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LOCAL RUNUP AMPLIFICATION BY RESONANT WAVE

INTERACTIONS

THEMISTOKLIS STEFANAKIS, FRÉDÉRIC DIAS∗, AND DENYS DUTYKH

Abstract. Until now the analysis of long wave runup on a plane beach has been fo-
cused on finding its maximum value, failing to capture the existence of resonant regimes.
One-dimensional numerical simulations in the framework of the Nonlinear Shallow Water
Equations (NSWE) are used to investigate the Boundary Value Problem (BVP) for plane
and non-trivial beaches. Monochromatic waves, as well as virtual wave-gage recordings
from real tsunami simulations, are used as forcing conditions to the BVP. Resonant phe-
nomena between the incident wavelength and the beach slope are found to occur, which
result in enhanced runup of non-leading waves. The evolution of energy reveals the exis-
tence of a quasi-periodic state for the case of sinusoidal waves, the energy level of which,
as well as the time required to reach that state, depend on the incident wavelength for a
given beach slope. Dispersion is found to slightly reduce the value of maximum runup, but
not to change the overall picture. Runup amplification occurs for both leading elevation
and depression waves.
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1. Introduction

Despite mathematical difficulties, wave runup has been extensively studied during the
last fifty years. Progress was first made to the one-dimensional problem. From the 1950’s
until 1990 several major contributions were made to the initial value problem (IVP) of long
wave runup [CG58, KK64, Car66, Syn86, Syn87], mainly through the use of the [CG58]
transformation, that allows the reduction of the two nonlinear shallow water equations
into a single linear equation. After the two 1992 tsunamis (Nicaragua and Flores Island),
measurements suggested that the shoreline receded before inundation took place, an obser-
vation that lead [TS94] to propose a new N-shaped wave profile as a leading wave model.

Key words and phrases. long wave runup, resonance, NSWE, BVP.
∗ Corresponding author.

1

http://arxiv.org/abs/1107.0304v1


2 T. STEFANAKIS, F. DIAS, AND D. DUTYKH

z

xθ

u (x, t)

η (x, t)

Figure 1. Geometry of the runup problem

Recently, a more geophysically relevant N-wave model was derived and the resulting runup
on a plane beach was computed [MS10]. Apart from the plane beach geometry, wave
evolution and runup have also been addressed for piecewise linear topographies [KS98].
Expressions for long wave runup that are independent of the initial waveform were derived
by [DP08]. All the above results dealt with the IVP. [AB07] solved the boundary value
problem (BVP) for the nonlinear shallow water equations, using the [CG58] transformation
and applied a perturbation approach by assuming small incoming waves at the seaward
boundary. Later, the same authors [AB10] solved the BVP in physical space without use
of the hodograph transformation.

Concerning the two-dimensional problem the sole analytical solution was derived by
[BP96] who used a transformation to relate the longshore coordinate to the time variable.
This operation allowed them to use an expression for the horizontal velocity that reduced
the dimensions and transformed their problem into the already solved one-dimensional
canonical problem. However their solution is only valid for mild angles of incidence.

Almost all of the aforementioned studies focus on the value of the maximum runup.
Nevertheless, extreme runup values measured by field studies, like during the 17 July 2006
Java event [FKM+07], cannot be explained by the existing theory. Furthermore, in some
cases, on the aftermath of a tsunami catastrophe it has been reported that it was not the
first tsunami wave that caused the maximum damage. In order to explain this phenomenon,
scientists assume that the amplified maximum runup values of non-leading tsunami waves
are due to reflection and refraction effects from nearshore topographic features [NSS+11].
It is found that changes in bathymetry may result in wave resonance [Mil67, Kaj77, AM88,
GM03]. In the present study, with the use of one-dimensional numerical simulations we
attempt to elucidate the runup amplification by non-leading long waves.

2. Discussion of obtained results

The maximum wave runup for the geometry of Fig. 1 was first studied for three different
beach slopes, namely tan θ = 0.13 ; 0.26 ; 0.3 , using incident monochromatic waves at x =
−L of the form η(−L, t) = ±η0 sin(ωt), ω/

√

g tan θ/L ∈ (0, 6.29).
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Figure 2. Maximum amplification ratio as a function of non-dimensional
angular frequency (top) and non-dimensional wavelength (bottom) for two
beach lengths, namely L = 12.5 m and 4000 m.

The maximum runup for a given beach slope was found to depend on the incident
wavelength (Fig. 2). For all three slopes, the maximum runup is highest when the non-
dimensional wavelength λ0/L ≈ 5.1 (i.e. at L = 100 m offshore the resonant wavelength
is λ0 = 510 m), where λ0 = 2π

√
gL tan θ/ω is the wavelength of the incident wave. For

increasing slope, the maximum runup also increases and reaches an amplification factor
Rmax/η0 = 59.76 when tan θ = 0.3, which clearly is extremely high. Increasing the beach
length leads to higher resonant maximum runup values, as well as a secondary resonant
regime at λ0/L = 1.5. Amplification is seen for both leading elevation and depression
waves. Adding dispersion to the system [DKM11] only results in a reduction of the max-
imum runup value at the resonant frequencies, without qualitatively changing the overall
picture. The aforementioned values of maximum runup were not achieved by the first
incident wave, as is the case for λ0/L > 10, but by subsequent ones (Fig. 3), thus signi-
fying the existence of some resonant phenomena, the controlling parameters of which are
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Figure 3. Runup timeseries for two different angular frequencies: ω = 0.4
s−1 which is the resonant frequency for tan θ = 0.13 and ω = 0.6 s−1, which
is a non-resonant frequency for the same slope (L = 12.5 m).

the incident wavelength and the beach slope. Enhanced but not as extreme runup is also
present for wavelengths which are approximately half the resonant ones, an observation
that strengthens the assumption that the harmonics play an important role on the runup.
The existence of resonant regimes is not predicted by linear theory [PM92], according to

which Rmax/η0 = 2π
√

2L/λ0 (Fig. 2). However, the theory is in close agreement with the
computed results in the absence of resonance.

Figure 3 also shows that waves with both resonant and non-resonant frequencies reach
a quasi-periodic state of equilibrium, which is reached faster when the frequency is non-
resonant. A key difference is the existence of a single peak/trough (runup/rundown) at
the quasi-periodic state of the resonant regime while the non-resonant frequencies show
multiple peaks/troughs in their quasi-periodic states. This is indicative of the importance
of the synchronization between the incident and reflective waves on the runup and rundown.

Next we describe this novel resonant mechanism in terms of energy. The potential
and kinetic energy of the wave are respectively [DD09]: EK = 1

2
ρ
∫

R

∫ η

−h
u2dxdz and

EP = 1

2
ρg

∫

R
η2dx . The kinetic energy can be reformulated in terms of the total flow depth

H = η + h as EK = 1

2
ρ
∫

R
Hu2dx.

The evolution of the energy for the resonant frequency (ω = 0.4 s−1) when tan θ = 0.13
is shown in Fig. 4. One can see that both the maximum potential and kinetic energies
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Figure 4. Timeseries of the energy evolution for the resonant frequency
ω = 0.4 s−1 for tan θ = 0.13, L = 12.5 m.

increase with time until the quasi-periodic state is reached (t
√

g tan θ/L ≈ 30). The po-
tential energy takes its maximum value at the instance of the maximum runup, when the
kinetic energy is minimum. However, it is obvious that the maximum potential energy is
approximately five times larger than the maximum kinetic energy. The impressive oscilla-
tions in the total energy are due to the large changes of the portion of the computational
domain covered by water during runup and rundown, which actually affects the limits of
integration in the energy equations.

In Fig. 5, four different snapshots of the energy density distribution during runup are
shown in order to shed more light on the resonant mechanism (ω = 0.4 s−1 , tan θ = 0.13).
The first snapshot is taken at the instant when the first incident wave hits the initial
shoreline. The potential energy is higher than the kinetic energy and both of them are
concentrated close to the shoreline. After the runup of the first wave, the energy is reflected
offshore, while at the same time energy is transferred shoreward by the second incident wave
causing an amplification of kinetic energy. The same process is repeated by the following
incident and reflected waves until the quasi-periodic state is reached. What is interesting is
that the horizontal location where the amplification takes place remains almost stationary
across runups and lies closer to the left boundary than the initial shoreline. After energy
is amplified locally, it travels shorewards possibly due to the continuous forcing at the left
boundary.
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Figure 5. Snapshots of the energy density distribution during runup for the
case of the resonant frequency (ω = 0.4 s−1) when tan θ = 0.13 and L = 12.5
m, at the arrival of the first (a), second (b), third (c) and fourth (d) waves.
Note: the scale of the vertical axis differs between the four snapshots and
the color code is the same as in Fig. 4.

Apart from idealistic simulations with sinusoidal waves, we explored whether similar
resonant phenomena can occur during a real tsunami. Therefore a simulation was run for
the 25 October 2010 Mentawai Islands tsunami. A virtual wave-gage was placed at Lon =
100.24o E , Lat = −3.4o N, where the depth is approximately 120 m and the free surface
elevation was obtained for the first 10800 s of the tsunami (Fig. 6 a). From that data only
the first 2000 s were used as boundary value using a uniform slope tan θ = 0.03, which is
close to the actual mean slope from the location of the wave-gage to the closest shore (the
distance of the wave-gage to the shore is L = 4000 m). The timeseries of the shoreline
elevation is shown in Fig. 6 (b). We can observe the runup of three waves at t = 720 s,
t = 1320 s and t = 1860 s. It is clear that the first wave does not cause the highest runup,
even though it has the highest amplitude, as recorded by the wave-gage.
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Figure 6. Virtual wave-gage (Lon = 100.24o E , Lat = −3.4o N) data
obtained for the 25 October 2010 Mentawai Islands tsunami (a). Timeseries
of the shoreline elevation during the first 2000 s (b).

The fact that the highest runup is not driven by the leading and highest wave excited our
curiosity to investigate whether there exists a connection between the resonant mechanism
observed when using sinusoidal wave profiles and the wave-gage recordings. From Fig. 6
(b) one can see that the maximum runups are separated by approximately 600 s intervals.
If we assume that the incident wave is a sum of sinusoidal waves and T = 600 s is the period
of the dominant mode, we can find the wavelength of that mode using λ0 = T

√
gL tan θ.

By doing so, the ratio λ0/L is equal to 5.15 which according to our previous results (Fig. 2)
corresponds to the resonant regime. Consequently, local resonant amplification of tsunami
runup may explain why in some cases it is not the first wave that results in the highest
runup.

Apart from dealing with a plane beach we investigated two cases of non-trivial bathymetry.
The first consists of a beach perturbed by a Gaussian-shaped underwater feature as in Fig.
7 (a). Again the forcing at the boundary was an idealized sinusoidal signal though this
time it was limited to only four periods, since in nature one would not expect a wave-
train larger than that. In Fig. 7 (b) we can observe the existence of resonant frequencies
though this time the amplification is not as high. What is intriguing is the existence of
multiple peaks, signifying that resonant phenomena might occur much more often than
expected. We reached the same conclusion when we studied the second case, which had a
real bathymetry taken from the region of the Mentawai islands (Fig. 7 c). Multiple res-
onant frequencies can also be observed in this case (Fig. 7 d), thus further strengthening
the suggestion that resonant runup amplification due to wave interactions is not a rare
phenomenon.
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Figure 7. Plane beach perturbed by a Gaussian-shaped bathymetric fea-
ture (a). Amplification ratio as a function of non-dimensional wavelength
(b). Bathymetry in the Mentawai Islands region (c). Amplification ratio as
a function of non-dimensional wavelength (d).

3. Conclusions

In summary, we discovered local resonant amplification phenomena related to the one-
dimensional BVP of the NSWE on a plane beach. The resonance occurs due to incoming
and reflected wave interactions and the actual amplification ratio depends on the beach
slope. These phenomena can explain why it is not always the first wave that causes
the highest runup, as well as why the tail of a single wave may produce leading-order
runup values. Resonant mechanisms are not limited to the plane beach paradigm but
can be observed in more complex bathymetries as well, thus suggesting that local runup
amplification is not a rare event. However, when the bathymetry is non-trivial, it is not
clear to what extent resonance is attributed to wave trapping and generation of harmonics.
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