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Self-similar analytical model of the plasma expansion in a magnetic field
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Abstract

The study of hot plasma expansion in a magnetic field is of interest for many astrophysical applications. In order to observe
this process in laboratory, an experiment is proposed in which an ultrashort laser pulse produces a high-temperature plasma by
irradiation of a small target. In this Letter an analytical model is proposed for an expanding plasma cloud in an externaldipole
or homogeneous magnetic field. The model is based on the self-similar solution of a similar problem which deals with sudden
expansion of spherical plasma into a vacuum without ambientmagnetic field. The expansion characteristics of the plasmaand
deceleration caused by the magnetic field are examined analytically. The results obtained can be used in treating experimental and
simulation data, and many phenomena of astrophysical and laboratory significance.
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1. Introduction

The problem of sudden expansion of hot plasma into a vac-
uum in the presence of an external magnetic field has been in-
tensively studied in the mid-1960s in connection with the high-
altitude nuclear explosions. It has also been discussed in the
analysis of many astrophysical and laboratory applications (see,
e.g., Refs. [1, 2] and references therein). Such kind of processes
arise during the dynamics of solar flares and flow of the solar
wind around the Earth’s magnetosphere, in active experiments
with plasma clouds in space, and in the course of interpreting a
number of astrophysical observations [1–6]. Researches onthis
problem are of considerable interest in connection with theex-
periments on controlled thermonuclear fusion [7] (a review[1]
summarizes research in this area over the past four decades).

The property of expanding plasma to push magnetic field out
is a sequence of magnetic flux conservation. Even if a mag-
netic field and, magnetic flux are nonzero initially inside the
plasma, then internal field tends to zero fast, providing mag-
netic flux in plasma to be constant. Plasma is shielded from
the penetration of the large external field by means of surface
currents circulating inside the thin layer on the plasma bound-
ary. Ponderomotive forces resulting from interaction of these
currents with the magnetic field would act on the plasma sur-
face as if there were magnetic pressure applied from outside.
Thus after some period of accelerated motion, plasma gets de-
celerated as a result of this external force acting inward. The
plasma has been considered as a highly conducting media with
zero magnetic field inside. From the point of view of electro-
dynamics it is similar to the expansion of a superconductor in
a magnetic field. An exact analytic solution for a uniformly
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expanding, highly conducting plasma sphere in an external uni-
form and constant magnetic field has been obtained in [8]. The
non-relativistic limit of this theory has been used by Raizer [9]
to analyse the energy balance (energy emission and transfor-
mation) during the plasma expansion. The similar problem has
been considered in Ref. [4] within one-dimensional geometry
for a plasma layer. In our previous papers [10] and [11] we
obtained an exact analytic solution for the uniform relativistic
expansion of the highly conducting plasma sphere or cylinder
in the presence of a dipole or homogeneous magnetic field, re-
spectively. In the present Letter we study the expansion of the
spherical plasma cloud in the presence of a dipole or homo-
geneous magnetic field taking into account the thermal effects.
For this geometry we found an analytical solution which can be
used in analysing the recent experimental and simulation data
(see, e.g., Refs. [1, 2] and references therein).

2. Theoretical model

Usually the motion of the expanding plasma boundary is ap-
proximated as the motion with constant velocity (uniform ex-
pansion). In the present study a quantitative analysis of plasma
dynamics is developed on the basis of one-dimensional spher-
ical radial model. Within the scope of this analysis the initial
stage of plasma acceleration, later stage of deceleration and the
process of stopping at the point of maximum expansion are ex-
amined.

Consider the magnetic dipolep and a plasma spherical cloud
with radiusa(t) located at the origin of the coordinate system.
The dipole is placed in the positionr0 from the center of the
plasma cloud (a(t) < r0). The orientation of the dipole is given
by the angleθp between the vectorsp andr0. We denote the
strength of the magnetic field of the dipole byH0(r). The en-
ergy, which is transferred from plasma to electromagnetic field
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is the mechanical work performed by the plasma on the exter-
nal magnetic pressureH2

0(r)/8π. Taking into account this effect,
the equation of balance of plasma energy is as follows:

4π
γ − 1

∫ a(t)

0
pr2dr+2π

∫ a(t)

0
ρv2r2dr+

∫

Ω

H2
0 (r)

8π
dr = W0, (1)

whereΩ is the volume of the spherical shella0 6 r 6 a(t),
a0 = a(0) (a(t) > a0) andW0 are the initial radius and energy
of the plasma. Alsoγ = Cp/CV > 1, v, p andρ are the adia-
batic index, the velocity, the pressure and the mass densityof
the plasma, respectively.Cp andCV are the heat capacities at
constant pressure and constant volume, respectively. Whenthe
plasma cloud is introduced into a background magnetic field,
the plasma expands and excludes the background magnetic field
to form a magnetic cavity. The magnetic energy of the dipole in
the excluded volume is represented by the last term in Eq. (1).
Initial plasma velocity is supposed to bev(r, 0) = vm(r/a0) at
r 6 a0 andv(r, 0) = 0 atr > a0, wherevm is the initial velocity
of the plasma boundary (vm = ȧ(0)).

The obtained energy balance equation can be effectively used
if profiles of velocityv(r, t), pressurep(r, t), and mass density
ρ(r, t) are known functions of the plasma radiusa(t). We will
take these dependences from the solution of a similar problem
which deals with sudden expansion of spherical plasma into a
vacuum without ambient magnetic field. The simplest class of
solutions available in this case are so-called self-similar solu-
tions. They are realized under the specified initial conditions.
We will set the initial conditions with a parabolic distribution
of pressure and mass density, which describe hot and dense ini-
tial plasma state with sharp boundary localized atr = a0. The
self-similar solutions are characterized by a velocity distribu-
tion linearly dependent onr. At r 6 a(t)

v (r, t) = r
ȧ (t)
a (t)
, (2)

where unknowna(t) is the radius of sharp plasma boundary
while ȧ(t) is the velocity of the boundary. The specification
of the mass density profile atr 6 a(t) is given by

ρ (r, t) =
Γ

(

5
2 + q

)

π3/2Γ (1+ q)
M

a3 (t)

[

1− r2

a2(t)

]q

(3)

and Eq. (2) for velocity, automatically satisfies the continuity
equation for an arbitrary functiona(t) and for an arbitrary pa-
rameterq. HereM = const is the total mass of plasma cloud
andΓ(z) is the Euler function. Substitution ofρ andp into the
entropy equation gives atr 6 a(t) the following solution for the
pressure

p (r, t) = pmax

[

a0

a (t)

]3γ [

1− r2

a2 (t)

]s

, (4)

wheres is an arbitrary parameter andpmax is the thermal pres-
sure at the center of the spherical plasma cloud att = 0. In
addition the quantitiesv, ρ and p vanish atr > a(t), v(r, t) =
ρ(r, t) = p(r, t) = 0. Substituting above expressions into the

fluid equation of motion yields a second-order differential equa-
tion governing the motion of the plasma boundarya(t). The
problem considered is not isentropic in general except the case
whens = qγ. In the latter case of the isentropic expansion the
equation of state is given bypρ−γ = const. Throughout in this
paper we will assume thatq > 0 ands > 0.

Equations (2)-(4) are an exact solution in the case of expan-
sion into a vacuum without magnetic field. However, Eq. (4)
does not satisfy the boundary condition,p(a(t), t) = H2

0/8π,
which is imposed in the case of expansion into an ambient
magnetic field. On the other hand if the magnetic pressure is
smaller than the plasma pressure,pmag/pmax ≪ 1, the differ-
ence between the exact solution in the magnetic field and free
expansion model is small and is localized in a narrow area near
the surface of the cloud. These deviations are additionallyre-
duced due to integration in the equation of energy balance. Es-
timating accuracy of the free expansion model, one should take
into account that the long stage of plasma deceleration corre-
sponds to a high expansion ratio,a(t)/a0≫ 1. Average plasma
pressure drops significantly and plays no role in energy balance
equation (1) during this stage. In accordance with the above
boundary condition local pressure near the plasma edge must
be equal to the magnetic pressure outside. It causes deviation
from the profile equation (3) and accumulation of plasma in this
area. This is confirmed independently by the numerical simu-
lations [12]. In the limiting case when all plasma is localized
near the front, one can expect an increase of the kinetic energy
and longer stage of plasma deceleration as compared with the
free expansion model.

In the case of dipole magnetic field the volume integral in the
last term of Eq. (1) has been evaluated in Ref. [10]. The result
reads

∫

Ω

H2
0 (r)

8π
dr =

p2

32r3
0

[

Q (ηx (t)) − Q (η)
]

, (5)

whereη = a0/r0 < 1, x(t) = a(t)/a0 (note thata(t)/r0 = ηx(t) <
1), and

Q (η) =
1

(

1− η2
)3

[

η
(

1− η4
) (

3 cos2 θp − 1
)

(6)

+8η3
(

1+ cos2 θp

)]

−
3 cos2 θp − 1

2
ln

1+ η
1− η .

Substituting Eqs. (2)-(4) into (1) and integrating overr yields
first-order differential equation fora(t), which already satisfies
initial conditionȧ(0) = vm,

ẋ2(τ) +
β

x3(γ−1)
+ α

[

Q (ηx (τ)) − Q (η)
]

= 1. (7)

Here two dimensionless quantities are introduced

α =
p2

32W0r3
0

, β =
π3/2pmaxa3

0

(γ − 1) W0

Γ(1+ s)

Γ( 5
2 + s)

< 1 (8)

which determine the magnetic and the thermal energies, respec-
tively, in terms of the total initial energyW0. The latter is easily
obtained from Eq. (1) and reads

W0 =
3Mv2

m

2(5+ 2q)
+
π3/2pmaxa3

0

γ − 1
Γ(1+ s)

Γ( 5
2 + s)

. (9)
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Figure 1: (Color online.) The dynamics of the plasma cloud expanding in a dipole magnetic field. Shown are the scaled radius a(t)/a0 (left panel) and the velocity
ȧ(t)/um (right panel) of the plasma boundary vs time (in units oft0) atγ = 5/3, β = 0.5, η = 10−2, θp = 0 and forα = 0.1 (solid lines),α = 100 (dashed lines) and
α = 2× 104 (dotted lines).

From Eqs. (8) and (9) it is seen thatβ < 1. New dimensionless
variables are introduced as follows:x(τ) = a(t)/a0, τ = t/t0,
t0 = a0/um, whereum = [2(5 + 2q)W0/3M]1/2 is the velocity
of plasma expansion, achieved asymptotically att → ∞ in the
case of expansion into a vacuum without magnetic field (i.e. at
α = 0).

The total energy of the plasma cloud at timet is obtained
from Eq. (7)

W (t) = W0 −
p2

32r3
0

[

Q (ηx (t)) − Q (η)
]

. (10)

Note that the functionQ(η) monotonically increases with the
argument and the plasma cloud energy decreases with time.

Consider also the case of uniform magnetic field whenH0 =

const. In this case the volume integral in Eq. (5) is replaced
by (H2

0/6)(a3(t) − a3
0) and the differential equation (7) for the

plasma boundary reads

ẋ2(τ) +
β

x3(γ−1)
+ σ[x3(τ) − 1] = 1, (11)

whereσ = Wmag/W0, Wmag = (4πa3
0/3)pmag is the initial mag-

netic energy in the plasma volume, andpmag = H2
0/8π is the

magnetic field pressure.
Equations (7) and (11) coincide with the equation of the one-

dimensional motion of the point-like particle in the potential
U(x) which is determined by second and third terms of Eqs. (7)
and (11). The distancexs of the plasma cloud motion up to the
full stop (the stopping length) at the turning point is determined
by U(xs) = 1. In particular, it is easier to obtain the stopping
length in the case of homogeneous magnetic field and at vanish-
ing thermal pressure (β = 0). Then from Eq. (11) one obtains
the equation of motion

ẋ2
= 1+ σ − σx3. (12)

It is seen that in this case the stopping length is given byxs =

(1+ 1/σ)1/3. The solution of Eq. (12) can be represented in the
form

t =
t0√
σ + 1

[

x(t)F
(

x3(t)

x3
s

)

− F
(

1

x3
s

)]

, (13)

whereF (z) = F
(

1
3 ,

1
2; 4

3; z
)

and the latter is the hypergeometric
function. Substituting in Eq. (13)x(t) = xs we obtain the corre-
sponding stopping time as a function of the magnetic field and
the plasma kinetic energy

ts =
t0√
σ + 1















C

(

σ + 1
σ

)1/3

− F
(

σ

σ + 1

)















. (14)

Here C = F (1) =
√
πΓ

(

4
3

)

/Γ
(

5
6

)

≃ 1.4 is a constant. At
vanishing (σ ≪ 1) and very strong (σ ≫ 1) magnetic fields
the stopping time becomests ≃ CRm/vm = C(a0/vm)σ−1/3,
ts ≃ 2R3

m/3vma2
0 = (2a0/3vm)σ−1, respectively, where the ra-

dius Rm = (6W0/H2
0)1/3 is obtained by equating the initial ki-

netic energyW0 of an initially spherical plasma cloud to the en-
ergy of the magnetic field that it pushes out in expanding to the
radiusRm. It is worth mentioning that in the case of weak mag-
netic field,σ ≪ 1, and at vanishing thermal pressure (β = 0)
the stopping time does not depend on the initial plasma radius,
ts ∼ (M/vm pmag)1/3.

We now turn to the general equations determined by Eqs. (7)
and (11). At the initial stage of plasma expansion (t ≪ t0) from
these equations we obtain

x(t) ≃ 1+
vmt
a0
+

3
4

h

(

t
t0

)2

, (15)

whereh = β(γ − 1)− κ, κ = α3ηQ′(η) andκ = σ for the dipole
and homogeneous magnetic fields, respectively. Here the prime
indicates the derivative with respect to the argument. Thusat
the initial stage the plasma cloud may get accelerated or decel-
erated depending on the sign of the quantityh (in other words
on the relation between thermal and magnetic pressures). For
instance, in the homogeneous magnetic field the acceleration
occurs whenpmax > pc, where

pc =
4

3
√
π

Γ

(

5
2 + s

)

Γ (1+ s)
pmag (16)

(i.e. ath > 0) and continues untilx(t) reaches some valuexc > 1
given by xc = (pmax/pc)1/3γ. The time interval 06 t < tc
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Figure 2: (Color online.) The normalized stopping lengthas(α)/a0 (left panel) and the stopping timets(α)/t0 (right panel) of the plasma cloud expanding in a dipole
magnetic field vs the normalized dipole magnetic fieldα atγ = 5/3, η = 10−2, θp = 0 and forβ = 0.1 (solid lines),β = 0.5 (dashed lines) andβ = 0.9 (dotted lines).

of the acceleration is determined from the equation of motion
(11). The critical radiusxc and timetc correspond to the begin-
ning of plasma deceleration. Further plasma motion att > tc
is an expansion with slowing-down velocity. It ends up at the
turning point which corresponds to the maximum of expansion,
U(xs) = 1. However, in the opposite case of the low thermal
pressure withpmax < pc the plasma systematically get deceler-
ated in the whole time interval of its dynamics.

A characteristic stopping time of plasma motion up to the full
stop at the turning point is given by the integral of the Eqs. (7)
and (11)

τs =

∫ xs

1

dy
√

1− U(y)
≃ 2

√

xs − 1
U ′(xs)

. (17)

Calculating timets needed for plasma to reach this point, one
can simplify the integrand taking into account that the main
contribution comes from the vicinity of upper limit of inte-
gration. This approximation is expressed by the second part
of Eq. (17). In the case of weak and homogeneous magnetic
field this yields universal expressions,ts ∼ (M/um pmag)1/3 and
as ∼ umts. It is worth mentioning that in the case of weak
magnetic field the stopping time and length do not depend
on the initial plasma radius but depend on the thermal pres-
sure (or temperature) (cf. these relations with those obtained
above). At very strong magnetic fields,as ≃ a0 + (1/2)vmts

and ts ∼ Mvm/a2
0pmag, and the stopping characteristics of the

plasma essentially depend on the initial radius but are now in-
dependent on the thermal pressure. The similar estimates can
be found for the dipole magnetic field. However, we note that
the latter case significantly differs from the homogeneous field
situation considered above. Since in the vicinity of the dipole
the magnetic field is arbitrary large the stopping length can-
not naturally exceedr0 for any thermal energy of the plasma
(x(t) < 1/η in Eq. (7)). For a weak magnetic field this simply
yieldsas ≃ r0 andts ≃ r0/um.

As an example in Fig. 1 we show the results of model cal-
culations for the normalized radiusa(t)/a0 (left panel) and the
velocity ȧ(t)/um (right panel) as a function of time (in units of
t0) at γ = 5/3, β = 0.5, η = 10−2, θp = 0 and for differ-
ent values of the parameterα. In this figure the dimensionless

strengthsα of the dipole magnetic field are chosen such that the
coefficienth in Eq. (15) is positive,h > 0, for solid and dashed
lines and negative,h < 0, for dotted lines. From the right panel
of Fig. 1 it is seen that ath > 0 (solid and dashed lines) there
is a short initial period of acceleration, 06 t . t0, when the
plasma boundary is accelerated according to Eq. (15). During
this period (which is only weakly sensitive to the magnetic field
strength) the dimensionless radiusa(t)/a0 increases up to 2−3,
and att0 . t < tc almost all initial total energyW0 is trans-
ferred into kinetic energy of free radial expansion at constant
velocity∼ um. As expected (see above) the timetc is reduced
with increasing the strength of the magnetic field and the free
expansion period is shorter for largerα. The further increasing
the strength of the magnetic field (Fig. 1, dotted line) results in
a plasma dynamics with systematically slowing-down velocity.

For the same set of the parametersγ, η andθp in Fig. 2 it is
shown the normalized stopping length (left panel) and the stop-
ping time (right panel) of the plasma cloud as a function of the
dimensionless strengthα of the dipole magnetic field for some
values of the normalized plasma thermal pressureβ. It is seen
that the stopping length and time decrease with the strengthof
the magnetic field and practically are not sensitive to the varia-
tion of the plasma thermal pressure.

Note that at otherwise unchanged parameters the strength of
the dipole magnetic field is maximal at the orientationθp = 0
and monotonically decreases withθp. For instance, the strength
H0(0) of the dipole magnetic field at the center of the plasma
cloud is reduced by a factor of 2 by varying the dipole orien-
tation fromθp = 0 to θp = π/2. Therefore the effect of the
magnetic field shown in Figs. 1 and 2 is weakened at the ori-
entationθp = π/2 of the dipole. In particular, this results in a
larger stopping lengths and times than those shown in Fig. 2.

3. Conclusion

An analytical self-similar solution of the radial expansion of
a spherical plasma cloud in the presence of a dipole or homo-
geneous magnetic field has been obtained. The analysis of the
plasma expansion into ambient magnetic field shows that there
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are processes of acceleration, retardation and stopping atthe
point of maximum expansion that are very distinct and sepa-
rated in space and time. The scaling laws obtained are, in gen-
eral, the functions of two dimensionless parameters,α (orσ for
constant magnetic field) andβ, which can be varied by means of
the choice of the external magnetic field, the thermal pressure
and the initial energy of the plasma. It allows to test the dif-
ferent regimes of plasma dynamics in a wide range of external
conditions.

We expect our theoretical findings to be useful in experi-
mental investigations as well as in numerical simulations of the
plasma expansion into an ambient magnetic field (either uni-
form or nonuniform). One of the improvements of our present
model will be the derivation of the dynamical equation for the
plasma surface deformation. In this case it is evident that the
problem is not isotropic with respect to the center of the plasma
cloud (r = 0) and a full three-dimensional analysis is required.
A study of this and other aspects will be reported elsewhere.
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