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A Gel’fand-type spectral radius formula and stability of linear
constrained switching systems✩

Xiongping Dai
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Abstract

Using ergodic theory, in this paper we present a Gel’fand-type spectral radius formula which
states that the joint spectral radius is equal to the generalized spectral radius for a matrix mul-
tiplicative semigroupS+ restricted to a subset that need not carry the algebraic structure ofS+.
This generalizes the Berger-Wang formula. Using it as a tool, we study the absolute exponential
stability of a linear switched system driven by a compact subshift of the one-sided Markov shift
associated toS.

Keywords: Joint/generalized spectral radius, Gel’fand-type spectral-radius formula, linear
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1. Introduction

In this paper, we study the Gel’fand-type spectral-radius formula and stability of a matrix
multiplicative semigroupS+ restricted to a subset that does not need to carry the algebraic struc-
ture of the semigroupS+, using ergodic-theoretic and dynamical systems approaches.

1.1. The Gel’fand-type formulae

Let d ≥ 1 be an integer andI a metrizable topological space. We consider a continuous
matrix-valued functionS : I → Cd×d; i 7→ Si . Let us denote byΣ+I the set of all the one-sided
infinite switching signalsi(·) : N → I endowed with the standard infinite-product topology,
whereN = {1, 2, . . .}. For simplicity, we writei(n) = in for all n ∈ N. Then in the state spaceCd,
we define the linear, discrete-time, switched dynamical systemSi(·):

xn = Sin · · ·Si1 x0 (x0 ∈ Cd, n ≥ 1),

for any switching signali(·) = (in)+∞n=1 ∈ Σ+I . For any wordw = (i1, . . . , in) ∈ In =

n-time
︷          ︸︸          ︷

I × · · · × I
of lengthn ≥ 1, simply writeSw = Sin · · ·Si1 and let‖Sw‖ denote the operator norm of the linear
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transformationx 7→ Swx induced by any preassigned vector norm‖ · ‖ on Cd; that is to say,
‖Sw‖ = supx∈Cd,‖x‖=1 ‖Swx‖.

Thejoint spectral radiusof S (free of constraints) is introduced by G.-C. Rota and G. Strang
in [37] as follows:

ρ̂(S) = lim sup
n→+∞

{

sup
w∈In

n
√

‖Sw‖
} (

= lim
n→+∞

{

sup
w∈In

n
√

‖Sw‖
})

.

Since

log

(

sup
w∈Iℓ+m

‖Sw‖
)

≤ log

(

sup
w∈Im
‖Sw‖

)

+ log

(

sup
w∈Iℓ
‖Sw‖

)

for all ℓ,m≥ 1, i.e., the subadditivity holds, the above limit always exists. On the other hand, the
generalized spectral radiusof S (free of constraints) is defined by I. Daubechies and J.C. Lagarias
in [13] as

ρ(S) = lim sup
n→+∞

{

sup
w∈In

n
√

ρ(Sw)

}

,

whereρ(A) denotes the usual spectral radius of the matrixA ∈ Cd×d.
Then, the so-called generalized Gel’fand spectral-radiusformula, due to M.A. Berger and

Y. Wang [2] and conjectured by I. Daubechies and J.C. Lagarias [13], can be stated as follows:

The Berger-Wang Formula 1.1(See [2]). If S = {Si}i∈I is a bounded subset ofCd×d, then there
holds the equalityρ(S) = ρ̂(S).

This formula was proved by using different approaches, for example, in [2, 15, 39, 8, 4, 9].
Recently, this formula has been generalized to sets of precompact linear operators constraint-free
acting on a Banach space by Ian D. Morris in [33] using ergodictheory.

The above Gel’fand-type spectral-radius formula is an important tool in a number of research
areas, such as in the theory of control and stability of unforced systems, see [1, 25, 20, 12] for
example; in coding theory, see [32]; in wavelet regularity,see [13, 14, 22, 31]; and in the study
of numerical solutions to ordinary differential equations, see, e.g., [19].

However, in many real-world situations, constraints on allowable switching signals often
arise naturally as a result of physical requirements on a system. One often needs to consider some
switching constraints imposed by some kind of uncertainty about the model or about environment
in which the object operates, see [41, 27, 28, 29, 6] and so on.Consider in the control theory, for
example, a proper subsetΛ of Σ+I as the set of admissible switching signals, such as

Λ = Σ+A :=
{

i(·) = (in)+∞n=1 ∈ Σ+I | ainin+1 = 1 ∀n ≥ 1
}

whereI = {1, . . . , κ} consists of finitely many letters and whereA = (aℓm) is aκ × κ matrix of
zeros and ones induced by a Markov transition matrix or a directed graph. A more general way
to defineΛ is via a language, as shown, for example in [42, 23, 29].

So, it is natural and necessary to introduce the definition ofGel’fand-type spectral radius
under some switching constraints.

Hereafter, ifΛ is a nonempty subset ofΣ+I , thenS↾Λ is identified with the family of systems
Si(·) over all switching signalsi(·) ∈ Λ, and called the switched system with constraintΛ.

2



Definitions 1.2. Let Λ be a nonempty subset ofΣ+I as the set of admissible switching signals.
Define thejoint spectral radius ofS↾Λ as

ρ̂(S↾Λ) = lim sup
n→+∞

{

sup
i(·)∈Λ

n
√

‖Sin · · ·Si1‖
}

.

Thegeneralized spectral radius ofS↾Λ is defined as

ρ(S↾Λ) = lim sup
n→+∞

{

sup
i(·)∈Λ

n
√

ρ(Sin · · ·Si1)

}

.

We notice that ifΛ is invariantby the natural one-sided Markov shiftθ+ : i(·) 7→ i(· + 1); that
is, i(· + 1) belongs toΛ for any i(·) ∈ Λ, then from the subadditivity, there follows that ˆρ(S↾Λ) is
well defined in the sense that

ρ̂(S↾Λ) = lim
n→+∞

{

sup
i(·)∈Λ

n
√

‖Sin · · ·Si1‖
}

.

It is easily seen that there holds the inequalityρ(S↾Λ) ≤ ρ̂(S↾Λ). Clearly, ρ̂(S↾Λ) = ρ̂(S) and
ρ(S↾Λ) = ρ(S) for the special free-constraint caseΛ = Σ+I , if S is bounded inCd×d.

Based on the recent work of Ian D. Morris [33] (see Theorem 2.6below), in this paper, we
present the following Gel’fand-type spectral-radius formula under switching constraints:

Theorem A (Spectral-radius formula with constraints). LetS : I → Cd×d; i 7→ Si be continuous
in i ∈ I whereI is a metric space, and assumeΛ ⊂ Σ+I is an invariant compact set of the one-
sided Markov shift

θ+ : Σ+I → Σ+I ; i(·) = (in)+∞n=1 7→ i(· + 1) = (in+1)+∞n=1.

Then there holds the equalityρ(S↾Λ) = ρ̂(S↾Λ).

Let S+↾Λ be the set of all product matricesSin · · ·Si1 wheren ≥ 1 andi(·) = (in)+∞n=1 ∈ Λ.
A technical problem is, for the constrained caseΛ ( Σ+I , that S+↾Λ does not need to carry the
algebraic structure of a semigroup; otherwise, [4, TheoremB] works and implies Theorem A in
our context. The compactness andθ+-invariance ofΛ both are needed for our discussion of using
ergodic theory.

We note that [41, Theorem 7.3] contains a “Gel’fand-type formula” with constraints which is
for continuous time and in a special case, using Lyapunov function. Our theorem will be proved
in Section 2 based on a recent theorem of Ian D. Morris in [33].

Theorem A is a generalization of the Berger-Wang formula. Infact, from it we could obtain
concisely the Berger-Wang formula as follows.

Proof of the Berger-Wang formula. Let {Si | i ∈ I} ⊂ Cd×d be an arbitrary bounded set. Write
I = ClCd×d({Si | i ∈ I}), the closure of the set{Si : i ∈ I} in Cd×d. Then,I is compact inCd×d, and
the functionS : I → Cd×d, defined byi 7→ Si whereSi = i ∀i ∈ I, is continuous ini ∈ I. Since
there holds that

sup
w∈In

n
√

‖Sw‖ = sup
w∈In

n
√

‖Sw‖ and sup
w∈In

n
√

ρ (Sw) = sup
w∈In

n
√

ρ(Sw)
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for all n ≥ 1 from the factIn = ClCd×d({Sw |w ∈ In}), we can obtain that ˆρ (S) = ρ̂ (S) and
ρ (S) = ρ (S). So, applying Theorem A in the caseΛ = Σ+

I
, we have got that ˆρ (S) = ρ (S). This

completes the proof of the Berger-Wang formula (Theorem 1.1).

In addition, we define the Lyapunov exponent associated to aninitial statex0 ∈ Cd \ {0} and
a switching signali(·) = (in)+∞n=1 by

χ(x0, Si(·)) = lim sup
n→+∞

1
n

log‖Sin · · ·Si1 x0‖.

It is easily seen that ˆρ (S) ≥ expχ(x0, Si(·)) for all i(·) ∈ Λ and allx0 ∈ Cd. However, we will
prove that ˆρ (S) might be achieved by some optimal pair (x0, i(·)) ∈ Cd × Λ; see Corollary 2.7
below, which generalizes a corresponding result in [1] in the free-constraints case.

Recall for any giveni(·) ∈ Σ+I thatS is said to bei(·)-exponentially stable, provided that there
existsc ≥ 1 andχ < 0 such that

‖Sin · · ·Si1 x0‖ ≤ c‖x0‖exp(nχ) ∀x0 ∈ Cdandn ≥ 1.

This is equivalent to

χ(Si(·)) := lim sup
n→+∞

1
n

log‖Sin · · ·Si1‖ < 0.

Moreover, this is also equivalent toχ(x0, Si(·)) < 0 for all x0 ∈ Cd \ {0}. Further,S is called to be
uniformly i(·)-exponentially stable, provided that there existsC ≥ 1 andχ < 0 such that

‖Sim+ℓ · · ·Siℓ · · ·Si1 x0‖ ≤ C‖Siℓ · · ·Si1 x0‖exp(mχ) ∀x0 ∈ Cdandm≥ 1,

uniformly for ℓ ≥ 0. This is equivalent to thatS is exponentially stable over the closure of the
orbit {i(· +m) : m= 0, 1, 2, . . .} in Σ+I .

From [12] together with K.G. Hareet al. [21], one can construct an explicit counterexample
to show that thei(·)-exponential stability is essentially weaker than the uniform i(·)-exponential
stability of S.

1.2. Stability criteria under switching-path constraints

As pointed out in D. Liberzon and A.S. Morse [30], there are three benchmark problems for
switched systems: stabilization under arbitrary switching signals, stabilization under a switching
path constraint, and construction of stabilizing switching signals. To the second problem, as an-
other result of our spectral-radius formula, in the second part of this paper, we give the following
criteria of the absolutely asymptotic stability for a linear system obeying switching constraints,
which will be proved in Section 3.

Theorem B. Let S : I → Cd×d be continuous and bounded withρ(S) = 1 and assumeΛ ⊂ Σ+I
is an invariant compact set of the one-sided Markov shiftθ+ : Σ+I → Σ+I . Then, the following
conditions are mutually equivalent:

(a) S is “Λ-absolutely asymptotically stable”, i.e.,

Sin · · ·Si1 → 0d×d as n→ +∞ ∀i(·) ∈ Λ,

where0d×d is the origin ofCd×d.
4



(b) The generalized spectral radiusρ(S↾Λ) < 1.

(c) There exists a constant0 < γ < 1 and an integer N≥ 1 such that

ρ(Sin · · ·Si1) ≤ γ ∀n ≥ N and i(·) ∈ Λ.

The claim (a)⇔ (b) still holds without the assumptionρ(S) = 1, by using the Fenichel
uniformity theorem (Lemma 3.3 below) and Theorem A; see Lemmas 3.2 and 3.3 below. Here
the compactness ofΛ is important for the proof of Theorem B presented in this paper. Let us see
a simple counterexample as follows:

Example 1.3. LetI = {0, 1}, Λ = Σ+I \ {(0, 0, 0, . . .), (1, 1, 1, . . .)} and letS : I → C2×2 be defined
by

0 7→ S0 =

[
1 0
0 0

]

, 1 7→ S1 =

[
0 0
0 1

]

.

It is easily seen thatρ(S) = 1 andS is Λ-absolutely asymptotically stable. However,ρ(S↾Λ) = 1.
Moreover, for anyN ≥ 1, one can find somei(·) = (in)+∞n=1 ∈ Λ such thatρ(SiN · · ·Si1) = 1. Note
here thatΛ is θ+-invariant, but it is an open and noncompact subset ofΣ+I .

Remark 1.4. To anyε > 0, there always exists a norm|||| · ||||ε onCd such that

||||Si||||ε ≤ ρ̂(S) + ε ∀i ∈ I,

for example in [37], also see [15, 35, 39] for much shorter proofs. This implies that

ρ̂(S) = inf
‖·‖∈N

{

sup
i∈I
‖Si‖

}

,

whereN denotes the set of all possible vector norms onCd.
So, whenever ˆρ(S) < 1 one always can pick a pre-extremal norm|||| · |||| on Cd so that there

exists a constant ˆγ with

(⋆) ||||Si|||| ≤ γ̂ < 1 ∀i ∈ I.

Thus,‖Sin · · ·Si1‖ → 0 asn → ∞ uniformly for i(·) ∈ Σ+I whenever ˆρ(S) < 1. However, this
inequality (⋆) is not, in general, the case for the constrained case ˆρ(S↾Λ) < 1 whenΛ , Σ+I
because of the lack of the semigroup structure ofS+↾Λ as mentioned before. In fact, theΛ-stability
of S cannot imply the stability of every subsystems. This point causes an essential difference
between the case free of any switching constraints and one obeying switching constraints.

Remark 1.5. For the case free of constraints, there holds the following identity:

(∗) ρ(S) = sup
n≥1

{

sup
w∈In

n
√

ρ(Sw)

}

,

which is very important; this is because it simply implies the continuity ofρ(S) with respect to
S : I → Cd×d under the C0-topology [22]. For example, see [13, Lemma 3.1] and [4, Remark in
Section 1]. Moreover, this is used in [26, 3, 39]. Here we present an other proof for this. Since
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for anyε > 0 one can pick out a norm|||| · ||||ε onCd such that||||Si||||ε ≤ ρ̂(S) + ε for all i ∈ I, as
mentioned in Remark 1.4. So, from the Berger-Wang formula, it follows that

n
√

ρ(Sw) ≤ n
√

ρ̂(Sw) ≤ ρ(S) + ε ∀w ∈ In andn ≥ 1.

Thus, supw∈In
n
√
ρ(Sw) ≤ ρ(S) for anyn ≥ 1 and so supn≥1

{
supw∈In

n
√
ρ(Sw)

}
= ρ(S).

In our situation, however, the above (∗) does not need to hold restricted toΛ because of
the lack of condition (⋆). We consider an explicit constrained system. LetS be defined as in
Example 1.3 and let

Λ = {i′(·) = (0, 1, 0, 1, 0, 1, . . .), i′′(·) = (1, 0, 1, 0, 1, 0, . . .)}.

Sinceθ+(i′(·)) = i′′(·) andθ+(i′′(·)) = i′(·), Λ is aθ+-invariant compact subset ofΣ+I . Clearly,

ρ(S↾Λ) = 0 � sup
n≥1

{

max
i(·)∈Λ

n
√

ρ(Sin · · ·Si1)

}

= 1.

This shows that the dynamics behavior of a constrained system is sometimes very different from
that of a system free of any constraints.

Similar to the proof of the Berger-Wang formula presented before, it follows easily from
Theorem B that ifρ(S) < 1 thenS, free of constraints, is absolutely exponentially stable.So,
this theorem extends Brayton-Tong [5, Theorem 4.1], Barabanov [1], Daubechies-Lagarias [13,
Theorem 4.1], Gurvits [20, Theorem 2.3] and Shih-Wu-Pang [39, Theorem 1] for a discrete-
time linear switched system that is free of any switching constraints to one which obeys some
switching constraints.

Finally, the paper ends with some questions related closelyto Theorems A and B for us to
further study in Section 4.

2. The Gel’fand-type spectral-radius formula obeying constraints

In this section, we will devote our attention to proving Theorem A which asserts a Gel’fand-
type spectral-radius formula of a set of matrices obeying some switching constraints, using
ergodic-theoretic approaches.

2.1. Some ergodic-theoretic results

Let T : Ω→ Ω be a continuous transformation of a compact topological spaceΩ. Let BΩ be
the Borelσ-field of the spaceΩ, which is generated by all open sets of the topology spaceΩ.

Definition 2.1 (See [34]). A probability measureµ on the Borel measurable space (Ω,BΩ) is
said to beT-invariant, write asµ ∈ Minv(Ω,T), if µ = µ ◦ T−1, i.e. µ(B) = µ(T−1(B)) for all
B ∈ BΩ. A T-invariant probability measureµ is calledT-ergodic, write asµ ∈ Merg(Ω,T),
provided that forB ∈BΩ, µ

(
(B \ T−1(B)) ∪ (T−1(B) \ B)

)
= 0 impliesµ(B) = 1 or 0.

To prove Theorem A, we need several ergodic-theoretic lemmas. The first is the standard
Kingman subadditive ergodic theorem.

6



Theorem 2.2(See [24]). Let 〈 fn〉+∞n=1 : Ω → R ∪ {−∞} be a sequence of upper-bounded Borel
measurable functions such that fm+n(ω) ≤ fn(Tm(ω)) + fm(ω) for everyω ∈ Ω and any m, n ≥ 1.
Then, for anyµ ∈ Merg(Ω,T), it holds that

lim
n→+∞

1
n

∫

Ω

fn(ω) dµ(ω) = inf
n≥1

1
n

∫

Ω

fn(ω) dµ(ω) = lim
n→+∞

1
n

fn(ω)

for µ-a.s.ω ∈ Ω.

As usual, one can introduce a natural topology forR ∪ {−∞} under which [0,+∞) is home-
omorphic toR ∪ {−∞} by a strictly increasing continuous function fromR ∪ {−∞} onto [0,+∞)
with −∞ 7→ 0. The second lemma needed is the semi-uniform subadditive ergodic theorem,
independently due to S. J. Schreiber [38] and R. Sturman and J. Stark [40], which could be stated
as follows:

Theorem 2.3(See [38, 40]). Let 〈 fn〉+∞n=1 : Ω→ R∪ {−∞} be a sequence of continuous functions
such that fℓ+m(ω) ≤ fℓ(Tm(ω)) + fm(ω) for everyω ∈ Ω and anyℓ,m ≥ 1. If there is a constant
ααα such that

lim
n→+∞

1
n

∫

Ω

fn(ω) dµ(ω) < ααα ∀µ ∈ Merg(Ω,T),

then there exists an N≥ 1 such that for anyℓ ≥ N, supω∈Ω
1
ℓ

fℓ(ω) < ααα.

See [10] for an elementary and short proof of the above semi-uniformity theorem. Next, we
put

χ(〈 fn〉∞1 ) = lim
n→+∞

{

sup
ω∈Ω

1
n

fn(ω)

}

and χ(µ, 〈 fn〉∞1 ) = inf
ℓ≥1

1
ℓ

∫

Ω

fℓ(ω) dµ(ω).

Clearly, χ(〈 fn〉∞1 ) ≤ maxω∈Ω f1(ω) < +∞ by the subadditivity and the continuity offn(ω) in
ω ∈ Ω.

As a result of Theorem 2.3, we can simply obtain the followingversion of Theorem 2.3.

Lemma 2.4. Let〈 fn〉+∞1 : Ω→ R∪{−∞} be be a T-subadditive sequence of continuous functions.
Then

χ(〈 fn〉∞1 ) = max
µ∈Merg(Ω,T)

χ(µ, 〈 fn〉∞1 ).

Proof. Let ααα = χ(〈 fn〉∞1 ). It is easy to seeααα ≥ χ(µ, 〈 fn〉∞1 ) from Theorem 2.2. To prove the
statement, suppose, by contradiction, thatχ(µ, 〈 fn〉∞1 ) < ααα for all µ ∈ Merg(Ω,T). Then from
Theorem 2.3, it follows that there exists anN ≥ 1 such that supω∈Ω

1
N fN(ω) < ααα. SinceΩ

is compact andfN is continuous, one can find some constantα′ < ααα such that1
N fN(ω) ≤ α′

for all ω ∈ Ω. Combining this with the subadditivity of〈 fn〉+∞1 implies thatχ(〈 fn〉∞1 ) ≤ α′, a
contradiction. This proves Lemma 2.4.

We notice here that the compactness ofΩ is important for the statements of Theorem 2.3 and
Lemma 2.4, but not necessary for Theorem 2.2.

We call the numbersχ(〈 fn〉∞1 ) andχ(µ, 〈 fn〉∞1 ), defined above, thejoint growth rateandgrowth
rate atµ, of the subadditive sequence〈 fn〉∞1 , respectively. In addition, put

χ(ω, 〈 fn〉∞1 ) = lim sup
n→+∞

1
n

fn(ω).

7



Then from Theorem 2.2, it follows that

χ(ω, 〈 fn〉∞1 ) = χ(µ, 〈 fn〉∞1 ) µ-a.s.ω ∈ Ω.

So, for anyT-subadditive sequence〈 fn〉∞1 as in Theorem 2.3, by Lemma 2.4 we have

χ(〈 fn〉∞1 ) = max
ω∈Ω
χ(ω, 〈 fn〉∞1 ).

Thus, we can obtain the following optimization result for the subadditive function sequence
〈 fn(ω)〉∞1 given as in Theorem 2.3.

Lemma 2.5. Let 〈 fn〉∞1 be arbitrary given as in Theorem 2.3. Then there can be found some
µµµ∗ ∈ Merg(Ω,T) such thatχ(〈 fn〉∞1 ) = χ(µµµ∗, 〈 fn〉∞1 ). This also implies thatχ(〈 fn〉∞1 ) = χ(ω, 〈 fn〉∞1 )
for µµµ∗-a.s.ω ∈ Ω.

This result is an extension of [11, Theorem 3.1] from finite set S to infinite case. For the case
that〈 fn〉∞1 : Ω→ R, the statement of Lemma 2.5 can be read in Y.-L. Cao [7].

On the growth of the spectral radius, the following result isdue to Ian D. Morris, which has
been proved based on the multiplicative ergodic theorem (cf. [18, 36, 17]) using invariant cone.

Theorem 2.6(See [33]). Let T: (Ω,BΩ, µ) → (Ω,BΩ, µ) be a measure-preserving continuous
transformation of a metrizable topological spaceΩ, andL : Ω×Z+ → Cd×d a Borel measurable
linear cocycle driven by T, i.e.,

L(ω, 0) = IdCd , L(ω, ℓ +m) = L(Tm(ω), ℓ)L(ω,m) ∀ω ∈ Ω andℓ,m≥ 1.

If
∫

Ω
log+ ‖L(ω, 1)‖dµ(ω) < ∞ wherelog 0= −∞ andlog+ x = max{0, log x} for any x≥ 0, then

one can find a T-invariant Borel subsetΥµ ofΩ with µ(Υµ) = 1 such that

lim sup
n→+∞

1
n

logρ(L(ω, n)) = lim
n→+∞

1
n

log‖L(ω, n)‖

for all ω ∈ Υµ.
Particularly, letΩ = Σ+I ,T = θ+ andL(ω, n) = Sin · · ·Si1 for ω = i(·). Then, this theorem

tells us that there holds:

lim sup
n→+∞

n
√

ρ(Sin · · ·Si1) = lim
n→+∞

n
√

‖Sin · · ·Si1‖ µ-a.s.i(·) ∈ Σ+I ,

for everyθ+-invariant probability measureµ onΣ+I .

2.2. Proof of Theorem A and an optimization result
LetΛ ⊂ Σ+I be aθ+-invariant closed set andS : I → Cd×d be continuous. Then, theΛ-stability

of the linear switched system given by

xn = Sin · · ·Si1 x0 (n ≥ 1, x0 ∈ Cd, i(·) ∈ Σ+I ),

is equivalent to the stability of the linear cocycle defined as follows:

L : Λ × Z+ → Cd×d; (i(·), k) 7→ L(i(·), k) =

{

IdCd if k = 0,

Sik · · ·Si1 if k ≥ 1.

Under the product topology ofΣ+I , the cocycleL(i(·), k) is continuous, whereZ+ = {0, 1, 2, . . . }
is endowed with the discrete topology. In addition, note that Σ+I is metrizable.

Now, we are ready to prove our Gel’fand-type spectral-radius theorem.
8



Proof of Theorem A. SinceΛ is a compact subset andL(i(·), 1) is continuous with respect to
i(·) ∈ Λ, log+ ‖L(i(·), 1)‖ is bounded uniformly fori(·) ∈ Λ. Applying Theorem 2.6 in the case
Ω = Λ andT = θ+↾Λ, we could define aθ+-invariant subsetΥ ⊂ Λ such thatµ(Υ) = 1 for all
µ ∈ Merg(Λ, θ+↾Λ) and that

lim sup
n→+∞

1
n

logρ(L(i(·), n)) = lim
n→+∞

1
n

log‖L(i(·), n)‖ ∀i(·) ∈ Υ.

In fact, for eachµ ∈ Merg(Λ, θ+↾Λ) we can define a setΥµ by Theorem 2.6 and then letΥ =
⋃
Υµ.

Then from the definition of the generalized spectral radius,there holds the inequality

ρ(S↾Λ) ≥ lim sup
n→+∞

n
√

ρ(L(i(·), n)) ∀i(·) ∈ Υ.

Theorem 2.6 implies that

ρ(S↾Λ) ≥ lim
n→+∞

n
√

‖L(i(·), n)‖ ∀i(·) ∈ Υ.

Since fn(i(·)) = log‖L(i(·), n)‖ is continuous with respect toi(·) ∈ Λ and the sequence〈 fn〉+∞1 is
θ+-subadditive, from Theorem 2.2 it follows that

logρ(S↾Λ) ≥ inf
n≥1

{∫

Λ

log n
√

‖L(i(·), n)‖dµ(i(·))
}

= lim
n→+∞

∫

Λ

log n
√

‖L(i(·), n)‖dµ(i(·))

for all µ ∈ Merg(Λ, θ+↾Λ). Now, applying Theorem 2.3 one can obtain that

logρ(S↾Λ) ≥ lim
n→+∞

{

sup
i(·)∈Λ

log n
√

‖L(i(·), n)‖
}

.

Thus, from the definition of ˆρ(S↾Λ) there holds the inequalityρ(S↾Λ) ≥ ρ̂(S↾Λ) and further there
follows thatρ(S↾Λ) = ρ̂(S↾Λ) from ρ(S↾Λ) ≤ ρ̂(S↾Λ). This completes the proof of Theorem A.

As a consequence of Lemma 2.5 and Theorem A, we could obtain atonce the following
optimization result.

Corollary 2.7. Let S : I → Cd×d be continuous and assumeΛ ⊂ Σ+I is an invariant compact set
of the one-sided Markov shiftθ+ : Σ+I → Σ+I . Then, for the linear switched system

xn = Sin · · ·Si1 x0 (n ≥ 1, x0 ∈ Cd, i(·) ∈ Λ),

there holds that

ρ(S↾Λ) = max
µ∈Merg(Λ,θ+↾Λ)

{expχ(µ, S)} = max
i(·)∈Λ

{
expχ(Si(·))

}
= max

(x0,i(·))∈Cd×Λ

{
expχ(x0, Si(·))

}
.

Hereχ(Si(·)) is defined as Section 1.1, and

χ(µ, S) := lim sup
n→+∞

1
n

log‖Sin · · ·Si1‖ for µ-a.s.i(·) ∈ Λ

is called the (maximal) Lyapunov exponents ofS atµ.
9



Proof. Applying Lemma 2.5 to the case thatfn(i(·)) = log‖Sin · · ·Si1‖ for i(·) ∈ Ω = Λ and
T = θ+↾Λ, one can find someθ+-ergodic probability, sayµ∗, onΛ such that

ρ̂(S↾Λ) = expχ(µ, S) = expχ(Si(·)) for µ∗-a.s.i(·) ∈ Λ.

Furthermore, from the multiplicative ergodic theorem [18,36], it follows that there always are
unit vectorsx0 ∈ Cd satisfyingχ(Si(·)) = χ(x0, Si(·)). Thus, the statement follows at once from
Theorem A.

Thus, there holds the following.

Corollary 2.8. Let S : I → Cd×d be continuous and assumeΛ ⊂ Σ+I is an invariant compact set
of the one-sided Markov shiftθ+ : Σ+I → Σ+I . Then, the following statements are equivalent to
each other.

(1) ρ(S↾Λ) < 1.

(2) S is Λ-absolutely exponentially stable.

(3) S is “Λ-pointwise exponentially stable”, i.e.,χ(x0, Si(·)) < 0 for all x0 ∈ Cd and any i(·) ∈ Λ.

This statement will be useful for proving Theorem B in Section 3.

3. Criteria for stability under switching constraints

In this section, we will prove Theorem B stated in Section 1.2, using Theorem A and Corol-
lary 2.8 that have been proved in Section 2. As before, we letΣ+I denote the space of all switching
signalsi(·) : N → I. Let θ+ : Σ+I → Σ+I be the one-sided Markov shift defined as in Theorem A,
that is to say,

θ+ : i(·) 7→ i(· + 1) ∀i(·) = (in)+∞n=1 ∈ Σ+I .
Let Λ be an arbitrary,θ+-invariant, closed, and nonempty subset ofΣ+I andS : I → Cd×d contin-
uous with respect toi ∈ I. Recall that the linear switched system with constraintΛ

S↾Λ xn = Sin · · ·Si1 x0 (n ≥ 1, x0 ∈ Cd, i(·) ∈ Λ)

is calledΛ-absolutely asymptotically stablein case

Sin · · ·Si1 → 0d×d asn→ ∞ ∀i(·) = (in)+∞n=1 ∈ Λ,

where0d×d is the origin ofCd×d. Let ‖ · ‖2 be the matrix norm onCd×d induced by the usual
Euclidean vector norm onCd.

3.1. A criterion ofΛ-stability
First, we present a criterion ofΛ-absolute asymptotic stability (Lemma 3.1), which is an

extension of [5, Theorem 4.1] from the case free of any constraints to a system which obeys
switching constraints.

Lemma 3.1. LetΛ be aθ+-invariant compact subset ofΣ+I and let

S+↾Λ(0) = {IdCd} , S+↾Λ(ℓ) =
{

Siℓ · · ·Si1; i(·) ∈ Λ
}

for ℓ ≥ 1 and S+↾Λ =
⋃

ℓ≥0
S+↾Λ(ℓ).

Then,S is Λ-absolutely asymptotically stable if and only if
10



(1) S+↾Λ is bounded inCd×d,i.e.,∃ β > 0 such that‖A‖2 ≤ β ∀A ∈ S+↾Λ; and

(2) there exists a constantγ > 0 and an integer N≥ 1 such that

ρ(A) ≤ γ < 1 ∀A ∈ S+↾Λ(ℓ),

for anyℓ ≥ N.

The condition (1) in Theorem 3.1 means thatS is Lyapunov stable restricted toΛ. This
theorem is itself very interesting and it is a key step towards the proof of Theorem B. Comparing
to the case that is free of any switching constraints, nowS+↾Λ is not a semigroup. This might cause
an essential difficulty described as follows: ifΛ = Σ+I , i.e., free of any switching constraints, then
condition (1) above implies that there can be found a pre-extremal vector norm|||| · |||| onCd for S
such that||||A|||| ≤ 1 for all A ∈ S+↾Λ; But now in our context, this does not need to be true.

We note here that if the joint spectral radius ˆρ(S↾Λ) < 1 thenS is obviouslyΛ-absolutely
asymptotically stable from Corollary 2.8. In fact, there holds the following stronger result.

Lemma 3.2. Let Λ be aθ+-invariant compact subset ofΣ+I . Thenρ̂(S↾Λ) < 1 if and only if S
is “Λ-uniformly exponentially stable”; that is, there exists a number0 < λ < 1 and an integer
N ≥ 1 such that

‖Sin · · ·Si1‖2 ≤ λn ∀i(·) ∈ Λ and n≥ N.

Proof. Let 1> λ > ρ̂(S↾Λ). Then from the definition of ˆρ(S↾Λ), there is some integerN ≥ 1 such
that

sup
i(·)∈Λ

n
√

‖Sin · · ·Si1‖2 ≤ λ ∀n ≥ N.

So,S is Λ-uniformly exponentially stable. Conversely, if there exists a constant 0< λ < 1 and
an integerN ≥ 1 such that

‖Sin · · ·Si1‖2 ≤ λn ∀i(·) ∈ Λ andn ≥ N,

then

ρ̂(S↾Λ) = inf
n≥1

{

sup
i(·)∈Λ

n
√

‖Sin · · ·Si1‖2

}

≤ λ < 1,

as desired. This proves Lemma 3.2.

At the first glance,Λ-absolute asymptotic stability is weaker than theΛ-absolute exponential
stability for the switching systemS. However, they are equivalent to each other as is shown in
the case free of any switching constraints (cf. [13, Theorem4.1] and [20, Theorem 2.3]). In fact,
theΛ-absolute asymptotic stability is equivalent to theΛ-uniform exponential stability from the
Fenichel uniformity theorem [16], stated as follows:

Lemma 3.3(See N. Fenichel [16]). Let Λ be aθ+-invariant compact subset ofΣ+I . Then,S is
Λ-absolutely asymptotically stable if and only if it isΛ-uniformly exponentially stable.

Remark 3.4. For Lemma 3.3, the hypothesis thatΛ is “compact” is important, as shown by
Example 1.3 in Section 1.2.

Now, we can readily prove Lemma 3.1 using the statements of Lemmas 3.2 and 3.3.
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Proof of Lemma 3.1. If S is Λ-absolutely asymptotically stable, then from Lemmas 3.3 and 3.2
there follows that conditions (1) and (2) in Lemma 3.1 are trivially fulfilled. Next, let conditions
(1) and (2) in Lemma 3.1 both hold. We proceed to prove thatS is Λ-absolutely asymptotically
stable.

Assume, by contradiction, thatS were notΛ-absolutely asymptotically stable; then one can
find some switching signal, sayi(·) = (in)+∞n=1, in Λ such that‖Sin · · ·Si1‖2 6→ 0 asn→ ∞. Using
the boundedness ofS+↾Λ in Cd×d, we can pick out an increasing positive integer sequence, say
{ jℓ}+∞ℓ=1, with jℓ → +∞ asℓ → +∞, such that

Cℓ := Si jℓ
· · ·Si1 → C , 0d×d asℓ → ∞.

Now, defineBℓ := Si jℓ+1
· · ·Si jℓ+1 and soCℓ+1 = BℓCℓ. Sinceθ jℓ

+ (i(·)) = i(·+ jℓ) ∈ Λ, i.e., (in+ jℓ)
+∞
n=1

lies inΛ, by theθ+-invariance ofΛ, one could obtainBℓ ∈ S+↾Λ. Using the boundedness again, we
can pick out a subsequence

Bℓk → B ∈ Cd×d ask→ ∞.

Then,C = BC, C , 0d×d, andρ(B) = limk→∞ ρ(Bℓk) ≤ γ < 1 by condition (2) of Lemma 3.1.
But

B(ImC) = ImC , {0},

soB↾ImC is the identity. Thus,ρ(B) ≥ 1; it is a contradiction to condition (2).
This therefore proves the statement of Lemma 3.1.

3.2. A reduction lemma

To prove Theorem B stated in Section 1.2, we need an importantreduction theorem, which
is due to L. Elsner [15, Lemma 4] and simply proved in X. Dai [9].

Lemma 3.5(See [15]). If ρ̂(S) = 1 andS is product unbounded inCd×d, then there is a nonsin-
gular P ∈ Cd×d and1 ≤ d1 < d such that

P−1Si P =

[
S(2)

i ♣i

0d1×(d−d1) S(1)
i

]

∀i ∈ I,

where S(1)
i ∈ Cd1×d1.

HereS is said to be product unbounded, if the multiplicative semigroup S+ defined in the
manner as in Lemma 3.1 in the caseΛ = Σ+I is unbounded inCd×d under an arbitrary induced
operator norm.

3.3. Proof of Theorem B

Let Λ ⊂ Σ+I be an invariant compact set of the one-sided Markov shiftθ+ : Σ+I → Σ+I , which
gives rise to the constrained linear switched system

S↾Λ xn = Sin · · ·Si1 x0 (n ≥ 1, x0 ∈ Cd, i(·) ∈ Λ),

whereS : I → Cd×d; i 7→ Si is as in the assumption of Theorem B.
We now proceed to prove Theorem B.

12



Proof of Theorem B. Clearly, (a)⇒ (b) follows from Lemma 3.3 and Corollary 2.8, and (b)⇒
(c) follows from Theorem A, Corollary 2.8 and Lemma 3.1.

So, to prove Theorem B, we need to prove only (c)⇒ (a). According to the definition of
ρ(S↾Λ) and from Theorem A, condition (c) implies that

ρ(S↾Λ) = ρ̂(S↾Λ) ≤ 1.

If ρ̂(S↾Λ) < 1, then from Lemma 3.2, there holds condition (a). So, we proceed, by induction on
the dimensiond of the state-spaceCd, to proveρ̂(S↾Λ) < 1.

Note that ifS+↾Λ, defined as in Lemma 3.1, is bounded inCd×d, then condition (a) follows
from Lemma 3.1 together with condition (c). So, the assertion is true ford = 1; this is because
ρ(Sin · · ·Si1) = ‖Sin · · ·Si1‖2 = |Sin | · · · |Si1 | ≤ γ < 1 for anyn ≥ N, for anyi(·) ∈ Λ in this case.

Let m ≥ 1 be an arbitrarily given integer. Assume the assertion is true for all dimensions
d ≤ m. We claim that the assertion holds ford = m+ 1.

Suppose, by contradiction, that ˆρ(S↾Λ) = 1 for dimensiond = m + 1. If S+↾Λ is bounded
in C(m+1)×(m+1), by Lemma 3.1 and condition (c),S↾Λ is Λ-absolutely asymptotically stable so
that ρ̂(S↾Λ) < 1 from Lemmas 3.3 and 3.2, a contradiction. ThereforeS+↾Λ is unbounded in
C(m+1)×(m+1) and furtherS is product unbounded inC(m+1)×(m+1). Then from Lemma 3.5, one can
find a nonsingularP ∈ C(m+1)×(m+1) and 1≤ n1 ≤ m such that

P−1SiP =

[
S(2)

i ♣i

0 S(1)
i

]

∀i ∈ I,

whereS(1)
i ∈ Cn1×n1 and0 is the origin ofCn1×(m+1−n1). Set

S(r) =

{

S(r)
i | i ∈ I

}

, r = 1, 2.

Then, by condition (c)
ρ(A) ≤ γ < 1 ∀A ∈ S(r)

↾Λ

+
for r = 1, 2,

whereS(r)
↾Λ

+
is defined similarly toS+↾Λ based onS(r)

↾Λ . As the switched systemsS(r)
↾Λ have dimension

less thanm+ 1 for r = 1, 2, by the induction assumption and Theorem A

ρ

(

S(r)
↾Λ

)

< 1 for r = 1, 2.

Therefore
ρ(S↾Λ) = max

{

ρ

(

S(1)
↾Λ

)

, ρ

(

S(2)
↾Λ

)}

< 1,

andρ̂(S↾Λ) < 1 by Theorem A, contradicting the hypothesis that ˆρ(S↾Λ) = 1.
This contradiction shows that ˆρ(S↾Λ) < 1, completing the proof of Theorem B.

4. Concluding remarks and further questions

In this paper, using ergodic theory we have studied the relationship of the joint spectral radius
and the generalized spectral radius of a linear switched system obeying some type of switching
constraints, and presented several stability criteria. Wenow raise some questions to further study.

Theorem A asserts a Gel’fand-type spectral-radius formulafor a linear switched system obey-
ing some switching constraints. LetΛ ( Σ+I be an invariant closed set of the one-sided Markov
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shift θ+. Clearly, for anyi(·) = (in)+∞n=1 ∈ Λ and anyn ≥ 1, the sub-wordw = (i1, . . . , in) of length
n does not need to be extended to a permissive periodic switching signal, i.e., although

(

w
︷      ︸︸      ︷

i1, . . . , in,

w
︷      ︸︸      ︷

i1, . . . , in, . . .) ∈ Σ+I

is a periodic point ofθ+, but it need not belong to the given subsetΛ. For anyn ≥ 1, put

Wn
per(Λ) =

{

w = (i1, . . . , in) ∈ In | (
︷      ︸︸      ︷

i1, . . . , in,
︷      ︸︸      ︷

i1, . . . , in, . . .) ∈ Λ
}

,

called the set of allΛ-periodic words of lengthn. It is natural to ask the following question:

Question 1. If the periodical switching signals are dense inΛ then, does there hold the following
equality:

lim sup
n→+∞

{

sup
w∈Wn

per(Λ)

n
√

ρ(Sw)

}

= lim sup
n→+∞

{

sup
w∈Wn

per(Λ)

n
√

‖Sw‖
}

?

HereSw = Sin · · ·Si1 for any wordw = (i1, . . . , in) of lengthn ≥ 1 as before.
In our proof of Theorem A, the compactness ofΛ plays a role. So, we naturally ask the

following question:

Question 2. If Λ is a θ+-invariant closed subset ofΣ+I not necessarily compact, does the state-
ment of Theorem A still hold whenS = {Si}i∈I is bounded inCd×d?

In the statement of Theorem B, from the results proved in Section 3 there can still be deduced
without the assumptionρ(S) = 1 that (a)⇔ (b)⇒ (c). This assumption imposed there is used in
the proof of (c)⇒ (a) where we need to employ Lemma 3.5.

So, we ask the following question:

Question 3. Does the statement of Theorem B still hold without the assumption ρ(S) = 1?

Furthermore, we believe that it is very possible to have a positive solution to Question 3.
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