(ũ) = ũ(z0).

4.1.1. Transversality. In order to obtain regularity and transversality properties for the

moduli spaces of holomorphic sections and their evaluation maps we will need to work

with so called regular almost complex structures. Moreover, since the moduli spaces

of holomorphic sections are usually not compact they do not carry fundamental classes

and so the evaluation maps do not induce in a straightforward way homology classes in

their target (Σ in this case). The reason for non-compactness of these moduli spaces

is that a sequence of holomorphic sections might develop bubbles in one of the fibers

(see e.g. [MS2]). The simplest way to overcome this difficulty is to make some positivity

assumptions on the fiber Σ (called monotonicity). Under such conditions the moduli
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spaces of holomorphic sections admits a nice compactification which makes it possible to

define homology classes induced by the evaluation maps. Here is the relevant definition.

Definition 4.1.A. Let (Σ, ω
Σ
) be a symplectic manifold. Denote by HS

2 (Σ) ⊂ H2(Σ;Z)

the image of the Hurewicz homomorphism π2(Σ) −→ H2(Σ;Z). Denote by cΣ1 ∈ H2(Σ;Z)

the first Chern class of the tangent bundle (TΣ, JΣ), where JΣ is any almost complex struc-

ture compatible with ω
Σ
. The symplectic manifold (Σ, ω

Σ
) is called spherically monotone

if there exists a constant λ > 0 such that for every A ∈ HS
2 (Σ) we have ω

Σ
(A) = λcΣ1 (A).

For example, if Σ is a Fano manifold and ω
Σ
is a symplectic form with [ω

Σ
] = cΣ1 then

obviously (Σ, ω
Σ
) is spherically monotone.

From now on we assume that the fiber (Σ, ω
Σ
) of π : (X̃, Ω̃) −→ S2 is spherically

monotone. Denote by cv1 = c1(T
vX̃) ∈ H2(X̃) the vertical Chern class, i.e. the first

Chern class of the vertical tangent bundle of X̃ . The following is proved in [Sei, MS2].

There exists a dense subset J̃reg(π, Ω̃) ⊂ J̃ (π, Ω̃) such that for every J̃ ∈ J̃reg(π, Ω̃) and

every Ã ∈ Hπ
2 the following holds:

(1) For every Ã ∈ Hπ
2 , the moduli space Ms(Ã, J̃) of J̃-holomorphic sections in the

class Ã is either empty or a smooth manifold of dimension

dimRM
s(Ã, J̃) = dimRΣ + 2cv1(Ã).

Moreover, Ms(Ã, J̃) has a canonical orientation.

(2) The evaluation map evJ̃ ,z0 : Ms(Ã, J̃) −→ Σ is a pseudo-cycle (see [MS2] for the

definition). In particular, its Poincaré dual gives a cohomology class S(Ã; J̃) ∈

Hd(Σ;Z)fr = Hd(Σ;Z)/torsion, where d = −2cv1(Ã). Moreover, the class S(Ã; J̃)

is independent of the regular J̃ used to define it. Therefore we will denote it from

now on by S(Ã).

We refer the reader to [MS2, Sei] for more general results on transversality.

The definition of regularity for J̃ ∈ J̃ (π, Ω̃) involves three ingredients. The first is

that the restriction Jz0 of J̃ to Σ = Σz0 is regular in the sense of Chapter 3 of [MS2],

namely that the linearization of the ∂Jz0
-operator at every Jz0-holomorphic curve in Σ is

surjective. (In addition one has to require that certain evaluation maps for tuples of such

curves are mutually transverse.) The second ingredient is that (the vertical part of) the

∂J̃ -operator at every J̃-holomorphic section is surjective. The third one is that evJ̃ ,z0 is

transverse to all Jz0-holomorphic bubble trees in Σ.

In practice, we will have to compute cohomology classes of the type S(Ã) = S(Ã; J̃)

using a specific choice of J̃ that naturally appears in our context. It is not an easy task

to decide whether a given almost complex structure J̃ is regular or not. However, in some

situations it is possible to compute some of the classes S(Ã) by using almost complex
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structures J̃ that satisfy weaker conditions than regularity. Criteria for verification of

these conditions have been developed in [Sei] (see Proposition 7.11 there) and in [MS2]

(see Section 3.3 and 3.4 there). Below we will actually not appeal to such criteria and use

simpler arguments.

4.2. The Seidel representation. Let (Σ, ω
Σ
) be a closed monotone symplectic manifold

(see Definition 4.1.A is §4.1.1). Denote by CΣ ∈ N the minimal Chern number, i.e.

CΣ = min{cΣ1 (A) | A ∈ HS
2 , c

Σ
1 (A) > 0}.

Denote by Λ = Z[q−1, q] the ring of Laurent polynomials. We endow Λ with a grading

by setting deg(q) = 2CΣ. Let QH∗(Σ; Λ) = (H•(Σ) ⊗ Λ)∗ be the quantum cohomology

of Σ, where the grading is induced from both factors H•(Σ) and Λ. We endow QH(Σ; Λ)

with the quantum product ∗. The unity will be denoted as usual by 1 ∈ QH0(Σ; Λ). We

refer the reader to Chapter 11 of [MS2] for the definitions and foundations of quantum

cohomology. (Note however that our grading conventions are slightly different than the

ones in [MS2]).) With our grading conventions we have:

QHj(Σ; Λ) =
⊕

l∈Z

Hj−2lCΣ(Σ)ql.

We will need also a coefficients extension of QH(Σ; Λ). Denote Λ = Z[t−1, t] the ring

of Laurent polynomials in the variable t, graded so that deg(t) = 2. Consider now

QH∗(Σ; Λ) = (H•(Σ)⊗ Λ)∗, endowed with the quantum product ∗. We can regard Λ as

an algebra over Λ using the embedding of rings induced by q 7−→ tCΣ . This also induces

an embedding of rings

QH∗(Σ; Λ) −֒→ QH∗(Σ; Λ).

We will therefore view from now onQH(Σ; Λ) as a subring of QH(Σ; Λ) by setting q = tCΣ .

In [Sei] Seidel associated to a Hamiltonian fibration π : X̃ −→ S2 with fiber Σ an

invertible element S̃(π) ∈ QH0(Σ; Λ). We refer the reader to [Sei, MS2] for a detailed

account of this theory. Here is a brief review of the main construction.

Pick a regular almost complex structure J̃ ∈ J̃reg(π, Ω̃). Define a class:

(5) S̃(π) :=
∑

Ã∈Hπ
2

S(Ã; J̃)⊗ tc
v
1
(Ã) ∈ QH0(Σ; Λ).

Note that since the degree of S(Ã, J̃) is −2cv1(Ã), a class Ã ∈ Hπ
2 contributes to the sum

in (5) only if

(6) 2− 2n ≤ 2cv1(Ã) ≤ 0.

The class S̃(π) is called the Seidel element of the fibration π : (X̃, Ω̃) −→ S2.
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In what follows it will be more convenient to work with the more “economical” ring Λ

rather than Λ. We will now define a normalized version of the Seidel element, denoted

S(π), which lives in QH(Σ; Λ). Fix a reference class Ã0 ∈ Hπ
2 and set c0(π) = cv1(Ã0).

Define now

(7) S(π) = t−c0(π)S̃(π).

Since any two classes in Hπ
2 differ by a class in HS

2 (Σ), there exists a uniquely defined

function ν : Hπ
2 → Z such that

cv1(Ã) = c0(π) + ν(Ã)CΣ, ∀Ã ∈ Hπ
2 .

As q = tCΣ we have:

(8) S(π) :=
∑

Ã∈Hπ
2

S(Ã; J̃)⊗ qν(Ã) ∈ QH−2c0(π)(Σ; Λ).

By abuse of terminology we will call S(π) also the Seidel element of the fibration π.

Of course the element S(π) (as well as its degree) depends on the choice of the reference

section Ã0, however different reference sections Ã0 will result in elements that differ by a

factor of the type qr for some r ∈ Z. In particular, many algebraic properties of S(π) (such

as invertibility) do not depend on this choice. We will therefore ignore this ambiguity from

now on.

4.2.1. Relations to Hamiltonian loops. An important feature of the theory is the connec-

tion between Hamiltonian fibrations over S2 with fiber (Σ, ω
Σ
) and π1(Ham(Σ, ω

Σ
)). To a

loop based at the identity λ = {ϕt}t∈S1 in Ham(Σ, ωΣ) one can associate a Hamiltonian

fibration πλ : M̃λ → S2 as follows. Let D+ and D− be two copies of the unit disk in C,

where the orientation on D− is reversed. Define:

(9) M̃λ =
(
(Σ×D+)

∐
(Σ×D−)

)
/ ∼, where (x, e2πit+ ) ∼ (ϕt(x), e

2πit
− ).

Identifying S2 ≈ D+ ∪∂ D− we obtain a fibration π : M̃λ −→ S2. As the elements of λ

are symplectic diffeomorphisms, the form ω
Σ
gives rise to a family of symplectic forms

{Ωz}z∈S2 on the fibers Σz = π−1(z) of π. Moreover, π : (M̃λ, {Ωz}z∈S2) −→ S2 is locally

trivial. Since the elements of λ are in fact Hamiltonian diffeomorphisms it follows that

the family of fiberwise forms {ωz}z∈S2 can be extended to a closed 2-form Ω̃ on M̃λ, i.e.

Ω̃|Σz
= Ωz for every z. See [Sei, MS2] for the proofs. We therefore obtain from this

construction a Hamiltonian fibration π : (M̃λ, Ω̃) −→ S2.

From the construction one can see that homotopic loops in Ham(Σ, ω
Σ
) give rise to

isomorphic fibrations. We denote the isomorphism class of fibrations corresponding to an

element γ ∈ π1(Ham(Σ, ω
Σ
)) by πγ .
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Conversely, if π : (M̃, Ω̃) −→ S2 is a Hamiltonian fibration with fiber (Σ, ω
Σ
) one can

express M̃ as a gluing of two trivial bundles over the two hemispheres in S2. The gluing

map would be a loop of Hamiltonian diffeomorphisms of (Σ, ω
Σ
). Different trivializations

lead to homotopic loops. Thus the fibration π determines a class γ(π) ∈ π1(Ham(Σ, ω
Σ
)).

This correspondence has the following properties in relation to the Seidel elements

(see [Sei] for the proofs):

S(πγ1·γ2) = S(πγ1) ∗ S(πγ2), ∀ γ1, γ2 ∈ π1(Ham(Σ, ω
Σ
)).

Here ∗ stands for the quantum product. The unit element e ∈ π1(Ham(Σ, ω
Σ
)) corre-

sponds to the trivial fibration πe : Σ × S2 −→ S2 and we have S(πe) = 1 ∈ QH(Σ; Λ).

It follows that S(π) is an invertible element in QH(Σ; Λ) for every π. The corresponding

homomorphism

S : π1(Ham(Σ, ω
Σ
)) −→ QH(Σ,Λ)×, γ 7−→ S(πγ)

(which by abuse of notation we also denote by S), where QH(Σ,Λ)× is the group of

invertible elements in QH(Σ,Λ), is called the Seidel representation.

As mentioned before, for our purposes it would be more convenient to work with the

normalized version S(π) of the Seidel element rather than with S(π). We claim that any

normalized Seidel element S(π) is invertible in QH(Σ; Λ) (not just in QH(Σ; Λ)). To

see this, denote by γ ∈ π1(Ham(Σ)) the homotopy class of loops corresponding to the

fibration π (so that π = πγ). Denote by π′ = πγ−1 the fibration corresponding to the

inverse of γ. Choose two reference sections Ã0 and Ã′
0 for π and π′ respectively. The

corresponding normalized Seidel elements are S(π) = t−c0(π)S̃(π), S(π′) = t−c0(π′)S̃(π′).

Since S̃π ∗ S̃π′ = 1 we have

S(π) ∗ S(π′) = t−c0(π)−c0(π′).

But S(π) and S(π′) both belong to the subring QH(Σ; Λ) of QH(Σ; Λ), hence their

product S(π) ∗ S(π′) ∈ QH(Σ; Λ) too. Thus t−c0(π)−c0(π′) = qr for some r ∈ Z. It follows

that S(π) is invertible in QH(Σ; Λ).

5. From manifolds with small dual to Hamiltonian fibrations

Let X ⊂ CPN be a projective manifold with small dual. Put n = dimCX and k =

def(X) > 0. Since X∗ ⊂ (CPN)∗ has codimension k + 1 ≥ 2 we can find a pencil of

hyperplanes ℓ ⊂ (CPN)∗ such that ℓ does not intersect X∗. Consider the manifold

X̃ = {(x,H) | H ∈ ℓ, x ∈ H} ⊂ X × ℓ.
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Identify ℓ ∼= CP 1 ∼= S2 in an obvious way. Denote by

p : X̃ −→ X, πℓ : X̃ −→ ℓ ∼= S2

the obvious projections. The map p can be considered as the blowup of X along the base

locus of the pencil ℓ. The map πℓ is a honest holomorphic fibration (without singularities)

over ℓ ∼= CP 1 with fibers π−1
ℓ (H) = X ∩H .

Denote by ω
X
the symplectic form on X induced from the Fubini-Study Kähler form

of CPN . Let ωS2 be an area form on S2 with
∫
S2 ωS2 = 1. Endow X × S2 with ω

X
⊕ ωS2

and denote by Ω̃ the restriction of ω
X
⊕ ωS2 to X̃ ⊂ X × S2. The restriction of Ω̃ to the

fibers Ω̃|πℓ
−1(H), H ∈ ℓ, coincides with the symplectic forms ω

X
|X∩H . Thus πℓ : X̃ −→ S2

is a Hamiltonian fibration. Fix a point H0 ∈ ℓ, and set (Σ, ω
Σ
) = (π−1

ℓ (H0), ωX
|X∩H0

).

Remark 5.A. Different pencils ℓ ⊂ (CPN)∗ with ℓ ∩ X∗ = ∅ give rise to isomorphic

Hamiltonian fibrations. This is so because the real codimension of X∗ is at least 4 hence

any two pencils ℓ, ℓ′ which do not intersect X∗ can be connected by a real path of pencils

in the complement of X∗. Thus the isomorphism class of the Hamiltonian fibration πℓ,

the element γ(πℓ) ∈ π1(Ham(Σ, ω
Σ
)), as well as the corresponding Seidel element S(πℓ)

can all be viewed as invariants of the projective embedding X ⊂ CPN .

Theorem 5.B. Let X ⊂ CPN be an algebraic manifold with dimC(X) = n ≥ 2 and

def(X) = k > 0. Denote by HS
2 (X) = image

(
π2(X) −→ H2(X ;Z)

)
⊂ H2(X ;Z) the

image of the Hurewicz homomorphism. Denote by h ∈ H2(X) the class dual to the

hyperplane section. Assume that there exists 0 < λ ∈ Q such that cX1 (A) = λh(A) for

every A ∈ HS
2 (X). Then the Seidel element of the fibration πℓ : X̃ −→ ℓ is:

S(πℓ) = [ω
Σ
] ∈ QH2(Σ; Λ).

The degree of the variable q ∈ Λ is deg(q) = n+k
2
.

The proof of this Theorem is given in §6.

Remark 5.C. The condition cX1 (A) = λh(A), ∀A ∈ HS
2 , implies that λ = n+k+2

2
. Indeed,

as explained in §2, manifolds X with small dual contain projective lines S ⊂ X (embedded

linearly in CPN) with cX1 (S) =
n+k+2

2
. As h(S) = 1 it follows that λ = n+k+2

2
.

Examples. Theorem 5.B applies for example to algebraic manifolds X ⊂ CPN with small

dual that satisfy one of the following conditions:

(1) b2(X) = 1.

(2) More generally, the free part of HS
2 (X) has rank 1.
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This is so because in both of these cases we must have h = λcX1 for some λ ∈ Q. The fact

that λ > 0 follows from the existence of rational curves S ⊂ X with cX1 (S) =
n+k+2

2
as

explained in §2.

Here is a concrete class of examples with b2(X) > 1 (hence different than those in §1)

to which Theorem 5.B applies. Let Y ⊂ CPm be any algebraic manifold with π2(Y ) = 0

(or more generally with hY (A) = 0 for every A ∈ HS
2 (Y ), where hY is the Poincaré dual

of the hyperplane class on Y ). Let i : CP n × CPm −→ CP (n+1)(m+1)−1 be the Segre

embedding and put X = i(CP n × Y ). It is well known (see Theorem 6.5 in [Tev1]) that

def(X) ≥ n− dimC(Y ),

hence if n > dimC(Y ), X will have a small dual. Note that the conditions of Theorem 5.B

are obviously satisfied.

One could generalize this example further by replacing CP n with any manifold Z sat-

isfying cZ1 (A) = λhZ(A) for every A ∈ HS
2 (Z) for some λ > 0 and such that def(Z) >

dimC(Y ). (See [Tev1] for more on such examples.)

Corollary 5.D. Under the assumptions of Theorem 5.B we have:

b̃j(X) = b̃j+2(X), b̃j(Σ) = b̃j+2(Σ) ∀ j ∈ Z,

where the definition of b̃j is given in (1) in §1. Or, put in an unwrapped way, we have

the following identities for X:

bj(X) + bj+n+k+2(X) = bj+2(X) + bj+n+k+4(X), ∀ 0 ≤ j ≤ n + k − 1,

bn+k(X) = bn+k+2(X) + 1, bn+k+1(X) = bn+k+3(X) + b1(X),

and the following ones for Σ:

bj(Σ) + bj+n+k(Σ) = bj+2(Σ) + bj+n+k+2(Σ), ∀ 0 ≤ j ≤ n+ k − 3,

bn+k−2(Σ) = bn+k(Σ) + 1, bn+k−1(Σ) = bn+k+1(Σ) + b1(Σ).

The proof is given in §7

6. Proofs of theorem 5.B and Theorems B and D

As noted in the discussion after the statement of Theorem 5.B, Theorems B, D from §1

are immediate consequences of Theorem 5.B. Therefore we will concentrate in this section

in proving the latter. We will make throughout this section the same assumptions as in

Theorem 5.B and use here the construction and notation of §5.

For a hyperplane H ∈ (CPN)∗ write ΣH = X ∩H . For a pencil ℓ ⊂ (CPN)∗ denote by

Bℓ = ΣH0
∩ΣH1

⊂ X , (H0, H1 ∈ ℓ), its base locus. Recall that p : X̃ −→ X can be viewed

as the blowup of X along Bℓ. Denote by E ⊂ X̃ the exceptional divisor of this blowup.
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The restriction p|E : E −→ Bℓ is a holomorphic fibration with fiber CP 1. Denote the

homology class of this fiber by F ∈ H2(X̃ ;Z). Since dimR Bℓ = 2n− 4, the map induced

by inclusion H2(X \Bℓ;Z) −→ H2(X ;Z) is an isomorphism, hence we obtain an obvious

injection j : H2(X ;Z) −→ H2(X̃ ;Z). The 2’nd homology of X̃ is then given by

H2(X̃ ;Z) = j(H2(X ;Z))⊕ ZF.

The (2n− 2)’th homology of X̃ fits into the following exact sequence:

0 −→ Z[E] −→ H2n−2(X̃ ;Z)
p∗
−→ H2n−2(X ;Z) −→ 0,

where the first map is induced by the inclusion. We obviously have p∗ ◦ j = id. Denote

by Σ̃ ⊂ X̃ the proper transform of Σ (with respect to p) in X̃ . The intersection pairing

between H2n−2 and H2 in X̃ is related to the one in X as follows:

(10)
V · j(A) = p∗(V ) · A, ∀V ∈ H2n−2(X̃ ;Z), A ∈ H2(X ;Z),

[Σ̃] · F = 1, [E] · F = −1, [E] · j(A) = 0, ∀A ∈ H2(X ;Z).

Consider now the fibration πℓ : X̃ −→ ℓ. The fiber over H0 ∈ ℓ is precisely Σ = ΣH0
. It

follows from (10) that the set of classes Hπℓ

2 that represent sections of π satisfies:

(11) Hπℓ

2 ⊂ {j(A) + dF | [Σ] · A = 1− d}.

Denote by J0 the standard complex structure of X (coming from the structure of X

as an algebraic manifold). Denote by R(X) ⊂ H2(X ;Z) the positive cone generated by

classes that represent J0-holomorphic rational curves in X , i.e.

R(X) =
{∑

ai[Ci]
∣∣ ai ∈ Z≥0, Ci ⊂ X is a rational J0-holomorphic curve

}
.

Lemma 6.A. Let Ã = j(A) + dF ∈ Hπℓ

2 , with A ∈ H2(X ;Z), d ∈ Z. If S(Ã) 6= 0 then

A ∈ R(X) and d ≤ 1, with equality if and only if A = 0.

Proof. Denote by J̃0 the standard complex structure on X̃ ⊂ X × ℓ, namely the complex

structure induced from the standard complex structure J0 ⊕ i on X × ℓ. Let J̃n be a

sequence of regular almost complex structures on X̃ with J̃n −→ J̃0. Since S(Ã, J̃n) 6= 0,

there exist J̃n-holomorphic sections un ∈ Ms(Ã, J̃n). After passing to the limit n −→ ∞

we obtain by Gromov compactness theorem a (possibly reducible) J̃0-holomorphic curve

D ⊂ X̃ in the class Ã. As p : X̃ −→ X is (J̃0, J0)-holomorphic it follows that p(D) is a

J0-holomorphic rational curve, hence A = p∗([D]) ∈ R(X).

Next, recall that [Σ] · A = 1 − d. But Σ ⊂ X is ample, hence [Σ] · A = 1− d ≥ 0 with

equality if and only if A = 0. �

The next lemma shows that when d < 1 the sections in the class Ã do not contribute

to the Seidel element in (8).
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Lemma 6.B. Let Ã = j(A) + dF ∈ Hπℓ

2 with A ∈ H2(X ;Z) and d < 1. Then cv1(Ã) > 0.

In particular, in view of (6), Ã does not contribute to S(πℓ).

Proof. Denote by cX̃1 the first Chern class of (the tangent bundle of) X̃ and by cX1 that

of X . Since X̃ is the blowup of X along Bℓ, the relation between these Chern classes is

given by:

(12) cX̃1 = p∗cX1 − PD([E]),

where PD([E]) ∈ H2(X̃) stands for the Poincaré dual of [E]. (See e.g. [GH1].)

Denote by cℓ1 the first Chern class of ℓ ∼= CP 1. Since Ã represents sections of πℓ we

have:

cv1(Ã) = cX̃1 (Ã)− π∗
ℓ (c

ℓ
1)(Ã) = cX̃1 (Ã)− 2.

Together with (12) and (10) this implies:

(13) cv1(Ã) = p∗(cX1 )(Ã)− [E] · Ã− 2 = cX1 (A) + d− 2.

By Lemma 6.A, A ∈ R(X) ⊂ HS
2 (X), hence by Remark 5.C we have

cX1 (A) =
n+ k + 2

2
h(A) =

n+ k + 2

2
([Σ] · A) =

n+ k + 2

2
(1− d).

Together with (13) we obtain:

cv1(Ã) =
n+ k

2
(1− d)− 1 ≥

n+ k

2
− 1 > 0,

because d < 1 and n ≥ 2. �

We now turn to the case Ã = F . Let b ∈ Bℓ. Define

ũb : ℓ −→ X̃, ũb(z) = (b, z).

It is easy to see that ũb is a J̃0-holomorphic section of πℓ representing the class F .

Lemma 6.C. The sections ũb, b ∈ Bℓ, are the only J̃0-holomorphic sections in the class

F , hence Ms(F, J̃0) = {ũb | b ∈ Bℓ}. The evaluation map is given by

evJ̃0,z0(ũb) = b ∈ Σ

and is an orientation preserving diffeomorphism between Ms(F, J̃0) and the base locus Bℓ.

Proof. Let ũ : ℓ −→ X̃ be a J̃0-holomorphic section in the class F . Write ũ(z) =

(v(z), z) ∈ X × ℓ. Due to our choice of J̃0, v is a J0-holomorphic map. Since p∗(F ) = 0

the map v = p ◦ u : ℓ −→ X must be constant, say v(z) ≡ b, b ∈ X . But v(z) ∈ Σz for

every z ∈ ℓ. It follows that b ∈ ∩z∈ℓΣz = Bℓ. The rest of the statements in the lemma

are immediate. �



18 PAUL BIRAN AND YOCHAY JERBY

We are now ready for the

Proof of Theorem 5.B. In view of (11) and Lemmas 6.A, 6.B, the only class that con-

tributes to the Seidel element S(πℓ) is F , hence:

S(πℓ) = S(F ) ∈ QH2(Σ; Λ).

(We take F to be the reference class of sections and note that cv1(F ) = −1.)

In order to evaluate S(F ) we need to compute S(F, J̃) for a regular J̃ . We first claim

that there exists a neighborhood U of J̃0 inside J̃ (πℓ, Ω̃) such that for every J̃ ∈ U the

space Ms(F, J̃) is compact.

To see this, first note that Ω̃ is a genuine symplectic form on X̃ and that J̃0 is tamed

by Ω̃ (i.e. Ω(v, J̃0v) > 0 for all non-zero vectors v ∈ TX̃ be they vertical or not). Hence

there is a neighborhood U of J̃0 in J̃ (πℓ, Ω̃) such that every J̃ ∈ U is tamed by Ω̃. Next

note that Ω̃ defines an integral (modulo torsion) cohomology class [Ω̃] ∈ H2(X̃)fr and that

Ω̃(F ) = 1 (see §5). It follows that F is a class of minimal positive area for Σ̃. Therefore,

for J̃ tamed by Ω̃, a sequence of J̃ -holomorphic rational curves in the class F cannot

develop bubbles. By Gromov compactness Ms(F, J̃) is compact.

Next we claim that J̃0 is a regular almost complex structure in the sense of the general

theory of pseudo-holomorphic curves (see Chapter 3 in [MS2]). To see this recall the

following regularity criterion (see Lemma 3.3.1 in [MS2]): let (M,ω) be a symplectic

manifold and J an integrable almost complex structure. Then J is regular for a J-

holomorphic curve u : CP 1 −→ M if every summand of the holomorphic bundle u∗TM →

CP 1 (in its splitting to a direct sum of line bundles) has Chern number ≥ −1. Applying

this to our case, a simple computation shows that for every ũb ∈ Ms(F, J̃0) we have

ũ∗
bTX̃ = Oℓ(2)⊕O

⊕(n−2)
ℓ ⊕Oℓ(−1),

hence J̃0 is regular for all ũ ∈ Ms(F, J̃0).

Pick a regular almost complex structure J̃ ∈ J̃reg(π, Ω̃) ∩ U which is close enough to

J̃0. By the standard theory of pseudo-holomorphic curves [MS2] the evaluation maps

evJ̃ ,z0 and evJ̃0,z0 are cobordant, hence give rise to cobordant pseudo-cycles. Moreover

by what we have seen before this cobordism can be assumed to be compact (and the

pseudo-cycles are in fact cycles). It follows that the homology class (evJ̃ ,z0)∗[M
s(F, J̃)]

equals to (evJ̃0,z0)∗[M
s(F, J̃0)] = [Bℓ]. Putting everything together we obtain:

S(πℓ) = S(F, J̃) = PD([Bℓ]) = [ω
Σ
].

�
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7. Proof of Corollary 5.D

The quantum cohomology of Σ can be written additively (as a vector space) as

QHj(Σ; Λ) ∼=
⊕

l∈Z

Hj+2CΣl(Σ).

By Theorem 5.B, [ω
Σ
] ∈ QH2(Σ; Λ) is invertible with respect to the quantum product ∗,

hence the map

(−) ∗ [ω
Σ
] : QHj(Σ; Λ) −→ QHj+2(Σ; Λ), a 7−→ a ∗ [ω

Σ
]

is an isomorphism for every j ∈ Z. The statement about b̃j(Σ) follows immediately.

We now turn to the proof of the statement about b̃j(X). First recall that 2CΣ = n+ k

and 2CX = n + k + 2. We will show now that for every 0 ≤ j ≤ n + k + 1 we have

b̃j(X) = b̃j+2(X).

Step 1. Assume j ≤ n+ k − 4. By Corollary 3.A, bj(Σ) = bj(X) and bj+2(Σ) = bj+2(X).

We claim that

(14) bj+n+k(Σ) = bj+n+k+2(X), bj+n+k+2(Σ) = bj+n+k+4(X).

Indeed, by Corollary 3.A, bn−j−k−2(Σ) = bn−j−k−2(X), hence the first equation in (14)

follows from Poincaré duality for Σ and X . The proof of the second equality is similar.

It follows that

b̃j(X) = bj(X) + bj+n+k+2(X) = bj(Σ) + bj+n+k(Σ) = b̃j(Σ)

= b̃j+2(Σ) = bj+2(Σ) + bj+n+k+2(Σ) = bj+2(X) + bj+n+k+4(X) = b̃j+2(X).

Step 2. Assume n + k − 3 ≤ j ≤ n + k − 1. In this case we have b̃j(X) = bj(X) and

b̃j+2(X) = bj+2(X) and the equality between the two follows from Corollary 3.B.

Step 3. Assume j = n + k. We have to prove that bn+k(X) = b0(X) + bn+k+2(X). By

Poincaré duality this is equivalent to showing that bn−k(X) = b0(X) + bn−k−2(X). The

last equality is, by Corollary 3.A, equivalent to bn−k(Σ) = b0(Σ) + bn−k−2(Σ). Applying

Poincaré duality on Σ the latter becomes equivalent to bn+k−2(Σ) = b0(Σ)+ bn+k(Σ). But

this has already been proved since bn+k−2(Σ) = b̃n+k−2(Σ) = b̃n+k(Σ) = b0(Σ) + bn+k(Σ).

Step 3. Assume j = n+k+1. The proof in this case is very similar to the case j = n+k.

We omit the details. �
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8. Further results

As we have seen above the algebraic geometry of manifolds with small dual is intimately

connected with their symplectic topology. Here we add another ingredient which has to do

with Lagrangian submanifolds. Below we will use the following notation. For an algebraic

manifold X ⊂ CPN and an algebraic submanifold Σ ⊂ X we denote by ω
X
and ω

Σ
the

restrictions of the standard Kähler form of CPN to X and to Σ respectively.

The following theorem was observed in [Bir1] (Theorem K) and in [Bir2] (Theorem 2.1).

Theorem 8.A. Let X ⊂ CPN be an algebraic manifold and Σ ⊂ X a hyperplane section.

If def(X) = 0 then (Σ, ω
Σ
) contains a (embedded) Lagrangian sphere.

Thus we can detect manifolds with small dual (i.e. def > 0) by methods of symplec-

tic topology e.g. by showing that their hyperplane sections do not contain Lagrangian

spheres.

In some situations we also have the converse to Theorem 8.A.

Theorem 8.B. Let Σ ⊂ X ⊂ CPN be as in Theorem 5.B and assume in addition that

dimC(Σ) ≥ 3. Then the symplectic manifold (Σ, ω
Σ
) contains no Lagrangian spheres.

Proof. Suppose by contradiction that L ⊂ (Σ, ω
Σ
) is a Lagrangian sphere. We will use now

the theory of Lagrangian Floer cohomology for in order to arrive at a contradiction. More

specifically, we will use here a particular case of the general theory that works for so called

monotone Lagrangian submanifolds. We will take Z2 as the ground ring and work with

the self Floer cohomology of L, denoted HF (L, L), with coefficients in the Novikov ring

ΛZ2
= Z2[q, q

−1]. This ring is graded so that the variable q has degree deg(q) = NL, where

NL is the minimal Maslov number of L. We refer the reader to [Oh1, Oh2, BC5, BC4]

for the foundations of this theory.

Since L is simply connected, the assumptions on Σ and X imply that L ⊂ Σ is a

monotone Lagrangian submanifold and its minimal Maslov number is NL = 2CΣ = n+k.

(Here, as in Theorem 5.B, k = def(X) ≥ 1.) Under these circumstances it is well known

that the self Floer homology of L, HF (L, L) is well defined and moreover we have an

isomorphism of graded ΛZ2
-modules:

HF ∗(L, L) ∼= (H•(L;Z2)⊗ ΛZ2
)∗.

Since L is a sphere of dimension dimR(L) ≥ 3 this implies that

(15) HF 0(L, L) ∼= Z2, HF 2(L, L) ∼= H2(L;Z2) = 0.
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Denote by QH(Σ; ΛZ2
) the modulo-2 reduction of QH(Σ; Λ) (obtained by reducing the

ground ring Z to Z2). By Theorem 5.B, [ω
Σ
] ∈ QH2(Σ; Λ) is an invertible element, hence

its modulo-2 reduction, say α ∈ QH2(Σ; ΛZ2
) is invertible too.

We now appeal to the quantum module structure of HF (L, L) introduced in [BC5,

BC4, BC3]. By this construction, HF (L, L) has a structure of a graded module over the

ring QH(Σ; ΛZ2
) where the latter is endowed with the quantum product. We denote the

module action of QH∗(Σ; ΛZ2
) on HF ∗(L, L) by

QH i(Σ; ΛZ2
)⊗ΛZ2

HF j(L, L) −→ HF i+j(L, L), a⊗ x 7−→ a⊛ x, i, j ∈ Z.

Since α ∈ QH2(Σ; ΛZ2
), α induces an isomorphism α⊛(−) : HF ∗(L, L) −→ HF ∗+2(L, L).

This however, is impossible (e.g for ∗ = 0) in view of (15). Contradiction. �

Corollary 8.C. Let Σ be an algebraic manifold with dimC(Σ) ≥ 3 and b2(Σ) = 1. Suppose

that Σ can be realized as a hyperplane section of a projective manifold X ⊂ CPN with

small dual. Then in any other realization of Σ as a hyperplane section of a projective

manifold X ′ ⊂ CPN ′

we have def(X ′) > 0. In fact, def(X ′) = def(X).

Proof. Let ω
Σ
be the restriction to Σ (via Σ ⊂ X ⊂ CPN) of the standard symplectic

structure of CPN . Similarly let ω′
Σ
the restriction to Σ (via Σ ⊂ X ′ ⊂ CPN ′

) of the

standard symplectic structure of CPN ′

.

Since b2(Σ) = 1, it follows from Lefschetz theorem that b2(X) = 1. Thus X satisfies

the conditions of Theorem 5.B (see the discussion after Theorem 5.B). By Theorem 8.B

the symplectic manifold (Σ, ω
Σ
) does not contain Lagrangian spheres.

Since b2(Σ) = 1 the cohomology classes [ω
Σ
] and [ω′

Σ
] are proportional, so there is a

constant c such that [ω′
Σ
] = c[ω

Σ
]. Clearly we have c > 0 (to see this, take an algebraic

curve D ⊂ Σ and note that both
∫
D
ω

Σ
and

∫
D
ω′

Σ
must be positive since both ω

Σ
and

ω′
Σ
are Kähler forms with respect to the complex structure of Σ). We claim that the

symplectic structures ω′
Σ
and cω

Σ
are diffeomorphic, i.e. there exists a diffeomorphism

ϕ : Σ −→ Σ such that ϕ∗ω′
Σ
= cω

Σ
. Indeed this follows from Moser argument [MS1]

since all the forms in the family {(1 − t)cω
Σ
+ tω′

Σ
}t∈[0,1] are symplectic (since cω

Σ
and

ω′
Σ
are both Kähler with respect to the same complex structure) and all lie in the same

cohomology class.

Since (Σ, cω
Σ
) has no Lagrangian spheres the same holds for (Σ, ω′

Σ
) too. By Theo-

rem 8.A we have def(X ′) > 0.

That def(X ′) = def(X) follows immediately from the fact that for manifolds with

positive defect the minimal Chern number CΣ of a hyperplane section Σ is determined by
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the defect. More specifically, we have (see §2):

n+ def(X)

2
= CΣ =

n + def(X ′)

2
,

where n = dimC(X). �

Theorem A says that the complement of a hyperplane section X \ Σ of an algebraic

manifold X ⊂ CPN with small dual is subcritical. Here is a partial converse:

Theorem 8.D. Let X ⊂ CPN be an algebraic manifold with n = dimC(X) ≥ 3 and let

Σ ⊂ X be a hyperplane section. Assume that (Σ, ω
Σ
) is spherically monotone with CΣ ≥ 2

and that 2CΣ does not divide n. If X \ Σ is subcritical then def(X) > 0.

Note that the spherical monotonicity of (Σ, ω
Σ
) is automatically satisfied e.g. when Σ

is Fano and b2(Σ) = 1.

Proof. Suppose by contradiction that def(X) = 0. By Theorem 8.A (Σ, ω
Σ
) has a La-

grangian sphere, say L ⊂ Σ. Note that since Σ is spherically monotone, the Lagrangian

L ⊂ Σ is monotone too and since L is simply connected its minimal Maslov number is

NL = 2CΣ.

Put W = X \ Σ endowed with the symplectic form ωW induced from X (which in

turn is induced from CPN). We now appeal to the Lagrangian circle bundle construction

introduced in [Bir3, BC2]. We briefly recall the construction. Pick a tubular neighborhood

U of Σ in X whose boundary ∂U is a circle bundle over Σ. Denote this circle bundle by

π : ∂U → Σ. Then ΓL = π−1(L) is the total space of a circle bundle over L, embedded

inside W . By [Bir3], for a careful choice of U the submanifold ΓL is Lagrangian in W .

Moreover, since L is monotone ΓL is monotone too and has the same minimal Maslov

number: NΓL
= NL = 2CΣ. (See [Bir3] for more details.)

Denote by (Ŵ , ω̂W ) the symplectic completion of the symplectic Stein manifold (W,ωW )

(see [BC1, Bir3] for the details). By the results of [BC1], ΓL is Hamiltonianly displaceable

(i.e. there exists a compactly supported Hamiltonian diffeomorphism h : (Ŵ , ω̂W ) −→

(Ŵ , ω̂W ) such that h(ΓL) ∩ ΓL = ∅). In particular, HF (ΓL,ΓL) = 0.

One can arrive now at a contradiction by using an alternative method to compute

HF (ΓL,ΓL) such as the Oh spectral sequence [Oh2, Bir3]. (This is a spectral sequence

whose initial page is the singular homology of ΓL and which converges to HF (ΓL,ΓL),

which is 0 in our case.) We will not perform this computation here since the relevant part

of it has already been done in [Bir3], hence we will use the latter.

Here are the details. We first claim that the bundle π|ΓL
: ΓL → L is topologically

trivial. To see this denote by NΣ/X the normal bundle of Σ in X , viewed as a complex

line bundle. Note that ΓL → L is just the circle bundle associated to NΣ/X |L. Thus
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it is enough to show that NΣ/X |L is trivial. Denote by c ∈ H2(Σ;Z) the first Chern

class of NΣ/X and by cR its image in H2(Σ;R). Similarly, denote by c|L and by cR|L the

restrictions of c and cR to L. As Σ ⊂ X is a hyperplane section we have cR = [ω
Σ
]. But

L ⊂ (Σ, ω
Σ
) is Lagrangian hence cR|L = 0. As H∗(L;Z) has no torsion (L is a sphere) it

follows that c|L = 0 too. Thus the restriction NΣ/X |L of NΣ/X to L has zero first Chern

class. This implies that the line bundle NΣ/X |L → L is trivial (as a smooth complex line

bundle). In particular ΓL → L is a trivial circle bundle.

Since ΓL ≈ L×S1 we have H i(ΓL;Z2) = Z2 for i = 0, 1, n−1, n and H i(ΓL;Z2) = 0 for

every other i. By Proposition 6.A of [Bir3] we have 2CΣ | n. A contradiction. (Note that

the conditions n ≥ 3 and CΣ ≥ 2 in the statement of the theorem are in fact required for

Proposition 6.A of [Bir3] to hold.) �

8.1. Other approaches to proving Corollary C. Here we briefly outline an alternative

approach to proving Corollary C and possibly Theorem B, based on the subcriticality of

X \ Σ that was established in Theorem A.

Put W = X \ Σ and ωW be the symplectic form on W induced from that of X . Let

U be a tubular neighborhood of Σ in X as in the proof of Theorem 8.D. The boundary

P = ∂U of U is a circle bundle π : P −→ Σ over Σ. Consider the embedding

i : P −→ W × Σ, i(p) = (p, π(p)).

Denote by ΓP = i(P ) ⊂ W × Σ the image of i. By the results of [Bir3], one can choose

U in such a way that there exists a positive constant (depending on the precise choice of

U) such that i(P ) is a Lagrangian submanifold of (W ×Σ, ωW ⊕−cω
Σ
). (Note the minus

sign in front of ω
Σ
.) Moreover, the Lagrangian ΓP is monotone and its minimal Maslov

number is NP = 2CΣ, where CΣ is the minimal Chern number of Σ. So by the results

recalled in §2 we have NP = n+ k. Note that dimR ΓP = 2n+ 1.

As W is subcritical it follows that ΓP can be Hamiltonianly displaced in the completion

(Ŵ × Σ, ω̂W ⊕−cω
Σ
) and therefore

HF (ΓP ,ΓP ) = 0.

(See [Bir3] for the details. See also the proof of Theorem 8.D above.) Note that in order

to use here Floer cohomology with ground coefficient ring Z we need to have ΓP oriented

and endowed with a spin structure. In our case, ΓP carries a natural orientation and it is

easy to see that it has a spin structure (in fact, it is easy to see that H1(P ;Z2) = 0 hence

this spin structure is unique).

We now appeal to the Oh spectral sequence [Oh2, Bir3]. Recall that this is a spectral

sequence whose first page is the singular cohomology of ΓP and which converges to the

Floer cohomology HF (ΓP ,ΓP ). A simple computation shows that in our case, due to the
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fact that NP = n + k, this sequence collapses at the second page, and moreover since

HF (ΓP ,ΓP ) = 0 this second page is 0 everywhere. By analyzing the differentials on the

first page we obtain the following exact sequences for every j ∈ Z:

(16) Hj−1+n+k(ΓP ;Z) −→ Hj(ΓP ;Z) −→ Hj+1−n−k(ΓP ;Z).

This implies many restrictions on the cohomology of P ≈ ΓP , e.g. that H
j(P ;Z) = 0 for

every n − k + 3 ≤ j ≤ n + k − 2, that Hj(P ;Z) ∼= Hj−1+n+k(P ;Z) for every 0 ≤ j ≤

n− k − 2 and more. We now substitute this information into the Gysin sequences of the

bundle P −→ Σ (whose Euler class is just the hyperplane class h corresponding to the

embedding Σ ⊂ CPN). Combining the calculation via the Gysin sequences together with

the Lefschetz theorem yields the desired periodicity for the cohomology of Σ. We omit

the details as they are rather straightforward.

One could try to push the above argument further by using the methods of [BK] (see

e.g. §14 in that paper) in order to prove Theorem B via Lagrangian Floer cohomology.

However, this would require an extension of the methods of [BK] to coefficients in Z rather

than just Z2.

9. What happens in the non-monotone case

Here we briefly explain what happens in Theorem 5.B when the condition “cX1 (A) =

λh(A) for some λ > 0” is not satisfied, e.g. when (Σ, ω
Σ
) is not spherically monotone (see

Definition 4.1.A).

We will need to change here a bit our coefficient ring for the quantum cohomology since

(Σ, ω
Σ
) is not spherically monotone anymore. Denote by A the ring of all formal series in

the variables q, T

P (q, T ) =
∑

i,j

ai,jq
iT sj , ai,j ∈ Z, sj ∈ R,

which satisfy that for every C ∈ R

#
{
(i, j) | ai,j 6= 0 and sj > C

}
< ∞.

This ring is a special case of the more general Novikov ring commonly used in the theory

of quantum cohomology. With this ring as coefficients, the definition of the quantum

product ∗ on QH(Σ;A) is very similar to what we have had before. Namely, the powers

of the variable q will encode Chern numbers of rational curves involved in the definition

of ∗ and the powers of T encode their symplectic areas. See [MS2] for more details.

We now turn to the Hamiltonian fibration πℓ : X̃ −→ ℓ. We will use here the construc-

tion and notation from §5 and §6. Additionally, denote by ĩ : Σ −→ X̃ the inclusion of

the fiber into the total space of the fibration πℓ : X̃ −→ ℓ. Recall also from §6 that we



THE SYMPLECTIC TOPOLOGY OF PROJECTIVE MANIFOLDS WITH SMALL DUAL 25

have a canonical injection j : H2(X ;Z) −→ H2(X̃ ;Z) which satisfies j ◦ p∗ = id, where

p : X̃ −→ X is the blow down map. Denote by Bℓ ⊂ X the base locus of the pencil ℓ.

With this notation we have:

(17) ĩ∗(α) = j(α)− ([Bℓ] · α)F = j(α)− 〈[ω
Σ
], α〉F ∀α ∈ H2(Σ;Z).

The symplectic form Ω̃ satisfies:

(18)

[Ω̃] = 2p∗[ω
X
]− e, where e ∈ H2(X̃) is the Poincaré dual of E,

〈[Ω̃], j(A)〉 = 2〈[ω
X
], A〉 ∀A ∈ H2(X ;Z),

〈[Ω̃], F 〉 = 1.

The Seidel element of the fibration πℓ : X̃ −→ ℓ will now be:

S(πℓ) =
∑

Ã∈Hπ
2

S(Ã; J̃)⊗ qν(Ã)T 〈[Ω̃],Ã〉 ∈ QH−2c0(πℓ)(Σ;A).

Some parts of the proof of Theorem 5.A go through in this new setting. More specif-

ically, Lemma 6.A as well as Lemma 6.C continue to hold (with the same proofs) and it

follows that the contribution of the class F to the Seidel element is as before, namely

(19) S(F ) = [ω
Σ
].

If we choose as before the reference class of sections to be F then the total degree of the

Seidel element S(πℓ) continues to be 2.

In contrast to the above, Lemma 6.B does not hold anymore since we might have

holomorphic sections in the class Ã = j(A) + dF with d ≤ 0. (We will see in §9.1

an example in which this is indeed the case.) Nevertheless we can still obtain some

information on S(πℓ) beyond (19). Let d ∈ Z and put Ã = j(A) + dF where A ∈ HS
2 (X).

Recall from Lemma 6.A that Ã might contribute to S(πℓ) only if the following three

conditions are satisfied:

(1) d ≤ 1.

(2) [Σ] · A = 1− d.

(3) A ∈ R(X) where R(X) ⊂ HS
2 (X) is the positive cone generated by those classes

that can be represented by J0-holomorphic rational curves. (See §6.)

Moreover, d = 1 iff A = 0.

The case d = 1 has already been treated in (19). Assume that d ≤ 0. A simple

computation shows that

〈[Ω̃], Ã〉 = 2− d, 〈cv1, Ã〉 = −1 + 〈cX1 − h,A〉.
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Here h ∈ H2(X) is the hyperplane class corresponding to the embedding X ⊂ CPN , i.e.

h = PD([Σ]). This proves the following theorem:

Theorem 9.A. Let X ⊂ CPN be an algebraic manifold with small dual and Σ ⊂ X

a hyperplane section. Then the Seidel element S(πℓ) corresponding to the fibration πℓ :

X̃ −→ ℓ is given by:

(20) S(πℓ) = [ω
Σ
]T +

∑

d≤0,A

S(j(A) + dF )T 2−dq(c
X
1
(A)−h(A))/CΣ ,

where the sum is taken over all d ≤ 0 and A ∈ R(X) with:

(1) h(A) = 1− d.

(2) 3− d− n ≤ cX1 (A) ≤ 2− d.

In particular, if −KX − Σ is nef and min{(−KX − Σ) · A | A ∈ R(X)} ≥ 2 then

S(πℓ) = [ω
Σ
]T.

Note that the powers of T in the second summand of (20) are always ≥ 2 and the powers

of q in the second summand are always ≤ 1 (but might in general be also negative).

Here is a non-monotone example, not covered by Theorem 5.B but to which Theo-

rem 9.A does apply. Let X = CPm+r × CPm with m ≥ 2 and r ≥ 1 be embedded in

CP (m+1)(m+r+1)−1 by the Segre embedding. It is well known that def(X) = r (see Theo-

rem 6.5 in [Tev1]). It is easy to see that cX1 − h is ample and since m ≥ 2 its minimal

value on R(X) is m ≥ 2. It follows that S(πℓ) = [ω
Σ
]T ∈ QH2(Σ;A).

This calculation fails to be true when m = 1, as will be shown in §9.1 below.

9.1. A non-monotone example. Consider the algebraic manifold Σ = CP 1 × CP 1.

Denote by f, s ∈ H2(Σ;Z) the classes

(21) f = [pt× CP 1], s = [CP 1 × pt].

We have HS
2 (Σ) = H2(Σ;Z) = Zs ⊕ Zf . Denote by α, β ∈ H2(Σ) the Poincaré duals of

f , s respectively, i.e.:

(22) 〈α, s〉 = 1, 〈α, f〉 = 0, 〈β, s〉 = 0, 〈β, f〉 = 1.

A simple computation shows that

cΣ1 = 2α + 2β.

Before we continue, a small remark about our algebro-geometric conventions is in order.

For a complex vector space V we denote by P(V ) the space of complex lines through 0

(not the space of hyperplanes or 1-dimensional quotients of V ). Similarly, for a vector

bundle E → B we denote by P(E) → B the fiber bundle whose fiber over x ∈ B is P(Ex),
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as just defined, i.e. the space of lines through 0 in Ex. We denote by T → P(E) the

tautological bundle, which by our convention, is defined as the line bundle whose fiber

over l ∈ P(Ex) is the line l itself. We denote by T ∗ the dual of T , i.e. T ∗
l = hom(l,C).

For example, with these conventions, for E = Cn+1 (viewed as a bundle over B = pt) we

have T ∗ = OCPn(1), and T ∗ is ample.

Consider now the bundle OCP 1(−1) over CP 1. There is an obvious inclusion

ι : OCP 1(−1) −→ OCP 1 ⊕OCP 1

coming from viewing an element l ∈ CP 1 as a subspace l ⊂ C ⊕ C. Consider now the

inclusion:

(23) OCP 1(−1)⊕OCP 1(−1)
id⊕ι
−−→ OCP 1(−1)⊕OCP 1 ⊕OCP 1.

Denote by E the bundle on the right-hand side of this inclusion and by E ′ the bundle on

the left-hand side. Put

X = P(E)

and denote by pr : X −→ CP 1 the bundle projection. Note that P(E ′) ∼= P(OCP 1 ⊕

OCP 1) = CP 1 × CP 1 = Σ hence (23) induces an embedding iΣ,X : Σ −→ X . Let T → X

be the tautological bundle (as previously defined) and consider the bundle

L = T ∗ ⊗ p∗OCP 1(1).

Theorem 9.1.A. The line bundle L is very ample and the projective embedding of X

induced by it has def = 1. The embedding of Σ, iΣ,X(Σ) ⊂ X, is a smooth hyperplane

section of the projective embedding of X induced by L. Moreover if ω
X
is the symplectic

structure on X induced by the projective embedding of L and ω
Σ
= i∗Σ,XωX

then we have:

[ω
Σ
] = 2α + β.

If ℓ is a pencil in the linear system |L| lying in the complement of the dual variety X∗

then the Seidel element of the fibration πℓ : X̃ −→ ℓ associated to ℓ is:

S(πℓ) = (2α + β)T + βT 2.

The proof is given in §9.2 below. One can easily generalize the above example to other

projective bundles and also to higher dimensions.

Note that [ω
Σ
] and cΣ1 are not proportional hence the conditions of Theorem 5.B are

not satisfied. It is also easy to see that (for homological reasons) (Σ, ω
Σ
) does not contain

any Lagrangian spheres (c.f. Theorems 8.A, 8.B).

The quantum product for (Σ, ω
Σ
) is given by (see [MS2]):

α ∗ α = qT 2, β ∗ β = qT, α ∗ β = α ∪ β, where deg(q) = 4.
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The inverse of S(πℓ) in quantum cohomology is given by

S(πℓ)
−1 = 1

qT 2(1−T )2

(
−2α + (1 + T )β

)
.

Here we have written 1
(1−T )2

as an abbreviation for (
∑∞

q=0 T
j)2.

In contrast to the situation in Theorem 9.1.A we can exhibit the same manifold Σ =

CP 1 × CP 1 as a hyperplane section of a different projective manifold X ′ with def = 0,

but with different induced symplectic structure (c.f. Theorem 8.C). This goes as follows.

Let X ′ ⊂ CP 5 be the image of the degree–2 Veronese embedding of CP 3. It is well known

that def(X ′) = 0. A simple computation shows that a smooth hyperplane section of X ′ is

isomorphic to Σ = CP 1 ×CP 1. The symplectic form ω′
Σ
on Σ induced from the standard

symplectic structure of CP 5 satisfies

[ω′
Σ
] = α+ β.

Note that (Σ, ω′
Σ
) has Lagrangian spheres. To see that, note that (e.g. by Moser argument)

ω′
Σ
is diffeomorphic to the split form ω0 = σ ⊕ σ, where σ is the standard Kähler form

on CP 1. The symplectic manifold (Σ, ω0) obviously has Lagrangian spheres, for example

L = {(z, w) | w = z̄}, hence so does (Σ, ω′
Σ
). (c.f. Theorems 8.A, 8.B).

Finally, note that [ω′
Σ
] = α+β is not invertible in the quantum cohomology QH(Σ; Λ).

In fact, a simple computation shows that (α + β) ∗ (α− β) = 0.

9.2. Proof of Theorem 9.1.A. Consider the inclusion

(24) OCP 1(−1)⊕OCP 1 ⊕OCP 1

ι⊕id⊕id
−−−−→ O⊕4

CP 1 .

Put Y = P(O⊕4
CP 1) = CP 1 × CP 3 and denote by pr1 : Y → CP 1 and pr2 : Y → CP 3

the projections. The inclusion (24) gives us an obvious inclusion iX,Y : X −→ Y . The

bundle T ∗ naturally extends to Y as pr∗2OCP 3(1), and pr∗OCP 1(1) extends to Y too as

pr∗1OCP 1(1). It follows that

L = L̃|X , where L̃ = pr∗2OCP 3(1)⊗ pr∗1OCP 1(1).

The bundle L̃ is obviously very ample, hence so is L. Moreover it is well known that the

embedding Y ⊂ CP 7 induced by L̃ (the Segre embedding) has def(Y ) = 2 (see e.g. [Tev1]).

A straightforward computation shows that iX,Y (X) ⊂ Y is indeed a hyperplane section

corresponding to the embedding Y ⊂ CP 7 induced by L̃. If we denote by [x0 : x1]

homogeneous coordinates on CP 1 and by [w0 : w1 : w2 : w3] homogeneous coordinates on

CP 3 then iX,Y (X) ⊂ Y is given by the equation

iX,Y (X) = {x0w1 − x1w0 = 0} ⊂ CP 1 × CP 3.

As for the defect of the projective embedding of X , we have by (2) that def(iX,Y (X)) =

def(Y )− 1 = 1.
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It remains to show that iΣ,X(Σ) ⊂ X is indeed a hyperplane section corresponding to

L. Using the coordinates x, w just introduced, we can write a point in X as ([x0 : x1], [w0 :

w1 : w2 : w3]) with (w0, w1) ∈ C(x0, x1), w2, w3 ∈ C. A smooth hyperplane section of X

(with respect to L, or alternatively with respect to the embedding X ⊂ CP 6) is given for

example by the equation

(25) Σ0 = {x0w2 − x1w3 = 0}.

A simple computation shows that Σ0 = iΣ,X(Σ).

Next we construct a pencil ℓ of divisors in the linear system |L| lying in the complement

of the dual variety X∗ (corresponding to the projective embedding induced by L). For

this end, we first construct a linear embedding

ι′ : OCP 1(−2) −→ OCP 1(−1)⊕OCP 1

as follows. Write elements of the fiber of OCP 1(−1) over [x0 : x1] ∈ CP 1 as pairs (v0, v1) ∈

C(x0, x1) ⊂ C2 (or in coordinates: v0x1 = v1x0). Similarly, write elements of OCP 1(−2) =

OCP 1(−1)⊗OCP 1(−1) as
(
(u0, u1)⊗ (u′

0, u
′
1)
)
with (u0, u1), (u

′
0, u

′
1) ∈ OCP 1(−1). Define

ι′
(
(u0, u1)⊗ (u′

0, u
′
1)
)
=

(
(u1u

′
0, u1u

′
1), u0u

′
0

)
.

We get an embedding OCP 1(−2) ⊕ OCP 1

ι′⊕id
−−−→ OCP 1(−1) ⊕ PCP 1 ⊕ OCP 1 hence also an

embedding

i′ : P(OCP 1(−2)⊕OCP 1) −→ X.

Put Σ1 = i′(P(OCP 1(−2)⊕OCP 1) ⊂ X .

A simple computation shows that Σ1 is given by the following equation

Σ1 = {x0w0 − x1w2 = 0} ⊂ X.

It follows that Σ1 lies in the linear system |L|. Consider now the pencil ℓ ⊂ |L| generated

by Σ0 (see (25)) and Σ1. A straightforward computation shows that ℓ lies in the comple-

ment of the dual variety X∗. Note that a generic element in the pencil ℓ is isomorphic to

CP 1×CP 1, however finitely many elements in ℓ are isomorphic to the Hirzebruch surface

F2 = P(OCP 1(−2)⊕OCP 1).

Denote by sX ∈ H2(X ;Z) the homology class represented by the rational curve

P(0⊕ 0⊕OCP 1) ⊂ X.

Denote by fX ∈ H2(X ;Z) the class represented by a projective line lying in a fiber of

the projective bundle X −→ CP 1. Clearly (iΣ,X)∗(f) = fX and (iΣ,X)∗(s) = sX + fX .
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(See (21).) The base locus Bℓ of the pencil ℓ is a smooth algebraic curve whose homology

class in Σ is [Bℓ] = s+ 2f , and when viewed in X we have

(iΣ,X)∗([Bℓ]) = sX + 3fX .

Denote by πℓ : X̃ −→ ℓ the fibration associated to ℓ. We endow X̃ with the symplectic

form Ω̃ as in §5. We will now compute the Seidel element S(πℓ).

Denote by ω
Y
the symplectic form on Y induced from the standard symplectic form

on CP 7 via the embedding Y ⊂ CP 7. Denote also ω
X
= i∗X,Y ωY

and ω
Σ
= i∗Σ,XωX

the

induced forms on X and Σ. A simple computation shows that [ω
Y
] = pr∗1a + pr∗2b, where

a ∈ H2(CP 1;Z) and b ∈ H2(CP 3;Z) are the positive generators. A straightforward

computation shows now that

[ω
Σ
] = 2α + β.

We now go back to the situation of Lemma 6.B (which does not hold in our case)

and try to find the contribution of holomorphic sections of πℓ : X̃ −→ ℓ in the class

Ã = j(A) + dF with d ≤ 0.

A simple computation shows that j(sX) ∈ Hπℓ

2 and that cv1(j(sX)) = −1. We also have

(see (17))

ĩ∗(f) = j(fX)− F, ĩ∗(s) = j(sX) + j(fX)− 2F.

The degree of the Seidel element S(πℓ) is in our case 2, and as CΣ = 2 it follows that

the only classes Ã that might contribute to S(πℓ) are classes Ã that differ from sX by an

element coming from ĩ∗ : H2(Σ;Z) −→ H2(X̃;Z) with zero cΣ1 . This means that

Ã = j(sX) + r̃i∗(s− f) = (r + 1)j(sX)− rF, r ∈ Z.

As Ã represents a holomorphic section we must have 0 < 〈[Ω̃], Ã〉 = r + 2, hence r ≥ −1.

Lemma 9.2.A. If S(Ã) 6= 0 then either r = −1 or r = 0.

We postpone the proof for later in this section and continue with the proof of Theo-

rem 9.1.A.

The case r = −1 is when Ã = F . This has already been treated at the beginning of §9

and we have S(F ) = [ω
Σ
] = 2α+ β.

We turn to the case r = 0, i.e. Ã = j(sX). Denote by J̃0 the standard complex structure

on X̃ ⊂ X×ℓ, namely the complex structure induced from the standard complex structure

J0 ⊕ i on X × ℓ.

Consider for every [u : v] ∈ CP 1 the J0-holomorphic rational curve σ[u:v] : CP
1 −→ X

defined by σ[u:v]([x0 : x1]) = [0 : u : v], where [0 : u : v] on the right-hand side lies in

the fiber over [x0 : x1], i.e. σ[u:v] is a section of the projective bundle X → CP 1 and

[σ[u:v]] = sX . In the family of curves {σξ}ξ∈CP 1 there are precisely two curves, say σξ′ and
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σξ′′ , that intersect the base locus Bℓ of the pencil ℓ. (We assume here that the pencil

ℓ was chosen to be generic.) Thus, each of the curves σξ, ξ ∈ CP 1 \ {ξ′, ξ′′}, lifts to a

holomorphic curve σ̃ξ : CP 1 −→ X̃ . (Recall that X̃ is the blow up of X along the base

locus Bℓ.) The homology class of σ̃ξ is j(sX). A simple computation shows that each σ̃ξ,

ξ 6= ξ′, ξ′′, is a section of the fibration πℓ : X̃ −→ ℓ ∼= CP 1 and moreover these are all the

J̃0-holomorphic sections in the class j(sX).

It is interesting to note that the moduli space Ms(Ã, J̃0) of sections in the class Ã =

j(sX) is not compact. IndeedMs(Ã, J̃0) can be identified with CP 1\{ξ′, ξ′′} and as ξ → ξ′

or ξ′′ we obtain bubbling in the fiber. More precisely, when ξ → ξ∗ with ξ∗ ∈ {ξ′, ξ′′}

the sections σ̃ξ converge to a reducible curve consisting of two components: the first is

a J̃0-holomorphic section in the class F and the other one is a holomorphic curve in the

class ĩ∗(s− f) lying in one of the fibers of πℓ. The latter is a (−2)–curve hence this can

occur only in one of the fibers that is isomorphic to the Hirzebruch surface F2 (obviously

not in any of the fibers that are isomorphic to CP 1 × CP 1, since those are Fano).

The corresponding evaluation map Ms(Ã, J̃0) −→ Σ gives a pseudo-cycle whose ho-

mology class is s ∈ H2(Σ;Z). Moreover for each σ̃ξ ∈ Ms(Ã, J̃0) we have

σ̃∗
x(TX̃) ∼= Oℓ(2)⊕Oℓ(−1)⊕Oℓ

hence by the regularity criterion from [MS2] (see Lemma 3.3.1 in that book) J̃0 is regular

for all the elements in Ms(Ã, J̃0). Consequently we have:

S(Ã) = PD(s) = β.

Putting everything together we see that

S(πℓ) = [ω
Σ
]T Ω̃(F ) + βT Ω̃(j(SX)) = (2α + β)T + βT 2.

The proof of Theorem 9.1.A is now complete modulo the proof of Lemma 9.2.A. �

Proof of Lemma 9.2.A. Write Ã = (r + 1)j(sX)− rF . We have Ω̃(Ã) = r + 2. Since [Ω̃]

is an integral cohomology class we must have r ≥ −1. Thus we have to prove that it is

impossible to have S(Ã, J̃) 6= 0 for generic J̃ if r ≥ 1.

Claim 1. There exist no J̃0-holomorphic sections in the class Ã for r ≥ 1.

Indeed, assume by contradiction that ũ0 is such a section. Recall that we have the

blow down projection p : X̃ −→ X which is (J̃0, J0)-holomorphic. Therefore p ◦ ũ0 is a

J0-holomorphic curve in X . Its homology class is (r+1)sX . Recall that we also have the

inclusion iX,Y : X −→ Y = CP 1 × CP 3 which is holomorphic. Hence u := iX,Y ◦ p ◦ ũ0

is a holomorphic curve in the class (r + 1)[CP 1 × pt] ∈ H2(Y ;Z). As the projection

pr2 : Y −→ CP 3 is holomorphic it follows that u is an (r + 1)-multiply covered curve
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whose image is CP 1×pt. Note that ũ0 : CP
1 −→ X̃ is injective (since it is a section) and

it is easy to see (by an explicit calculation) that ũ0 cannot be entirely contained inside the

exceptional divisor E (of the blow up p : X̃ −→ X). Therefore p ◦ ũ0 must be generically

injective (i.e. it restricts to an injective map over an open dense subset of CP 1), and the

same should hold also for u. But we have seen that u is (r + 1)-multiply covered curve.

We thus obtain a contradiction if r ≥ 1. This proves Claim 1.

Next, consider J̃0-holomorphic cusp sections in the class Ã. By this we mean a bubble

tree of J̃0-holomorphic curves (ũ0, v1, . . . , vq) consisting of one holomorphic section ũ0

together with holomorphic rational curves vi : CP 1 −→ X̃ each lying in a fiber of πℓ.

Moreover we have

(26) [ũ0] + [v1] + · · ·+ [vq] = Ã,

where [ũ0] = (ũ0)∗([CP
1]) and similarly for the [vi]’s. Note however, that some of the vi’s

might not be reduced, i.e. they might be multiply covered.

Claim 2. For r ≥ 1 the only possible cusp sections (ũ0, v1, . . . , vq) in the class Ã are such

that ũ0 is a curve in the class F which is a fiber of the fibration p|E : E −→ Bℓ and each

vi being a (possible multiple cover of a) (−2)–curve in its corresponding fiber of πℓ. (Thus

the bubbles vi may occur only in the special fibers of πℓ which are Hirzebruch surfaces

different than CP 1 ×CP 1.) Moreover, there exist only finitely many cusp sections in the

class Ã.

To prove this, let (ũ0, v1, . . . , vq) be such a cusp section. We first claim that ũ0 has

its image inside the exceptional divisor E. Indeed, suppose otherwise, and consider the

curve u := iX,Y ◦ p ◦ ũ0 as well as the curves wi := iX,Y ◦ p ◦ vi. The sum of the curves

u and w1, . . . , wq represent together the class (r + 1)j(sX). As in the proof of Claim 1

it follows that the union of their images is a curve of the type (r + 1)(CP 1 × pt). By

assumption u is not constant hence u is a curve of the type m(CP 1 × pt), and as ũ0 is a

section the curve u must be reduced (as p is 1−1 outside of E). So m = 1. Similarly each

of the curves wi := iX,Y ◦ p ◦ vi must be either constant or with the same image as u, i.e.

CP 1× pt (but wi might be a multiple cover of u). As r ≥ 1 at least one of the wi’s is not

constant. However this is impossible since each of the curves vi lies in a fiber of πℓ hence

the images of the non-constant wi’s cannot coincide with that of u. A contradiction. This

proves that the image of ũ0 lies inside E.

Next we have to prove that ũ0 is one of the fibers of the projective bundle E −→ Bℓ

(hence represents the class F ). Indeed assume the contrary, then the projection p ◦ ũ0

is not constant and, as ũ0 is contained inside E, p ◦ ũ0 must be the base locus Bℓ or a

multiple cover of it (recall that Bℓ is the center of the blow-up p : X̃ −→ X). Recall that
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[Bℓ] = sX + 3fX . But by the preceding arguments p ◦ ũ0 must be a curve in the class sX

or a multiple of it. A contradiction. This proves that p ◦ ũ0 is constant. It follows that

ũ0 is either a fiber of p|E : E −→ Bℓ or a multiple of it. But ũ0 is a injective (because it

is a section of πℓ), so it is precisely a fiber of E −→ Bℓ.

Next we prove that each of the bubbles vi is a (−2)–curve or a multiple of it. To see

this note that each vi when viewed as a curve in a fibre of πℓ must be in the homology

class ais− bif with ai, bi ∈ Z and a simple computation shows that

ĩ∗([vi]) = aij(sX) + (ai − bi)j(fX)− (2ai − bi)F.

This implies that ai ≥ bi. But we also have
∑q

i=1(ai − bi) = 0 because of (26), hence

ai = bi for every i. It follows that each vi is a curve in the class ai(s−f). As 〈cΣ1 , s−f〉 = 0

it easily follows by adjunction that [vi] is an ai-cover of a (−2)–curve in the class s− f .

Finally, we prove that we have only a finite number of cusp sections in the class Ã.

Inside the pencil ℓ we have only a finite number of elements z ∈ ℓ over which the fiber

Σz = π−1
ℓ (z) is not biholomorphic to CP 1 × CP 1 (namely the ones that are Hirzebruch

surfaces F2). Inside each of these there is a unique (−2)-curve say Cz. Consider the

evaluation map

evJ̃0,z : M
s(F, J̃0) −→ Σz, evJ̃0,z(ũ) = ũ(z).

It is easy to see that the image of evJ̃0,z is just the base locus Bℓ (or more precisely

its image inside the proper transform of Σz inside X̃). As Bℓ is an irreducible curve in

Σz with positive self intersection it intersects Cz at finitely many points. Therefore the

number of cusp sections in the class Ã is finite. This completes the proof of Claim 2.

We are now ready to complete the proof of the lemma. Suppose by contradiction that

S(Ã) 6= 0. Consider the fiber Σ0 of πℓ, say lying over the point z∗ ∈ ℓ (recall that Σ0

is isomorphic to CP 1 × CP 1). Consider all possible J̃0-holomorphic cusp sections in the

class Ã. By Claim 2 we have only a finite number of them and each of them intersects

Σ0 exactly at one point (the bubbles cannot be inside Σ0 as they are all (−2)–curves).

We thus obtain a finite number of points p1, . . . , pν ∈ Σ0. As S(Ã) 6= 0 we can find

a real 2-dimensional cycle (actually a real smooth closed surface) Q ⊂ Σ0 lying in the

complement of p1, . . . , pν and such that 〈S(Ã), [Q]〉 6= 0. This implies that for every

regular almost complex structure J̃ ∈ J̃reg(π, Ω̃) we have a J̃-holomorphic section ũ in the

class Ã which intersects Q. Take a sequence J̃n ∈ J̃reg(π, Ω̃) with J̃n −→ J̃0 as n −→ ∞

and a corresponding sequence ũn ∈ Ms(Ã, J̃n) with ũn(z∗) ∈ Q. By Gromov compactness

the sequence ũn either has a subsequence that converges to a genuine J̃0-holomorphic

section in the class Ã or there is a subsequence that converges to a J̃0-holomorphic cusp

section (ũ0, v1, . . . , vq) in the class Ã, and by our construction we must have ũ0(z∗) ∈ Q.

However, both cases are impossible. The first case is ruled out by Claim 1 and the second
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case is impossible since Q lies in the complement of p1, . . . , pν . The proof of the lemma is

now complete. �

10. Discussion and questions

Here we briefly discuss further directions of study arising from the results of the paper.

10.1. Questions on the symplectic topology of manifolds with small dual. Con-

sider the class of manifolds Σ that appear as hyperplane sections of manifolds X with

small dual, viewed as symplectic manifolds. Does the group of Hamiltonian diffeomor-

phisms Ham(Σ) of such manifolds Σ have sepecial properties (from the Geomeric, or

algebraic viewpoints) ? This question seems very much related to the subcriticality of

X \ Σ, and results in this direction have been recently obtained by Borman [Bor] who

found a relation between quasi-morphisms on Ham(Σ) and quasi-morphisms on Ham(X).

The structure of the fundamental group π1(Ham) of the group of Hamiltonian diffeo-

morphisms of a symplectic manifold has been the subject of many studies in symplectic

topology. Still, relatively little is known about the structure of these fundamental groups.

(e.g. the pool of known examples of symplectic manifolds with non-simply connected Ham

is quite limited.) It would be interesting to ask whether manifolds with small dual and

their hyperplane sections exhibit special properties in terms of π1(Ham) or more generally

in terms of the topology of Ham.

Here are more concrete questions in this direction. Let X ⊂ CPN be a manifold with

small dual. Denote k = def(X) and let Σ ⊂ X be a smooth hyperplane section, endowed

with the symplectic structure ω
Σ
induced from CPN . Denote by λ ∈ π1(Ham(Σ, ω

Σ
) the

non-trivial element coming from the fibration in §5 using the recipe of §4.2.1.

• What can be said about the minimal Hofer length of the loops in Ham(Σ, ω
Σ
) in

the homotopy class λ ? More generally, what can be said in general about the

length spectrum of Ham(Σ, ω
Σ
) with respect to the Hofer metric ? Preliminary

considerations seem to indicate that at least when b2(X) = 1 the positive part of

the norm of λ ∈ π1(Ham(Σ, ω
Σ
) satisfies ν+(λ) ≤

1
dimC(Σ)+1

. It would be interesting

to verify this, and more importantly to obtain a bound on ν(λ). (See [Pol2, Pol1]

for the definition of these norms on π1(Ham) and ways to calculate them.)

• Can the homotopy class λ be represented by a Hamiltonian circle action ? Several

examples of manifolds with small dual indicate that this might be true. In case

a Hamiltonian circle action does exist, is it true that it can be deformed into a

holomorphic circle action (i.e. an action of S1 by biholomorphisms of Σ) ?

• In which cases is the element λ of finite order ? Whenever this is the case, does

the order of λ has any relation to k = def(X) ?
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• In case the order of λ is infinite, what can be said about the value of the Calabi

homomorphism C̃al on λ ? (We view here λ as an element of the universal cover

H̃am(Σ, ω
Σ
).) See [EP] for the definition of C̃al etc.

Of course, one could ask the same questions also about X itself (rather than Σ). It is

currently not known what are the precise conditions insuring that an algebraic manifold

X with small dual can be realized as a hyperplane section in an algebraic manifold Y (of

one dimension higher).

Another question, lying at the border between symplectic topology and algebraic ge-

ometry is the following. The main results of this paper show that an algebraic manifold

X ⊂ CPN with small dual and b2(X) = 1 gives rise to a distinguished non-trivial element

λ ∈ π1(Ham(Σ)) where Σ is a hyperplane section of X . On the other hand every homo-

topy class of loops γ ∈ π1(Ham(Σ)) gives rise to a Hamiltonian fibration πγ : M̃γ −→ S2

with fiber Σ. Consider now (positive as well as negative) iterates γ = λr, r ∈ Z, of λ and

the Hamiltonian fibrations corresponding to them πλr : M̃λr −→ S2. Do these fibrations

correspond to an embedding of Σ as a hyperplane section in some algebraic manifold

with positive defect ? Or more generally, do the fibrations πλr correspond to some geo-

metric framework involving the algebraic geometry of Σ and its projective embeddings ?

It seems tempting to suspect that λ2 for example corresponds to a fibration similar to

πℓ : X̃ −→ ℓ ≈ S2 (see §5) but instead of taking ℓ to be a line in the complement of X∗

one takes ℓ to be a degree 2 curve in the complement of X∗.

Finally, here is another general question motivated by analogies to algebraic geometry.

Can the concept of manifolds with small dual be generalized to symplectic manifolds ?

Can one define a meaningful concept of defect ? The motivation comes from the following

framework. Let (X,ω) be a closed integral symplectic manifold (integral means that [ω]

admits a lift to H2(X ;Z)). By a theorem of Donaldson [Don1] X admits symplectic

hyperplane sections, i.e. for k ≫ 0 there exists a symplectic submanifold Σ representing

the Poincaré dual to k[ω]. (Moreover, the symplectic generalization of the notion of

Lefschetz pencil, exists too [Don2].) Suppose now that for some such Σ the manifold X \Σ

is subcritical. Does this imply on Σ and X results similar to what we have obtained in this

paper ? (e.g. is [ω|Σ] invertible in QH(Σ) ?) One of the difficulty in this type of questions

is that the concept of dual variety (of a projective embedding, or of a linear system) does

not exist in the realm of symplectic manifolds and their Donaldson hyperplane sections.

Note that we are not aware of examples of pairs (X,Σ) with X \ Σ subcritical that are

not equivalent (e.g. symplectomorphic) to algebraic pairs (X ′,Σ′).

10.2. Questions about the algebraic geometry of manifolds with small dual.

We have seen that for hyperplane sections Σ of manifolds with small dual X ⊂ CPN ,
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[ω
Σ
] ∈ QH2(Σ; Λ) is invertible. Is the same true for X , i.e. is [ωX ] ∈ QH2(X ; Λ) an

invertible element ? The 2-periodicity of the Betti number of X in Corollary C indicates

that this might be the case. Note that our proof of the 2-periodicity forX was based on the

2-periodicity for Σ (which in turn comes from the invertibility of [ω
Σ
]), together with some

Lefschetz-type theorems, and did not involve any quantum cohomology considerations for

X .

Another circle of questions has to do with Theorem 9.A. It would be interesting to

figure out more explicitly the terms with d ≤ 0 in formula (20). This might be possible

to some extent of explicitness using Mori theory in the special case of manifolds with

small dual (see e.g. [BFS, Tev2, BS] and the references therein). In the same spirit it

would be interesting to see if there are any topological restrictions on Σ and X coming

from the invertibility of S(πℓ) in the non-monotone case. We remark that when (Σ, ω
Σ
)

is not spherically monotone one should work with a more complicated Novikov ring A as

explained in §9.

Another interesting question has to do with the structure of the quantum cohomology

QH∗(Σ; Λ) of hyperplane sections Σ of manifolds with small dual X . As a corollary of

Theorem B we have obtained that in the monotone case QH∗(Σ; Λ) satisfies the relation

[ω
Σ
] ∗ α = q for some α ∈ Hn+k−2(Σ). In some examples this turns out to be the only

relation. Thus it is tempting to ask when do we have a ring isomorphism

QH∗(Σ; Λ) ∼=
(H•(Σ)⊗ Λ)∗

〈ω ∗ α = q〉
.

In a similar context, it is interesting to note that the algebraic structure of quantum

cohomology of uniruled manifolds has been studied in a recent paper of McDuff [McD].

In particular, in [McD] McDuff proves a general existence result for non-trivial invertible

elements of the quantum cohomology of uniruled manifolds using purely algebraic meth-

ods. One can view part of the results in this paper as a direct computation in the case of

manifolds with positive defect.
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