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O Abstract

S The study of hot plasma expansion in a magnetic field is ofré@stefor many astrophysical applications. In order to obser
5 this process in laboratory, an experiment is proposed irchvan ultrashort laser pulse produces a high-temperatasenal by
™) ‘irradiation of a small target. In this Letter an analyticabael is proposed for an expanding plasma cloud in an extelipale
or homogeneous magnetic field. The model is based on theigglar solution of a similar problem which deals with sudde
expansion of spherical plasma into a vacuum without ambieadnetic field. The expansion characteristics of the plaznta
r—ideceleration caused by the magnetic field are examinedtaadlly. The results obtained can be used in treating erpamtal and
simulation data, and many phenomena of astrophysical &tldtory significance.
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(O 1. Introduction expanding, highly conducting plasma sphere in an extemial u
form and constant magnetic field has been obtained in [8]. The
The problem of sudden expansion of hot plasma into a vacaon-relativistic limit of this theory has been used by Ra[g2
uum in the presence of an external magnetic field has been ite analyse the energy balance (energy emission and transfor
«=— tensively studied in the mid-1960s in connection with thghki  mation) during the plasma expansion. The similar problem ha
altitude nuclear explosions. It has also been discusseldein t been considered in Ret./[4] within one-dimensional geoynetr
_c— analysis of many astrophysical and laboratory applicat{see, for a plasma layer. In our previous papersi [10] and [11] we
) _e.g., Refs[[1,/2] and references therein). Such kind ofgsees  obtained an exact analytic solution for the uniform reiatic
— arise during the dynamics of solar flares and flow of the solaexpansion of the highly conducting plasma sphere or cylinde
— wind around the Earth’s magnetosphere, in active expetisnenin the presence of a dipole or homogeneous magnetic field, re-
with plasma clouds in space, and in the course of intergyetin  spectively. In the present Letter we study the expansiohef t
number of astrophysical observations [1-6]. Researché&si®n spherical plasma cloud in the presence of a dipole or homo-
L) problem are of considerable interest in connection withethe  geneous magnetic field taking into account the therrfiates.
<~ periments on controlled thermonuclear fusion [7] (a reviglv ~ For this geometry we found an analytical solution which can b
(O summarizes research in this area over the past four decades)used in analysing the recent experimental and simulatiém da
The property of expanding plasma to push magnetic field oufsee, e.g., Refs.[[1] 2] and references therein).
is a sequence of magnetic flux conservation. Even if a mag-
netic field and, magnetic flux are nonzero initially inside th _
— Pplasma, then internal field tends to zero fast, providing mag?- Theoretical model
= netic flux in plasma to be constant. Plasma is shielded from
2 the penetration of the large external field by means of sarfac

currents circulating inside the thin layer on the plasmantbu : - .
>§ 9 y b pansion). In the present study a quantitative analysisasfrph

c ary. Ponderomotive forces resulting from interaction afsth d s is developed on the basis of di ional sph
currents with the magnetic field would act on the plasma sur: ynamics Is developed on the basis of one-cimensiona’ spher
cal radial model. Within the scope of this analysis theiahit

face as if there were magnetic pressure applied from outsidét f ol leration. later st t deceleratibthe
Thus after some period of accelerated motion, plasma gets gg'age otprasma acceleration, later stage ot decelera
celerated as a result of this external force acting inwarde T process of stopping at the point of maximum expansion are ex-

: . f : .ﬁrnined.
plasma has been considered as a highly conducting media wi : L .
zero magnetic field inside. From the point of view of electro- _Con5|_der the magnetic d'pOﬂEE.m.d a plasma sphencal cloud
. with radiusa(t) located at the origin of the coordinate system.

dynamics it is similar to the expansion of a superconductor i . . . I
a magnetic field. An exact analytic solution for a uniformly The dipole is placed in the po_smcrr@_ from the c_enter_ of Fhe
plasma cloudd(t) < rp). The orientation of the dipole is given
by the angled, between the vectons andro. We denote the
*Corresponding author strength of the magnetic field of the dipole biy(r). The en-
Email address: hrachya@irphe.am (H.B. Nersisyan) ergy, which is transferred from plasma to electromagnesid fi

cs.pl

Usually the motion of the expanding plasma boundary is ap-
proximated as the motion with constant velocity (uniform ex
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is the mechanical work performed by the plasma on the exteffluid equation of motion yields a second-ordeffeliential equa-
nal magnetic pressureg(r)/Sn. Taking into account thisfect,  tion governing the motion of the plasma boundaft). The
the equation of balance of plasma energy is as follows: problem considered is not isentropic in general exceptése c
whens = qy. In the latter case of the isentropic expansion the
4 fa(‘) 24t 12 © v2r2dr+f H3 (r)dr —Wo. (1) equation of state is given bygp™ = const. Throughout in this
y-1Jo P 0 P o On B paper we will assume thgt> 0 ands > 0.

_ ) Equations[(R)E{4) are an exact solution in the case of expan-
where( is the volume of the spherical sheld <1 < a(t),  sjon into a vacuum without magnetic field. However, Eq. (4)
a = a(0) (a(t) > ag) andWp are the initial radius and energy oes not satisfy the boundary conditigo(a(t), t) = HZ/8r,
of the plasma. Alsg = Cp/Cv > 1,v, pandp are the adia-  \yhich is imposed in the case of expansion into an ambient
batic index, the velocity, the pressure and the mass deobity agnetic field. On the other hand if the magnetic pressure is
the plasma, respectivelfC, andCy are the heat c_apacities at gmaller than the plasma pressupiug/ Pmax < 1, the difer-
constant pressure and constant volume, respectively. Wigen ence petween the exact solution in the magnetic field and free
plasma cloud is introduced into a background magnetic fieldgyhansion model is small and is localized in a narrow area nea
the plasma expands and excludes the background magnetic fighe surface of the cloud. These deviations are additiomaty
to form a magnetic cavity. The magnetic energy of the dipole i §yced due to integration in the equation of energy balanse. E
the excluded volume is represented by the last term in[Eq. (1}imating accuracy of the free expansion model, one shok ta
Initial plasma velocity is supposed to b, 0) = vi(r/ag) &  into account that the long stage of plasma deceleratiorecorr
r < agandv(r,0) = 0 atr > 2o, wherevy, is the initial velocity sponds to a high expansion ratagf)/a, > 1. Average plasma
of the plasma boundary4 = &(0)). _ pressure drops significantly and plays no role in energynoala

The obtained energy balance equation canfleevely used  gquation[{lL) during this stage. In accordance with the above
if profiles of velocityv(r, t), pressurep(r, t), and mass density poundary condition local pressure near the plasma edge must
p(r,t) are known functions of the plasma rada). We will  pe equal to the magnetic pressure outside. It causes deviati
take these dependences from the solution of a similar pmoble fqom the profile equatiofi{3) and accumulation of plasmais th
which deals with sudden expansion of spherical plasma into grea. This is confirmed independently by the numerical simu-
vacuum without ambient magnetic field. The simplest class Ofations [12]. In the limiting case when all plasma is locatiz
solutions available in this case are so-called self-sinsi@u- gy the front, one can expect an increase of the kinetiggner
tions. They are realized under the specified initial cond&i 5, longer stage of plasma deceleration as compared with the
We will set the initial conditions with a parabolic distrifion e expansion model.
of pressure and mass density, which describe hotand dénse in |, the case of dipole magnetic field the volume integral in the

tial plasma state with sharp boundary localized &t@. The |55t term of Eq.[{L) has been evaluated in Refl [10]. The tesul
self-similar solutions are characterized by a velocittrths-  a5ds

tion linearly dependent on At r < a(t) H2 (r) 2
| e = sl -Qul. )
a() o 8r 325
v(rt) = ra—(t)’ (2)  wheren = ag/ro < 1, X(t) = a(t)/ao (note thai(t)/ro = nx(t) <
1), and
where unknowra(t) is the radius of sharp plasma boundary 1
while a(t) is the velocity of the boundary. The specification Q) = ——3 [n(l— n4) (3 cog b, — 1) (6)
of the mass density profile at< a(t) is given by (1-n%) 2
3cosf,-1 1+
3 p n
t rG+a) 2 . +87° (1+ cos )| - 5 Inl_n.
rt) = -
p.Y 32T (1 +q) a3 (t) a2(t) ) Substituting Eqs[{2)={4) intd]1) and integrating ovgields

) ) o B first-order diferential equation foa(t), which already satisfies
and Eq. [(2) for velocity, automatically satisfies the couitiy  j,itial condition&(0) = Vi,

equation for an arbitrary functioa(t) and for an arbitrary pa-

rameterq. HereM = const is the tot_al mass of pla§ma cloud 5(2(7) + % +a[Qx(1)) - Q)] = 1 (7)
andI'(2) is the Euler function. Substitution pfandp into the _ X - _

entropy equation gives at< a(t) the following solution forthe  Here two dimensionless quantities are introduced

pressure o P 7 Pmad@ T(1+9) ®)
3y 2 32Word’ y-DWoT(3+59
P(r,t) = Pmax| =7~ 1- =ml (4) . . . .
a(t) a2z (t) which determine the magnetic and the thermal energiesscesp

] . . tively, in terms of the total initial energ. The latter is easily
wheres is an arbitrary parameter amghax is the thermal pres-  gpiained from Eq[{1) and reads

sure at the center of the spherical plasma cloud :at0. In a2 .
addition the quantities, p and p vanish atr > a(t), v(r,t) = _ 3Mv; o /2 pmaxdg T(1 + 9)
p(r,t) = p(r,t) = 0. Substituting above expressions into the 0= 2(5+ 20) y-1 r(g +9)

2
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Figure 1: (Color online.) The dynamics of the plasma clougaexing in a dipole magnetic field. Shown are the scaled sagi)yay (left panel) and the velocity
a(t)/um (right panel) of the plasma boundary vs time (in unitsgfaty = 5/3,8 = 0.5, = 1072, 6p = 0 and fora = 0.1 (solid lines),a = 100 (dashed lines) and
@ = 2 x 10* (dotted lines).

From Egs.[(B) and{9) it is seen thak 1. New dimensionless where¥ (2) = F (é Z; ‘3‘, z) and the latter is the hypergeometric
variables are introduced as followg(r) = a(t)/ap, T = t/to,  function. Substituting in EQL{13)(t) = xs we obtain the corre-

to = ap/Um, Whereun, = [2(5 + 20)Wo/3M]Y? is the velocity — sponding stopping time as a function of the magnetic field and
of plasma expansion, achieved asymptotically at « inthe the plasma kinetic energy

case of expansion into a vacuum without magnetic field (Le. a

13
@ =0). o o= —2 c(“+1) -7 (=) (14)
The total energy of the plasma cloud at times obtained Vo+1 o o+1
from Eq. [@) )
HereC = ¥(1) = \/7_11“(%)/1"(2) ~ 1.4 is a constant. At
W P vanishing ¢ <« 1) and very strongd > 1) magnetic fields
WO =Wo 32 3 [Q(nx(t)) Q] (10) the stopping time becomés ~ CRy/Vim = C(ag/Vin)o Y3,

~ 2R /3vmal = (2a0/3vm)ot, respectively, where the ra-
usRn = (6Wo/H2)Y/? is obtained by equating the initial ki-

netic ener of an initially spherical plasma cloud to the en-
Consider also the case of uniform magnetic field wHen= 99 y'sp P

fth tic field that it push ti ding¢o th
const. In this case the volume integral in Eg. (5) is replacetfrgy0 © magnetc e & L pUSnes ot In expanding

. . adiusRy,. It is worth mentioning that in the case of weak mag-
by (H5/6)(@°(t) - ag) and the diferential equatior({7) for the netic field,oc < 1, and at vanishing thermal pressuge={ 0)
plasma boundary reads

the stopping time does not depend on the initial plasma sadiu
ts ~ (M/Vmpmag)l/g-

We now turn to the general equations determined by Egs. (7)
and [11). At the initial stage of plasma expansibr(tp) from
these equations we obtain

Note that the functiorQ(;) monotonically increases with the d|
argument and the plasma cloud energy decreases with time.

+o[ ) -1]=1, (11)

: B
XZ(T) + = 30D

whereo = Winag/Wo, Winag = (47a3/3)pmag is the initial mag-
netic energy in the plasma volume, apglag = H§/87r is the
magnetic field pressure. vt 3 2

Equations[{l7) and{1 1) coincide with the equation of the one- X(t) ~ 1+ — + —h( ) , (15)
dimensional motion of the point-like particle in the potaht & fo
U(x) which is determined by second and third terms of EGs. (7)vhereh = g(y — 1) — «, k = 2nQ (1) and« = o for the dipole
and [11). The distance, of the plasma cloud motion up to the and homogeneous magnetic fields, respectively. Here threepri
full stop (the stopping length) at the turning pointis deteéred  indicates the derivative with respect to the argument. Ttus
by U(xs) = 1. In particular, it is easier to obtain the stopping the initial stage the plasma cloud may get accelerated aidec
length in the case of homogeneous magnetic field and at vaniskrated depending on the sign of the quartiiin other words
ing thermal pressurgs(= 0). Then from Eq.[(T1) one obtains on the relation between thermal and magnetic pressures). Fo

the equation of motion instance, in the homogeneous magnetic field the acceleratio
Relto—od (12) occurs wherpmax > pe, where

It is seen that in this case the stopping length is givexdy 4 1"(5—23 + S) 16

(1+ 1/0)Y3. The solution of Eq[{112) can be represented in the Pe = 3val(1+9 Pmag (16)

to
Vo+1

(i.e. ath > 0) and continues unti(t) reaches some valug > 1
given by X. = (Pmax/Pe)®. The time interval 0< t < t.

t= , (13)
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Figure 2: (Color online.) The normalized stopping lenatfw)/ag (left panel) and the stopping timg)/to (right panel) of the plasma cloud expanding in a dipole
magnetic field vs the normalized dipole magnetic fieldty = 5/3, = 102, 6, = 0 and forg = 0.1 (solid lines) 8 = 0.5 (dashed lines) angl= 0.9 (dotted lines).

of the acceleration is determined from the equation of nmotio strengthsy of the dipole magnetic field are chosen such that the
(@13). The critical radius. and timet. correspond to the begin- codiicienth in Eq. (I3) is positiveh > 0, for solid and dashed
ning of plasma deceleration. Further plasma motiohatt;  lines and negativéy < 0O, for dotted lines. From the right panel
is an expansion with slowing-down velocity. It ends up at theof Fig.[d it is seen that &t > 0 (solid and dashed lines) there
turning point which corresponds to the maximum of expansionis a short initial period of acceleration,Q t < ty, when the
U(xs) = 1. However, in the opposite case of the low thermalplasma boundary is accelerated according to [Ed. (15). Durin
pressure withpmax < pc the plasma systematically get deceler- this period (which is only weakly sensitive to the magnetidfi
ated in the whole time interval of its dynamics. strength) the dimensionless rada($)/a increases up to 23,

A characteristic stopping time of plasma motion up to the ful and atty < t < t; almost all initial total energy\y is trans-

~

stop at the turning point is given by the integral of the E@. ( ferred into kinetic energy of free radial expansion at canst

and [11) velocity ~ um. As expected (see above) the tittgas reduced
Xs d -1 with increasing the strength of the magnetic field and the fre
Ts = f Y__ .o, |5 (17)  expansion period is shorter for larger The further increasin
L I-u) U’(xs)’ P P ge g

o ) . the strength of the magnetic field (Fig. 1, dotted line) rissinl
Calculating timets needed for plasma to reach this point, oney plasma dynamics with systematically slowing-down vejoci
can simplify the integrand taking into account that the main kg, the same set of the parametgrg ande, in Fig.[2 it is
cont_rlbutlon_comes fr_om _the_V|cm|ty of upper limit of inte- gnown the normalized stopping length (left panel) and tbp-st
gration. This approximation is expressed by the second pafjing time (right panel) of the plasma cloud as a function ef th
of Eq. (17). In the case of weak and homogeneOLiss magneti§mensionless strengthof the dipole magnetic field for some
field this yields universal expressiofis,~ (M/unPmag*® and yajyes of the normalized plasma thermal presgurtt is seen
as ~ Umts. Itis worth mentioning that in the case of weak that the stopping length and time decrease with the stresfgth
magnetic field the stopping time and length do not depenghe magnetic field and practically are not sensitive to th@va
on the initial plasma radius but depend on the thermal pres;gon of the plasma thermal pressure.
sure (or temperature) (cf. these relations with those obthi  Note that at otherwise unchanged parameters the strength of
above). At very strong magnetic fieldas ~ ao + (1/2)vals  the dipole magnetic field is maximal at the orientatign= 0
andts ~ Mvm/&;Pmag and the stopping characteristics of the 4nq monotonically decreases with For instance, the strength
plasma essentially depend on the initial rad_|u§ but are mew i o0y of the dipole magnetic field at the center of the plasma
dependent on the_thermal pressure. The similar estimates ¢4, is reduced by a factor of 2 by varying the dipole orien-
be found for the dipole magnetic field. However, we note thatio, fromé, = 0to#, = /2. Therefore the féect of the
the Ia.tter case significantlyﬁidarg from the hqmo_geneous fi.eld magnetic field shown in Figgl 1 afi@l 2 is weakened at the ori-
situation considered above. Since in the vicinity of theotBp entationd, = /2 of the dipole. In particular, this results in a

the magnetic field is arbitrary large the stopping Iength'canlargerstopping lengths and times than those shown i Fig. 2.
not naturally exceed, for any thermal energy of the plasma

(x(t) < 1/nin Eq. (1)). For a weak magnetic field this simply
yieldsas ~ ro andts =~ ro/unm. 3. Conclusion

As an example in Fid.]1 we show the results of model cal-
culations for the normalized radiagt)/ao (left panel) and the An analytical self-similar solution of the radial expansiof
velocity &(t)/um (right panel) as a function of time (in units of a spherical plasma cloud in the presence of a dipole or homo-
to) aty = 5/3,8 = 05,7 = 102 6, = 0 and for difer-  geneous magnetic field has been obtained. The analysis of the
ent values of the parameter In this figure the dimensionless plasma expansion into ambient magnetic field shows thag¢ ther
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are processes of acceleration, retardation and stoppitigeat
point of maximum expansion that are very distinct and sepa-
rated in space and time. The scaling laws obtained are, in gen
eral, the functions of two dimensionless paramete(sy o for
constant magnetic field) amgdwhich can be varied by means of
the choice of the external magnetic field, the thermal pressu
and the initial energy of the plasma. It allows to test the dif
ferent regimes of plasma dynamics in a wide range of external
conditions.

We expect our theoretical findings to be useful in experi-
mental investigations as well as in numerical simulaticithe
plasma expansion into an ambient magnetic field (either uni-
form or nonuniform). One of the improvements of our present
model will be the derivation of the dynamical equation foe th
plasma surface deformation. In this case it is evident that t
problem is not isotropic with respect to the center of theipla
cloud ¢ = 0) and a full three-dimensional analysis is required.
A study of this and other aspects will be reported elsewhere.
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