亚微米特征工艺尺寸静态随机存储器 单粒子效应实验研究

郭红霞,罗尹虹,姚志斌,张凤祁,张科菅,何宝平,王园明 (西北核技术研究所,陕西西安 710024)

摘要:利用中国原子能科学研究院重离子加速器,开展了不同特征尺寸(0.35~0.13 μm)CMOS 工艺、不同集成度(1M、4M、8M、16M)静态随机存储器(SRAM)单粒子翻转(SEU)和单粒子闩锁(SEL)实验研究,给出了 SRAM 器件的 SEU、SEL 截面曲线。与μm 级特征尺寸的器件相比,随特征尺寸的减小,单粒子翻转更加严重。测量到了令人关注的单粒子多位翻转(MBU)效应,对翻转位数进行了统计分析。 MBU 对目前卫星系统采用的 EDAC 技术提出了挑战。

关键词:静态随机存储器;多位翻转;重离子加速器

中图分类号:TN305.94 **文献标志码:**A **文章编号:**1000-6931(2010)12-1498-07

Experimental Research of SEU and SEL in High Density SRAMs With Sub-micron Feature Sizes

GUO Hong-xia, LUO Yin-hong, YAO Zhi-bin, ZHANG Feng-qi, ZHANG Ke-ying, HE Bao-ping, WANG Yuan-ming (Northwest Institute of Nuclear Technology, Xi'an 710024, China)

Abstract: The aggressive downscaling of CMOS technology has resulted in that radiation induced single event upset (SEU) reliability is getting worse and worse. Using the HI-13 tandem accelerator in China Institute of Atomic Energy, heavy ion SEU and single event latch-up (SEL) sensitivities for a variety of non-hardened high density static random access memories (SRAMs) with sub-micron feature sizes were reported. The results were compared with previously measured sensitivities for similar devices with larger features. The problems associated with SEU become more sever as device dimensions decrease. Multiple-bit upsets (MBU) for the HM62V16100LT15 in 0. 13 μ m CMOS technology caused by a single ion were analyzed. The frequency and the distribution of MBU were given. MBU makes challenge for EDAC adopted by the system of satellites.

Key words: static random access memory; multiple-bit upset; heavy ion accelerator

收稿日期:2009-11-06;修回日期:2010-02-05

作者简介:郭红霞(1964—),女,山西太原人,研究员,博士,从事集成电路空间辐射效应模拟试验技术和数值模拟研究

存储器的单粒子效应研究一直是国内外单 粒子效应的热点。国内许多单位都开展了存储 器的单粒子效应实验研究^[1+8],针对小尺寸器件 (特征工艺在 0.25 µm 以下)和大容量存储器 (如 16M)的单粒子实验研究关注得较少。随 着器件向深亚微米、超深亚微米方向迅速发展, 集成电路的特征尺寸不断减小,辐射损伤效应 更为显著,以往大尺寸中不明显的效应也突出 而成为新损伤因素^[9-10]。特别是单粒子效应, 新的损伤机制、新的现象不断出现,如单粒子多 位翻转(MBU)、单粒子微剂量硬错误、单粒子 微剂量硬损伤、单粒子功能中断等,如何深入解 释这些损伤的机制、准确测量并正确评估其在 空间轨道的行为是目前国内外十分关注的问 题^[11-12]。

本工作在中国原子能科学研究院重离子加速器和西北核技术研究所的锎源上开展不同工 艺(0.35~0.13 μm)SRAM 不同集成度(1M、 4M、8M、16M)单粒子翻转(SEU)、单粒子闩锁 (SEL)实验,给出 SRAM 集成电路 SEU、SEL 截面曲线。通过实验研究,解决单粒子效应实 验中的关键技术,掌握大规模集成电路单粒子 效应模拟实验技术和方法。

1 测试系统

1.1 单粒子翻转测试系统

对已有的存储器测试系统进行了完 善[13-14],完善的存储器单粒子效应测量系统如 图1所示。完善的测试系统可实现最大测试容 量 32 位、16M 的存储器的测试。长线传输易 受电磁干扰, 且会使信号发生衰减。为了提高 其抗干扰能力,采取了如下措施。1) 使信号线 的电平尽量维持不变。实验中,利用软件发送 格雷码地址,使传输电缆中的信号线仅有1个 电平信号发生变化,则该信号不会受到其他信 号线电平变化所产生的电磁干扰的影响。 2) 信号线与地线间隔排列,用地线对信号进行 隔离,以减少信号线之间的相互干扰。3)采用 多根电源和地线。4) 信号线铺设时尽量紧贴 地面。信号的衰减是不可避免的,因此,在辐照 板上对重要信号线加上了上拉电阻,对其衰减 进行补偿。

图 1 存储器单粒子效应测量系统 Fig. 1 Diagram of SEU test system for SRAM

1.2 单粒子闩锁测试系统

闩锁测试系统功能及指标如下:1)系统具 有4个电压及电流测试通道;2)系统电压测试 范围为0~15 V,最小电压测试精度为 1.0 mV;3)系统电流测试范围为0~500 mA, 最小电流测试精度为1.0 mA;4)系统的电源 关断时间软件可控,最小关断时间为1 ms; 5)被辐照系统发生闩锁时,系统的最大响应时 间<2 ms。

以往的单粒子闩锁测量主要采用低端测电 流法,但在实际应用中,大多被辐照系统或芯片 都是多电压的,采用低端测电流法需把不同电 压的地分开,这会使得 PCB 板的地线系统复 杂,而造成系统干扰的增大。另外,低端测电流 法需给地上串1个小电阻,这会使得被测系统 或芯片的地电平高于系统中的其它芯片,也会 造成不稳定。此外,低端测电流法本身亦存在 缺陷,没有高端测电流法的可靠性高。

本测试系统设计采用高端测电流法,其关 键问题是使放大电路具有较高抗共模干扰能 力。图2给出单粒子效应闩锁系统原理框图。

图 2 单粒子效应闩锁系统原理框图 Fig. 2 Diagram of SEL test system for SRAM

2 模拟实验研究

2.1 单粒子翻转效应模拟实验

SRAM 是挥发性存储器,辐照前首先在加 电条件下将每个字节写入数据"55H"。辐照时 须继续维持加电状态,出束辐照下进行动态监 测,用研制的存储器辐照效应测试系统实时读 取数据,记录并统计翻转数及其地址,这样,既 可得到总的翻转数,又可得到某一时刻的翻转 情况^[15-16]。

共选了 5 种重离子开展单粒子效应实验, 表 1 列出了离子种类及其相关参数。实验的 SRAM 列于表 2,包含了不同工艺特征尺寸 (0.35~0.13 μm) SRAM 不同集成度(1M、 4M、8M、16M)的器件。

表1 离子种类及相关参数

Table 1 Heavy ion available for SEU and SEL testing

离子	离子能量/ MeV	LET/ (MeV • cm ⁻² • mg ⁻¹)	Si 中射程/ µ ^m
$^{12}\mathrm{C}^{6+}$	80	1.73	127.1
$^{19}{ m F}^{8+}$	104	4.33	76.6
²⁸ Si ¹⁰⁺	126	9.6	46.6
$^{35}\mathrm{Cl}^{11+}$	138	13.9	38.9
⁶³ Cu ¹³⁺	161	33.4	26.4
¹⁹⁷ Au ²³⁺	260	77.6	25.7

表 2 实验 SRAM 器件 Table 2 SRAM devices and their characteristics

型号	厂家	特征尺寸/μm	存储器组成	偏置/V	
M5M5V1080DFP	Renesas	0.25	1M(128K×8)	3.3	
R1LP0408CSP	Renesas	0.25	4M(512K×8)	5.0	
R1LV0408C	Renesas	0.25	4M(512K×8)	3.3	
HM62V8100LT15	Renesas	0.18	8M(1 024K×8)	3.3	
HM62V16100LT15	Renesas	0.13	16M(1 024K×16)	3.3	
EDI88512	White Electronics	不详	4M(512K×8)	5	
CY7C1021CV33	Cypress	0.15	$1M(64K \times 16$	3.3	
K6R4016C1C	Samsung	0.35	$4M(256K \times 16)$	5	

1) 实验前的检验

首先选择³⁵ Cl¹¹⁺ 离子,因其 LET 较适中, 表 3 列出在³⁵ Cl¹¹⁺、LET=9.6 MeV·cm⁻²• mg⁻¹辐照下,16M SRAM 器件在不同注量率 下测量的翻转截面,注量率变化了 3 倍,翻转截 面一致性很好,说明测量系统稳定,束流监测系 统可靠,数据处理方法可行。

表 4 列出在¹²C⁶⁺、LET=1.73 MeV·cm⁻²· mg⁻¹辐照下,3 只编号不同的 1M SRAM 器件 在不同注量率下测量的翻转截面,注量率变化 了6倍,测量的翻转截面数据比较一致,由于器 件本身存在离散性,测量的截面数据还是可 信的。

2) 实验结果

图 3 为测量的 1M、4M、8M、16M SRAM 的翻转截面曲线,并对实验数据进行了威布尔 拟合。

Table 3 SEU cross section of 16M SRAM at different fluence rates								
注量率/(cm ⁻² • s ⁻¹)	注量/ cm^{-2}	总翻转数	0→1	1→0	10 ⁷ 翻转截面/cm ²			
102	3.25×10^4	149 072	74 908	74 164	2.73			
327	1.08×10^{5}	365 402	183 848	181 554	2.02			
278	1.17×10^{5}	447 136	225 398	221 738	2.28			

表 3 16M SRAM 器件在不同注量率下测量的翻转截面 Table 3 SEU cross section of 16M SRAM at different fluence rate

表 4 1M SRAM 器件在不同注量率下测量的翻转截面

Table 4 SEU cross section of 1M SRAM at different fluence rates

器件号	注量率/(cm ⁻² • s ⁻¹)	10^{-6} 注量/cm ⁻²	总翻转数	0→1	1→0	10 ¹¹ 翻转截面/cm ²
4-1 #	832	1.29	101	39	62	7.47
4-2 #	4 922	1.58	143	57	86	8.63
4-3 #	5 341	1.78	112	56	56	5.97

图 3 测量的 SRAM 存储器的翻转截面 Fig. 3 SEU cross section for SRAM a----1M;b----4M;c----8M;d----16M

3) MBU 效应

对测量的 1M、4M、16M 实验数据进行了 分析。对于 1M 和 4M 器件,翻转出错是单粒 子单个位翻转造成的,只是 SEU 效应,一般从 "55H"翻转后为"45H"、"51H"、"57H"、 "5DH"。而对于 16M SRAM,出现了多位翻转 效应,从"55H"翻转出现"47H"、"33H"等 2 位、 3 位,甚至最高多达 8 位的翻转。对于0.13 μm 电路,观测到了多位翻转单粒子效应。表 5 列 出了 16M 不同重离子入射时翻转位数的统计。 可看出,1 位翻转占整个翻转的 50%以上,1 位、2 位翻转总数占 85%,随着 LET 的增加,多 位翻转的百分比增加,但当翻转截面处于饱和 截面后,翻转的百分比不随 LET 变化,基本趋 于一致^[16]。

表 5 不同重离子入射翻转位数统计 Table 5 Multiple-bit upset frequencies and distributions

r r i												
离子	当 彩枯 粉	0->1	1->0	地址				百分比	匕/%			
种类	^{志 翻 我} 秋	01	1-+0	总数	1位	2位	3位	4位	5 位	6位	7 位	8位
С	5 110	2 600	2 510	3 291	66.12	19.78	8.54	4.07	1.19	0.21	0	0.06
С	808 845	405 748	403 097	513 148	65.29	20.66	8.31	3.77	1.26	0.39	0.1	0.21
Al	1 810 880	910 716	900 164	$1\ 110\ 454$	60.69	24.6	8.98	3.57	1.33	0.47	0.18	0.15
Cl	1 903 518	956 879	946 639	$1\ 152\ 455$	59.57	25.17	9.36	3.65	1.33	0.49	0.21	0.2
Cu	$1\ 208\ 955$	605 973	602 982	657 948	49.04	30.49	12.19	5.6	1.77	0.55	0.13	0.22
Cu	1 098 114	$550\ 116$	547 998	603 523	49.78	30.34	11.89	5.44	1.68	0.52	0.11	0.22
Cu	1 677 009	841 949	835 060	886 078	46.84	30.65	13.23	6.25	2.02	0.64	0.15	0.18
Au	797 221	397 730	399 491	441 542	50.27	30.23	11.78	5.32	1.55	0.53	0.08	0.22

随着器件特征尺寸的减小,单个粒子入射 可能在多个相邻 PN 结发生电荷收集,从而导 致发生 MBU。原因主要是电荷共享和 MOS 寄生的双极放大效应逐渐严重。电荷共享的机 理是粒子轨迹上的电荷扩散到多个 PN 结,在 几个 um 的距离上扩散的电荷可达直接入射的 15%。另一种是双极放大效应,由于重离子入 射引起多个 MOS 管体电势改变,寄生双极型 晶体管导通,引起漏极电流增加。研究表明,在 双阱工艺下,NMOS 中扩散引起的电荷共享是 主要部分,而 PMOS 中双极放大引起的电荷共 享是主要部分。此外,高能中子或质子入射半 导体材料后与目标材料发生核反应,生成多个 次级粒子分别在不同的 PN 结引发电荷收集也 可能引起 MBU。MBU 对目前卫星系统采用 的 EDAC(Error Detection and Correction) 技 术提出了挑战。

4) 单粒子翻转随特征尺寸减小的变化

对 Renesas 公司不同特征尺寸的器件进行 分析,发现在给定 LET(LET = 32.2 MeV・ cm⁻²・mg⁻¹)下,随特征尺寸的减小,SRAM 器件单粒子翻转饱和截面逐渐减小。图4示出 随特征尺寸减小,Renesas 公司的 SRAM 器件 单粒子翻转的变化趋势。特征尺寸为0.13 μm 测量到 MBU,器件的单粒子翻转位数急剧增 加。MBU 对常用的 EDAC 提出了挑战,星用 小尺寸、高集成度 SRAM 器件的选用应避免使 用发生 MBU 的器件^[17]。

图 4 SRAM SEU 随不同特征尺寸器件的变化 Fig. 4 SEU sensitivity for various SRAM devices as a function of feature size

5) 同样集成度不同厂家的数据比较

集成度(4M)、偏置条件相同,不同厂家器件的 SEU 有很大差异,图 5 示出同样集成度、

图 5 同样集成度、同样偏置、不同厂家的数据比较 Fig. 5 SEU sensitivity of SRAM devices for different venders

同样偏置、不同厂家的数据比较。从实验数据 看,其饱和截面可相差两个数量级。随着 COTS器件在航天的应用,愈来愈多的器件在 设计时就考虑到了其辐照的特性。对于 SRAM,6管结构好于4管结构,6管结构相当 于加两个去耦电阻的措施,可提高CMOS存贮 器的抗单粒子扰动能力。其原因在于:存贮器 单元中加大的电阻,可在电压转变之前,淀积电 荷被扫出的瞬间加入1个RC时间常数,由于 增大了反馈时间与恢复时间的时间间隔,从而 明显地降低了从一种状态翻转到另一种状态的 灵敏度^[18]。

2.2 单粒子闩锁效应模拟实验

在重离子加速器上共实验了 8 种器件,只 有两种器件测量到了 SEL 效应。根据 SEL 的 机理已知,特征尺寸不是影响闩锁的唯一因 素^[19-20]。图 6 示出了测量数据结果。在锎源上 未测量到这两种器件的闩锁效应。用 TRIM 蒙特卡罗程序计算了锎源的裂变粒子在多层金 属布线的能量沉积关系曲线(图 7)。闩锁效应 的机制是因为在灵敏区和衬底之间形成了 SCR 4 层结构,²⁵² Cf 发射的粒子的能量在多层 金属布线结构的器件表面耗损严重,没有能量 沉积在衬底,便观测不到 SEL 效应^[21]。

3 结论

利用中国原子能科学研究院重离子加速器,开展了不同特征尺寸(0.35~0.13 μm) CMOS工艺、不同集成度(1M、4M、8M、16M) SRAM单粒子翻转和单粒子闩锁实验研究。

图 6 SEL 测量结果 Fig. 6 SEL cross sections

得到的初步结论如下。

1) 对于 0.13 μm 电路,观测到了多位翻转 单粒子效应。统计结果发现 1 位翻转占整个翻 转的 50%以上,1 位、2 位翻转总数占 85%,且 随着 LET 的增加,多位翻转的百分比增加。

2)同样集成度(4M)、同样偏置条件的器件厂家不同,器件的单粒子翻转截面有很大差异,其饱和截面可相差两个数量级。

3) 对于采用多层金属布线的集成电路,锎 源不适合开展器件 SEL 效应研究。单粒子闩 锁效应与器件工作电压、外延层厚度的选择、保 护环的接触有关。

对中国原子能科学研究院核物理研究所 郭刚、惠宁等的帮助表示感谢。

参考文献:

[1] 张正选,李国政,罗晋生,等.利用加速器提供的 重离子进行 SRAM 单粒子效应研究[J].强激光 与粒子束,2001,12(1):125-128. ZHANG Zhengxuan, LI Guozheng, LUO Jinsheng, et al. Study of single event upset of SRAM using heavy ions provided by accelerator [J]. High Power Laser and Particle Beams, 2001, 12(1): 125-128(in Chinese).

- [2] 路秀琴,符长波,张新,等. 重离子单粒子效应实验研究[J]. 核技术,2003,26(4):271-274.
 LU Xiuqin, FU Changbo, ZHANG Xin, et al.
 Experimental study of single event effects induced by heavy ions [J]. Nuclear Techniques, 2003, 26(4): 271-274(in Chinese).
- [3] 侯明东,甄红楼,张庆祥,等.重离子在半导体器 件中引起的单粒子效应[J].原子核物理评论, 2000,17(13):165-170.

HOU Mingdong, ZHEN Honglou, ZHANG Qingxiang, et al. Single event effects induced by heavy ion in semiconductor device [J]. Nuclear Physics Review, 2000, 17(13): 165-170(in Chinese).

- [4] 贺朝会,耿斌,王燕萍,等. 静态随机存取存储器 重离子单粒子效应实验研究[J].核电子学与探 测技术,2002,20(4):253-257.
 HE Chaohui, GENG Bin, WANG Yanping, et al. Experimental study on heavy ions single event upset effects in static random access memories
 [J]. Nuclear Electronics & Detection Technology, 2002, 20(4): 253-257(in Chinese).
- [5] 贺朝会,耿斌,杨海亮,等.半导体器件单粒子效应的加速器模拟实验[J].强激光与粒子束, 2002,14(1):146-150.

HE Chaohui, GENG Bin, YANG Hailiang, et al. Accelerators simulation experiment on single event effects in semiconductor devices[J]. High Power Laser and Particle Beams, 2002, 14(1): 146-150(in Chinese). [6] 薛玉雄,曹洲,杨世宇,等. IDT6116 单粒子敏感 性评估试验技术研究[J]. 原子能科学技术, 2008,42(1):22-27.

> XUE Yuxiong, CAO Zhou, YANG Shiyu, et al. Study on IDT6116 single-event effect sensitivity evaluation testing technology[J]. Atomic Energy Science and Technology, 2008, 42(1): 22-27(in Chinese).

 [7] 贺朝会,李永宏,杨海亮,等.单粒子效应辐射模 拟实验研究进展[J].核技术,2007,30(4):347-351.

> HE Chaohui, LI Yonghong, YANG Hailiang, et al. Progress in simulation experiments of single event effects[J]. Nuclear Techniques, 2007, 30 (4): 347-351(in Chinese).

[8] 刘建成,李志常,李淑媛,等.重离子辐照效应检测系统的研制[J].原子能科学技术,2004,38(增刊):227-230.

LIU Jiancheng, LI Zhichang, LI Shuyuan, et al. The test system for the study on irradiation effects induced by heavy ions[J]. Atomic Energy Science and Technology, 2004, 38 (Suppl.): 227-230(in Chinese).

- [9] AMUSAN O A, WITULSKI A F, MASSEN-GILL L W, et al. Charge collection and charge sharing in a 130 nm CMOS technology[J]. IEEE Transactions on Nuclear Science, 2006, 53(6): 3 253-3 258.
- [10] MUSSEAU O, GARDIC F, ROCHE P, et al. Analysis of multiple bit upsets (MBU) in CMOS SRAM[J]. IEEE Transactions on Nuclear Science, 1996, 43(6): 2 879-2 888.
- [11] KOGA R, CRAIN W R, CRAWFORD K B, et al. On the suitability of non-hardened high density SRAMs for space applications [J]. IEEE Transactions on Nuclear Science, 1991, 38(1): 1 507-1 513.
- [12] 赖祖武. 抗辐射电子学——辐射效应及加固原 理[M]. 北京:国防工业出版社,1998.
- [13] 贺朝会,耿斌,杨海亮,等. 浮栅 ROM 与 SRAM 的辐射效应比较[J]. 电子学报,2003,31(8): 1 260-1 262.

HE Chaohui, GENG Bin, YANG Hailiang, et al. Comparison and analysis of radiation effects between floating gate ROMs and SRAMs[J]. Acta Electronica Sinica, 2003, 31(8): 1 2601 262(in Chinese).

- [14] 贺朝会,杨海亮,耿斌,等. 静态随机存取存储器 质子单粒子效应实验研究[J]. 核电子学与探测 技术,2000,20(4):253-257.
 HE Chaohui, YANG Hailiang, GENG Bin, et al. Experiment study on proton single event effects in SRAM[J]. Nuclear Electronics & Detection Technology, 2000, 20(4): 253-257 (in Chinese).
 - [15] OLSON B D, BALL D R, WARREN K M, et al. Simultaneous single event charge sharing and parasitic bipolar conduction in a highly-scaled SRAM design[J]. IEEE Transactions on Nuclear Science, 2005, 52(6): 2 132-2 136.
 - [16] 贺朝会,陈晓华,李国政,等. FLASH ROM28F256和29C256的14 MeV中子辐照实 验研究[J]. 核电子学与探测技术,2000,20(1): 115-119.

HE Chaohui, CHEN Xiaohua, LI Guozheng, et al. Experimental study on 14 MeV neutron irradiation effects in FLASH ROM28F256 and 29C256 [J]. Nuclear Electronics & Detection Technology, 2000, 20(1): 115-119(in Chinese).

- [17] DUFOUR C, GARNIER P, CARRIER T, et al. Heavy ion induced single hard errors on sub micron memories[J]. IEEE Transactions on Nuclear Science, 1992, 39(1): 1 693-1 672.
- [18] KOGA R, PENZIN S, CRAWFORD K. Single event functional interrupt (SEFI) sensitivity in microcircuits [C] // Proceedings of RADECS. [S. l.]: [s. n.], 1997: 311-318.
- [19] SONG Y, VU K N, Cable J S, et al. Experimental and analytical investigation of single event upset, multiple bit upsets in poly-silicon load, 64K×1 NMOS SRAMS[J]. IEEE Transactions on Nuclear Science, 1988, 35(1): 1 673-1 677.
- [20] BLACK J D, STERNBERG A L, ALLES M L, et al. Multiple-bit upset in 130 nm CMOS technology[J]. IEEE Transactions on Nuclear Science, 2005, 52(6): 2 536-2 541.
- [21] KOGA R, KOLASINSKI W A, OSBORN J V, et al. SEU test techniques for 256K static RAMS and comparisons of upsets induced by heavy ions and protons[J]. IEEE Transactions on Nuclear Science, 1988, 35(6): 1 638-1 643.