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Abstract. We use statistically validated networks, a recently introduced method

to validate links in a bipartite system, to identify clusters of investors trading in

a financial market. Specifically, we investigate a special database allowing to track

the trading activity of individual investors of the stock Nokia. We find that many

statistically detected clusters of investors show a very high degree of synchronization in

the time when they decide to trade and in the trading action taken. We investigate the

composition of these clusters and we find that several of them show an over-expression

of specific categories of investors.
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1. Introduction

Financial markets are complex systems where the simultaneous activity of a huge number

of investors performs the task of finding the correct price of an asset through the action

of trading. The way in which this collective task is obtained is only partially understood.

Theoretical and computational models of investors trading in a financial markets are

very helpful in reproducing stylized facts and allow to investigate how specific cognitive

assumptions and investment strategies affect the price dynamics [1, 2]. Theoretical and

computational models often classify investors in stylized classes such as the ones of

fundamentalists and chartists [3, 4, 5, 6, 7, 8] sometime specialized in contrarian [9]

and momentum [10] investors. Theoretical and computational models also distinguish

between informed and uninformed trading action, for example see [11, 12, 13, 14], up to

the limit case of considering the presence of only noise driven zero intelligence traders

[15, 16]. In the above cited studies, the assumptions on the presence of different classes

of investors are motivated by theoretical considerations, results of surveys and direct

investigations of the trading profile of classes of investors (see [17, 18, 19] for some

examples of these investigations).

Even if theoretical and computational models take into account some type of

agent’s heterogeneity, analytical tractability or the need to keep low the number of

model parameters force researchers to introduce a small number of groups of investors

characterized by a specific type of strategy. Without an empirical verification of the

underlying assumptions, the assessment of the real amount of heterogeneity present in

a market and the detection of its role in the price formation dynamics lack an empirical

support. There are at least two reasons why such empirical investigations are difficult

to be realized. First, due to confidentiality reasons, it is very difficult to have access

to data allowing to track the trading activity of a large set of individual investors for

a long period of time. Second, even when the data are available, the identification of

groups of investors trading in similar way is a complicated data mining task.

In this paper we make a first step in this direction by employing a recently developed

and powerful data mining technique, termed Statistically Validated Networks (SVN)

[20], for the analysis of a very special database, namely a database allowing to track

the trading activity of individual investors of Finnish stocks. With our approach we

are able to identify groups of investors that trade in a very similar way over extended

periods of time. This commonality of behavior can be due to the use of very similar

trading strategies and can be seen as a strong form of herding. One of the most

surprising results is that in some groups we find a very high degree of synchronization

in agent’s trading activity, both in terms of when they decide to trade (as opposed to

maintain their position) and in terms of the specific activity (i.e. buy, sell, or buying and

selling approximately the same amount of shares in a given day) performed in a given

day. In this paper we will not investigate why the identified groups follow a specific

trading patterns, i.e. we will not attempt here a reverse engineering approach to infer

strategies from trading activity of investors. This is the topic of a forthcoming paper
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[21]. Our main focus here is in the identification and compositional characterization of

the identified clusters of investors.

The task of identifying groups of investors and infer their strategies and interactions

from empirical data is receiving an increasing interest in recent years. Some papers

[22, 23, 24, 25, 26, 27] have investigated databases where it is possible to track the

trading behavior of market members of the exchange. Members are credit entities and

investment firms which are the only firms entitled to trade directly. Therefore they

trade on behalf of a large number of investors. Despite this fact, recent studies have

shown that, probably due to a customer specialization, market member data allows to

identify trading strategies, such as order splitting [23, 24, 25], liquidity provision [27],

and contrarian or momentum trading [22]. In particular in this last study authors have

performed an analysis of the linear correlation matrix of the trading activity of market

members of the Spanish Stock Exchange in order to identify groups of investors (market

members in this case). It is important to stress that, as will be clear in the following, this

approach cannot be pursued with the Finnish data of individual investors investigated

here. The main reason is the extreme heterogeneity in the trading activity of individual

investors (heterogeneity is not so significant for market member data). For this reason

in this paper we use the more sophisticated SVN to identify clusters of investors.

Other studies have had access to databases with the resolution of the individual

investors (see for example [28] for the profit analysis of Taiwanese investors, [29] for

the analysis of the Flash Crash of May 6, 2010 or [30] for the investigation of order

splitting for individual investors). The database used in this paper has been investigated

extensively by Grinblatt and Keloharju in a series of studies [31, 32] on the trading

profile of individual and institutional investors, and on behavioral aspects of individual

investors. However to the best of our knowledge, this is the first study that attempts

an unsupervised identification of groups of individual investors in a financial market.

The paper is organized as follows. In Section II we describe the system and the

special database investigated in this study. In Section III we describe the categorical

variables used to characterize the trading activity of the investors and we introduce the

bipartite system under investigation. Section IV describes the statistically validated

networks of investors and Section V investigates the clusters detected in the statistical

validated networks. Finally, Section VI concludes.

2. Data

We investigate the trading activity of institutional and individual single investors by

using a special database maintained by the Euroclear Finland (previously Nordic Central

Securities Depository Finland). The database is the central register of shareholdings for

Finnish stocks and financial assets in the Finnish Central Securities depository (FCSD).

Practically all major publicly traded Finnish companies have joined the register. The

register reports the shareholdings in FCSD stocks of all Finnish investors and of all

foreign investors asking to exercise their vote right, both retail and institutional. The
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database records official ownership of companies and financial assets and the trading

records are updated on a daily basis according to the Finnish Book Entry System. The

records include all the transactions, executed in worldwide stock exchanges and in other

venues, which change the ownership of the assets.

The database classifies investors into six main categories: non-financial

corporations, financial and insurance corporations, general governmental organizations,

non-profit institutions, households, and foreign organizations. The database is collected

since January 1st, 1995. We have access to the database for the period 1995-2008,

under a special agreement with Euroclear Finland. In this paper we investigate the

trading activity of the Nokia stock, which is the most capitalized stock in the Finnish

stock market. Note that the database covers transactions of Nokia in all financial

markets where this company is listed. However, while the database contains very

detailed information about the Finnish domestic investors, foreign investors can choose

to use nominee registration. In this case, the investor’s book entry account provider

aggregates all the transactions from all of its accounts, and a single nominee register

coded identity contains the holdings of several foreign investors. ‡ This means that our

results describe in detailed way the actions of all the Finnish domestic investors and

those foreign investors who do not use nominee registration, while a very small fraction

of the coded identities correspond to aggregated ownership.

We consider the set of investors trading the Nokia stock during the period of

time from 19 October 1998 to 29 December 2003 (a set of 1,300 daily records) and

we investigate all the market transactions performed by them. The total number of

investors is 164, 130 and the total number of transactions is 18, 313, 376. The left part

of Table 1 gives the number of investors, the number of transactions, and the traded

volume for the six categories. It also gives these numbers separating nominee registered

and non nominee registered investors.

Investment decisions of single investors are characterized by a huge heterogeneity

with respect to: i) individual, collective or institutional nature, ii) investment size,

iii) investment time horizon, iv) class of trading strategies, and v) information sources

and processing capabilities. Therefore, the investigation of institutional and individual

investors immediately faces the limitations imposed by the investors’ heterogeneity. As

an example of the degree of heterogeneity in trading activity observed in a financial

market, we show in Fig. 1 the cumulative probability density function of the number of

market transactions for investors trading the Nokia stock during 2003. The cumulative

distribution shows a high degree of heterogeneity. The number of transactions performed

by investors ranges from 1 to 1, 549, 871. In the region of low number of transactions

(N . 1000) the cumulative probability density is roughly approximated by a power-

law with an exponent close to −1 as in the famous Zipf’s law [33] observed for other

size distributions such as cities population or firms size [34, 35]. However, it is worth

‡ If an institution can trade both for itself and also on behalf of nominee registered investors, we split

its trading activity in two distinct IDs, one regarding its activity as a Finnish investor and one when

it trades for nominee registered investors.
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Table 1. Summary of the number of investors (# ids), the number of transactions

(N), and the exchanged volume (V , in millions of shares) for the entire set (left column)

of Nokia investors in the period Oct. 10, 1998 - Dec. 29, 2003 and for the restricted

set (right column) of active investors investigated in the paper (see text for a detailed

description of the set construction). The investors are divided in the six categories (top

part) or between nominee and non nominee registered. Note that the total volume in

the table is twice the traded volume, because each transactions is counted both for the

buyer and for the seller.

Entire set Restricted set

Category # ids N V # ids N V

Non financial corporations 9,298 1,516,587 8,996 1,570 1,464,776 8,932

Financial and insurance 434 14,761,690 179,281 206 14,759,603 179,272

Governamental 144 21,313 618 75 20,462 615

Non profit 1,119 25,955 276 99 17,683 262

Households 151,493 1,646,482 1,083 9,326 1,002,918 916

Foreign organizations 1,642 341,349 2,754 109 333,547 2,680

Total 164,130 18,313,376 193,008 11,385 17,598,989 192,677

Nominee registered 52 13,118,319 174,753 40 13,118,203 174,738

Non nominee registered 164,078 5,195,057 18,255 11,345 4,480,786 17,939

noting that, differently than in the classic cases of observation of a Zipf’s law, the best

agreement with a power-law behavior with an exponent close to −1 is not observed in

the tail of the cumulative distribution and therefore for most active investors but rather

for investors characterized by a number of transactions ranging from one to roughly

one thousand. The figure also shows that many investors made very few transactions,

probably taking a position once in the year and then keeping the position.

To reduce the statistical uncertainty unavoidable associated with events occurring

rarely, we consider a smaller but large subset of active investors in the rest of the

paper. Specifically, we consider only those investors who have traded the Nokia stock

at least 20 days during the investigated time period. This means that all the investors

in the subset have done at least 20 transactions, but not that all the investors who have

participated to at least 20 transactions are in the set. The number of investors fulfilling

this requirement is 11,385 and they are responsible for 99.83% of the volume exchanged

during the considered period of time. The right part of Table 1 gives the number of

investors, the number of transactions, and the traded volume for the restricted subset

of investors.

Since the restricted set has a very high degree of heterogeneity in activity and

in the characteristics of the investor, a key challenge is to devise methods allowing to

compare and model trading actions performed by investors. In this paper we use a

recently developed statistical method based on network theory allowing to characterize
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Figure 1. Cumulative probability density, P (N > X), of the number of market

transactions N performed by the 41, 250 investors trading the Nokia stock during

2003. The dashed line is a power law with slope −1 and serves as a guide for the eye.

clusters (or by using a technical term of network theory, communities) of heterogeneous

investors [20].

3. Categorical variables characterizing the trading activity

One of the consequences of the high degree of heterogeneity of investors is that it might

be difficult to compare, for example, the activity of an household trading small volumes

once every three months with a financial institution that trades every day large volumes.

Moreover typical trading volume can be different in different periods of time, especially

in the five year investigated period. Since we are interested in comparing the trading

position taken by an investor in a given day, irrespective of the absolute volume traded,

we introduce a categorical variable that describes its trading activity. Specifically, for

each investor i and each trading day t, we consider the Nokia volume sold Vs(i, t) and

the Nokia volume purchased Vb(i, t) by the investor in that day. This information is

then converted into a categorical variable with 3 states: primarily buying b, primarily

selling s, buying and selling with closing the position bs. The conversion is done by
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using the ratio

r(i, t) =
Vb(i, t)− Vs(i, t)
Vb(i, t) + Vs(i, t)

. (1)

We assign an investor a primarily buying state b when r(i, t) > θ, a primarily selling

state s when r(i, t) < −θ, and a buying and selling state bs when −θ ≤ r(i, t) ≤ θ with

Vb(i, t) > 0 and Vs(i, t) > 0. We have investigated the system by ranging θ between 0.01

and 0.25. The obtained results are not strongly affected by the specific choice of the

threshold. In the present study we report results obtained by setting θ = 0.01.

Given this categorization, we can map our system in a bipartite network where one

set of nodes is composed by the investors and the other set by the trading days in the

investigated data. A buy link is present between a node i representing an investor and

a node t representing a day if investor i was in buying state b at day t. Similarly we can

define sell and buy-sell links. The bipartite network has therefore three different types

of links.

Here we are interested in the identification of clusters of investors. For this reason

from the bipartite system we construct the projected network of investors. Note that,

because there are three different types of links in the original bipartite system, there

will be nine possible types of links in the projected network of investors, corresponding

to different combinations of the actions of the two investors. The projected network

is therefore composed by nodes representing investors and each pair of nodes can be

linked by up to nine different links. Each link has a weight corresponding to the number

of days in which the two investors are found in the pair of states characterizing the

link. The projected network is almost a complete network and, more important, we

want to preserve the information on the type of links joining the two nodes. In order to

identify clusters in this complicated system, we preliminary identify those links that are

statistically validated against a suitable null hypothesis. We perform this identification

by using a recently introduced method [20], termed statistically validated networks.

This method has been demonstrated to be effective to investigate financial and biological

systems [20], as well as social systems [36]. Next section explains how we apply this

method to the investigated system.

4. Statistically validated co-occurrence networks

4.1. Method

In the present investigation we use a statistical validation method of the co-occurrence

of trading actions among heterogeneous investors coded by categorical variables. A co-

occurrence is quantified by the presence of a weighted link of a specific type between

two nodes (investors) in the projected network. Our method is robust with respect

to the heterogeneity of trading activity of investors whereas we neglect the limited

heterogeneity of state occurrence in different trading days because the number of b,
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s and bs states is only moderately fluctuating across different days and it has a bell

shaped distribution with a range of fluctuations smaller than one decade.

Within this approximation we can statistically validate the co-occurrence of state

P (either b, s or bs) of investor i and state Q (either b, s or bs) of investor j with

the following procedure. First of all, for each investor we identify its activity period,

i.e. the time period in the investigated years when the investor was the owner of at

least one share of any Finnish asset (not necessarily Nokia). Then for each pair i and

j of investors we focus our attention on the intersection of the corresponding activity

periods. We call T the length of this intersection. In the intersection period of traders’

activity, let us call NP (NQ) the number of days when investor i (j) is in the state P (Q)

and denote by NP,Q the number of days when we observe the co-occurrence of state P for

investor i and state Q for investor j. Under the null hypothesis of random co-occurrence

of state P for investor i and state Q for investor j, the probability of observing X co-

occurrences of the investigated states of the two investors in T observations is described

by the hypergeometric distribution, H(X|T,NP , NQ) [20]. We can therefore associate

a p-value with each pair of investors for each combination of the investigated states.

Specifically, for each kind of co-occurrence of states P and Q, the p-value is

p(NP,Q) = 1−
NP,Q−1∑
X=0

H(X|T,NP , NQ). (2)

We indicate the states b, s and bs of investor i as ib, is and ibs respectively. The nine

possible combinations of the three trading states between investor i and j are (ib,jb),

(ib,js), (ib,jbs), (is,jb), (is,js), (is,jbs), (ibs,jb), (ibs,js), and (ibs,jbs).

To statistically validate the co-occurrence NP,Q, the p-value p(NP,Q) must be

compared with a statistical threshold p. One might be tempted to simply set p=0.01

or p=0.05. However the statistical validation of all nine possible co-occurrences of

categorical states between all pairs of investors of our set is a multiple hypothesis test

and therefore it needs a multiple hypothesis test correction [37]. Widely used multiple

hypothesis test corrections are the Bonferroni and the False Discovery Rate (FDR)

methods. The Bonferroni correction is in the present case pb = 2pt/9(Ni(Ni − 1))

where pt is the chosen statistical threshold for the single test (in our case we choose

pt = 0.01), the denominator of the correction is the number of considered investor pairs

(Ni(Ni− 1)/2) times 9, which is the number of different co-occurrences investigated for

each pair of investors. A less stringent correction is the FDR [38], which is calculated

as follows: p-values from all the different k tests (k = 9Ni(Ni − 1) in the present case)

are first arranged in increasing order (p1 < p2 < ... < pk), and then FDR threshold

is obtained by finding the largest kmax such that pkmax < kmax pb. In Ref. [20], we

called the projected network of elements’ co-occurrences Bonferroni network when the

correction used is the Bonferroni correction and FDR network when the correction used

is the FDR correction. It is worth noting that the Bonferroni network is obtained under

more restrictive statistical assumptions than the FDR network.
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4.2. Results

In the present study our aim is to construct the Bonferroni and the FDR network of

investors trading the Nokia stock during the period 1998-2003. Each pair of investors is

characterized by the specific set of the above nine co-occurrences which are statistically

validated. A validation of a specific co-occurrence is observed when the associated p-

value is below the selected statistical threshold determined according to the selected

multiple hypothesis testing correction. We call a set of validations of co-occurrences as

a co-occurrence combination. There are 29 = 512 possible co-occurrence combinations.

This number is certainly large and may suggest that attaining a parsimonious description

of the system based on co-occurrence combinations can be unlikely. However, we find

that the number of observed distinct co-occurrence combinations is 19 for the Bonferroni

network and 74 for the FDR network. It is worth noting that 99% of relationships

observed among investors in the Bonferroni and FDR network are described by just 6

and 9 distinct co-occurrence combinations, respectively.

These co-occurrence combinations are listed in Table 2. The co-occurrence

combination C1 indicates that investors i and j show a validated co-occurrence of the

trading action of primarily buying. Similarly, C2, C3, C5, C6 and C7 indicate various co-

occurrences of the three considered actions. In our setting, co-occurrence combinations

are not directional and therefore in each of the considered combinations the label i and

j can be interchanged. Co-occurrence combination C4 presents a twofold validation

involving the co-occurrences (ib,jb) and (is,js). When this co-occurrence combination is

observed, the two investors act synchronously both when they decide to buy and when

they decide to sell. C7 is the only significantly populated co-occurrence combination

in which the two agents systematically take opposite trading position, i.e. one agent is

buying when the other one is selling. Our analysis shows that this kind of co-occurrence

combination is only marginally probable (only 0.81 percent of the cases) when the

multiple test correction is not too severe – as it is the case for the FDR network.

The co-occurrence combination C8 describes co-occurrence of all three states (primarily

buying, primarily selling, and buying and selling) indicating a very strong level of

synchronization between distinct investors. The two-fold co-occurrence combination

C9 in turn describes co-occurrence of buying, and buying and selling activity together

with selling, and buying and selling activity. This kind of relationship, for example, can

be interpreted as describing the interaction between an investor and a market maker (or

a day trader) acting coherently during the same days.

In summary, the different investors are connected in the Bonferroni and in the FDR

networks by links of different nature each of them describing a specific co-occurrence

combination. This structure is richer than a customary unweighted network, and it is

also different from a weighted network because co-occurrence combinations describes

relationships which cannot be described by a numerical value only. In Ref. [20], we

addressed this kind of links present in a statistically validated network with the term

multi-link.
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Table 2. Most populated co-occurrence combinations in the Bonferroni and FDR

networks. The third (forth) column gives the number of the corresponding links in the

Bonferroni (FDR) network. The number in the parenthesis gives the percentage of the

corresponding links over the total number of links. The fifth column is the color label

used for the links in Figure 5.1 and 5.2.

Label Co-occurrence Bonferroni FDR Color

combination 36,664 links 330,404 links label

C1 (ib,jb) 7,716 (21.0) 120,655 (36.5) magenta

C2 (is,js) 6,254 (17.1) 91,219 (27.6) green

C3 (ibs,jbs) 1,732 (4.72) 19,227 (5.82) apricot

C4 (ib,jb) 20,243 (55.2) 66,692 (20.2) black

(is,js)

C5 (ib,jbs) 312 (0.85) 13,494 (4.08) blue

C6 (is,jbs) 157 (0.43) 9,592 (2.90) orange

C7 (is,jb) 12 (0.033) 2,662 (0.81) tan

C8 (ib,jb) 137 (0.37) 2,304 (0.70) brown

(is,js)

(ibs,jbs)

C9 (ib,jbs) 43 (0.12) 1,414 (0.43) purple

(is,jbs)

Table 3. Summary of the number of investors (# ids), the number of transactions

(N), and the exchanged volume (V , in millions of shares) for Nokia investors included

in the Bonferroni network and in the FDR network. The investors are divided in the

six categories (top part) or between nominee and non nominee registered.

Bonferroni FDR

Category # ids N V #ids N V

Non financial corporations 580 1,202,142 6,847 1,472 1,410,377 8,637

Financial and insurance 112 7,316,946 64,344 185 14,039,035 171,145

Governamental 61 15,223 222 75 20,462 615

Non profit 53 10,684 79 95 17,470 261

Households 2,292 501,620 595 8,521 968,268 903

Foreign organizations 20 29,933 36 87 330,580 2,482

Total 3,118 9,076,548 72,123 10,435 16,786,192 184,043

Nominee registered 18 6,096,148 61,060 31 12,386,315 166,353

Non nominee registered 3,100 2,980,400 11,063 10,404 4,399,877 17,690

Table 3 gives the number of investors, the number of transactions, and the traded

volume for the six categories for the subset of investors in the Bonferroni (left part)

and in the FDR (right part) network. It also gives these numbers separating nominee
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registered and non nominee registered investors. The Bonferroni network of investors is

composed by 3, 118 investors connected by 36,664 multi-links. The Bonferroni network

presents 226 connected components. The largest one has 2,537 investors and the other

connected components are much smaller, with size ranging from 26 to 2 investors. The

FDR network covers almost completely the set of investigated investors. In fact, it

is composed by 10,435 investors connected by 330,404 multi-links. The FDR network

includes 22 connected components. The largest one has 10,389 investors (99.6% of the

network’s investors) while the other connected components are extremely small with a

size of only 3 or 2 investors.

5. Cluster detection in co-occurrence networks

We are now interested in finding a partition of the Bonferroni and FDR networks that

reveals the cluster structure of investors. The largest clusters detected both in the

Bonferroni and in the FDR networks shall be analyzed with methods of community

detection in network to reveal the clusters of investors characterized by similar trading

profile. As discussed in the previous section, multi-link statistically validated networks

of investors are networks presenting different classes of links. To the best of our

knowledge, there is no established method specifically devised to detect communities

in networks with links of qualitative different nature, such as our statistically validated

networks. Here we propose a minimalist approach by removing from the network all the

co-occurrence combinations which validate opposite trading actions of the considered

pair of investors (as, for example, the C7 co-occurrence combination of Table 2). From

the cited Table we see that this is a very limited set of links covering 0.81% of the

links in the FDR and 0.033% in the Bonferroni network. Moreover it is reasonable to

expect that investors belonging to the same cluster display similar trading behavior and

therefore, these anti-diagonal links are likely to bridge different clusters of investors.

We perform community detection in the modified Bonferroni and FDR networks

by using the Infomap method [39]. This method is considered as one of the most

effective methods of community detection in networks [40]. We apply the method by

considering weighted networks where the weight of each multi-link is given accordingly

to the number of co-occurrence validations observed in the co-occurrence combination.

For example, the weight of C1 combination (ib, jb) is 1 and the weight of C8 combination

((ib, jb; is, js; ibs, jbs) is 3. While our approach is pragmatic and heuristic, we are aware

that a more theoretically grounded approach to partitioning multi-link networks would

certainly be useful in the study of networks where links of different nature can be

naturally defined, as in the present case.

5.1. Clusters in the Bonferroni network

In Fig. 5.1 we show the clusters detected by the Infomap algorithm in the Bonferroni

network. We observe 356 distinct clusters of size ranging from 527 to 2. The largest
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10 clusters comprise 1,522 investors, approximately half the number of investors in the

Bonferroni SVN. In Fig. 5.1 we plot all the detected clusters in two panels. The top panel

displays each investor in the network with a circle whose color indicates the category

to whom the investor belongs to. The most common investors are households (cyan

circles) which are also the most numerous investors in the database. However, in some

cases an over-representation of some other category of investors (for example, financial

corporations labeled as red circles) is apparent. Below we will provide rigorous results

about the over-representation or under-representation of categories of investors in the

detected clusters. In the bottom panel of the figure, nodes are not colored and their

size is reduced to point out the nature of the links connecting the nodes in different

clusters. The color code of different links is given in Table 2. The figure shows that

several clusters are characterized by a specific (single color) multi-link.

In Fig. 5.1 we show the trading activity of the 30 most populated clusters by using

a representation where a red spot corresponds to the buying action of an investor, a

green spot to the selling action and a white spot to the buying and selling action. In

the absence of trading activity the corresponding spot is black. Different investors are

ordered along the x-axis and we put time in the y-axis (in trading days). For the

sake of readability we separate clusters by light blue vertical lines. Before investigating

the composition of these clusters and the over-representation of specific categories, it is

worth emphasizing a clear result emerging from Fig. 5.1. Most clusters are characterized

by a very high degree of synchronization in the timing of the trading activity among

the investors of the cluster. In other words, for many clusters we observe that a large

fraction of the investors in the cluster trades in the same days (and often with the same

trading state).

We then analyze the clusters of investors detected in the Bonferroni network by

using the information available about the category of investors which are present in each

cluster. A statistical method to perform an analysis of over-representation of attributes

of elements partitioned in clusters is given in Ref. [41]. This method is needed to provide

a statistical validation of over-expression and under-expression because the categories of

investors and the co-occurrence combinations are quite heterogeneous in number, and

this aspect needs to be taken into account properly in the analysis [41]. In Table 4 we

present the summary information about the 30 most populated clusters detected with

the Infomap method in the Bonferroni SVN. Specifically, for each cluster we indicate the

number of investors, the over-expression or under-expression of category of investors,

and the over-expression or under-expression of multi-links belonging to a co-occurrence

combination.

A description of major properties of clusters can be achieved by analyzing jointly

Fig. 5.1 and the information summarized in Table 4. As expected, from the Figure we

note that the trading activity is quite heterogeneous for investors of different clusters.

In some clusters, for some periods of time, the trading activity is rather continuous

whereas other clusters show a sparse trading activity localized around to specific days.

Fig. 5.1 also shows that there are clusters of investors (most probably so-called market
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Table 4. Summary statistics of the 30 most populated clusters of the Bonferroni

network detected with Infomap. For each cluster we statistically validate the

over-expression or under-expression of investors belonging to a specific category:

non-financial corporations (C), general governmental organizations (G), foreign

organizations (FO), non-profit institutions (NP), financial and insurance corporations

(FI), and households (H). We also statistically validate the over-expression or under-

expression of multi-links belonging to a specific co-occurrence combination. The list

of most frequent co-occurrence combinations are given in Table 2.

Cluster Investors Over-expr. Under-expr. Over-expr. Under-expr.

investor category Investor category co-occur. comb. co-occur. comb.

B1 527 H C G NP FI C1 C2 C3 C4

B2 294 FI C4 C1 C2 C3 C5 C6 C9

B3 138 C3 C5 C6 C9 C1 C2 C4

B4 116 C3 C1 C2 C4

B5 82 C4 C1 C2 C3

B6 79 C1 C4 C5 C2 C3 C8

B7 78 C3 C5 C6 C9 C1 C2 C4

B8 73 C2 C1 C3 C4

B9 70 C1 C2 C4

B10 65 C3 C5 C1 C2 C4

B11 55 C2 C1 C3 C4

B12 47 C1 C2 C3 C4

B13 46 C3 C1 C2 C4

B14 39 G NP H C1 C2 C3 C4

B15 37 G NP H C2 C1 C3

B16 34 C3

B17 34 C1 C2 C4

B18 33 C4 C1 C3

B19 30 FI H C1 C3 C4

B20 30 C1 C2 C3 C4

B21 30 C1 C2 C4

B22 26 C2 C4

B23 24 C3 C4

B24 23 FI H C2 C4

B25 23 C1 C4

B26 19 C1 C4

B27 18 G NP H C1 C2

B28 18 C1 C4

B29 17 G H

B30 17 C2 C4
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Figure 2. Clusters of investors detected by the Infomap method in the Bonferroni

SVN. Top panel: Emphasis on the vertices of the clusters. The color of the vertex

indicates the category that the investor belongs to. The colors are assigned as follows:

corporations (blue), general governmental organizations (yellow), foreign organizations

(maroon), non-profit institutions (green), financial and insurance corporations (red)

and households (cyan). Bottom panel: Same clusters as in the top panel but in this

case we remove vertices and emphasise the nature of the links connecting investors.

The color code of the links is provided in Table 2.
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Figure 3. Microarray-like representation of the trading activity of investors of the

30 most populated clusters detected in the Bonferroni statistically validated network

by the Infomap method. A red spot indicates a buying trading action of an investor,

a green spot a selling action, and a white spot a buying and selling trading action.

Different investors are ordered along the x-axis. The y-axis is time (in trading days).

In the absence of trading activity the corresponding spot is black. Top panel: the top

4 clusters (B1 to B4 from left to right). Bottom panel: the remaining 26 clusters (B5

to B30 from left to right). Vertical light blue lines separate the clusters.

makers and day traders, i.e. investors closing their position without a net inventory

at the end of the trading day) characterized by a buying and selling intraday activity
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(clusters B3, B4, B7, B10, B13 and B23). Within the clusters investors interact among

them and with other buying and selling investors in rather localized period of time. In

fact, in Table 4 we note that the over-expressed multi-links are of kind C3 (ibs,jbs), C5

(ib,jbs), C6 (is,jbs) and C9 (ib,jbs) & (is,jbs). It is worth noting that for these clusters no

over-expression or under-expression of category of investors is detected suggesting that

trading activities requiring a daily closure of the trading position is present in investors

of all categories with a degree of heterogeneity similar to the one of the entire set of

investors.

The other clusters present trading activities characterized by the co-occurrence of

buying, selling and/or buying and selling trading actions. Clusters characterized by an

over-expression of multi-link C4 (ib,jb) & (is,js) are clusters B2, B5, B6 and B18. These

clusters present the highest degree of synchronicity among investors both when they

decide to buy and when they decide to sell. The remaining clusters present an over-

expression of buying co-occurrence C1 (ib,jb) (specifically, clusters B14, B19, B20, B21,

B25, B26, B27, B28) or of selling co-occurrence C2 (is,js) (specifically, clusters B8, B11,

B15, B22, B24, B30). Finally clusters B1, B9, B12, and B17 present over-expressions

of C1 (ib,jb) and C2 (is,js) multi-links. It should be noted that this case is different

from the over-expression of C4 (ib,jb) & (is,js) because the C1 and C2 over-expression

can involve different pairs of investors whereas the C4 over-expression involves the same

pairs of investors. In other words, when C1 and C2 co-occurrence combinations are

observed separately, this observation reflects the fact that subsets of the investors are

coherently buying among them and other subsets are coherently selling with a non null

intersection among the subsets, i.e. an investor can coherently buy with another one

whereas it is coherently selling with a third one and so on.

Some clusters (B1, B14, B15, B19, B24, B27, and B29) present over-expression

and under-expression of investors belonging to specific categories. Cluster B1 presents

an over-expression of households and an under-expression of non-financial corporations,

general governmental organizations, non-profit institutions and financial and insurance

corporations. The trading strategies of the underlying cluster are therefore those ones

which are most popular among single individuals. Clusters B14, B15 and B27 present

an over-expression of general governmental organizations and non-profit institutions

and an under-expression of Households. The trading strategies underlying these

clusters are therefore trading strategies which must be popular among this kind of

institutions (Governmental and non profit). Finally, clusters B19, and B24 present

an over-expression of financial and insurance corporations and an under-expression of

households.

5.2. FDR network and its relation with the Bonferroni network

We have also computed the FDR network of the investors. As expected, it includes more

investors (10, 435) and more multi-links (330,404) than the Bonferroni network, since the

requirement on the statistical validation is less restrictive. The FDR network has a large
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connected component comprising 10, 389 investors. By applying the Infomap algorithm

to the FDR network where we remove co-occurrence combinations of the kind (ib,js)

and we obtain a partition of investors in 390 clusters whose size is ranging from 3,000

to 2 investors. The 30 most populated clusters are described in Table 5 where we report

the over-expression and under-expression of categories of investors and co-occurrence

combinations observed for each cluster.

Clusters detected in the Bonferroni and in the FDR network are related. The most

common relationship is inclusiveness of the Bonferroni clusters into the FDR clusters.

In fact, 23 of the 30 largest Bonferroni clusters have more than 75% of their elements

in corresponding single FDR clusters. By requiring more than 90% of the elements of

a Bonferroni cluster to be in a single FDR cluster this number reduces to 17. In Table

6 we show the inclusiveness relationships observed for the most populated Bonferroni

clusters when more than 75% of the elements are present in corresponding single FDR

clusters.

While the inclusiveness of Bonferroni clusters into FDR clusters is the most common

relationship, we also observe partitioning of the elements of a Bonferroni cluster into

many FDR clusters. For example, the elements of cluster B7 are sorted out into clusters

F1 (40%), F4 (14%) and F11 (46%). This is due to the fact that the inclusion of new

multi-links in the FDR network sometimes can significantly change the local density of

multi-links around specific regions of the network. These changes of the local multi-

link structure can therefore be reflected into the partitioning performed by community

detection algorithms.

Another aspect to be taken into account concerns the nature of links of statistical

validated networks. In the the present case links are multi-links of different nature and

the co-occurrence combination between two investors can be different in the Bonferroni

and in the FDR networks. For example, a multi-link between investors i and j can be of

C1 type in the Bonferroni network and of C4 type in the FDR network due to the further

statistical validation of the co-occurrence (is,js) when the FDR multiple test correction

is used. The percent of Bonferroni multi-links which are changing nature when detected

in the FDR network is close to 37%. However, 30% of them concerns the co-occurrence

combinations C1 (16%) and C2 (14%). Both co-occurrence combinations change to the

C4 co-occurrence combination validating both the co-occurrence of buying and selling.

In other words, in some cases, the strictest Bonferroni correction validates only the

buying or the selling co-occurrence, whereas with the FDR multiple test correction the

co-occurrence is validated both for buying and selling.

We provide a concrete example of the above discussed concepts by comparing the

F8 cluster of the FDR network and B14, B15, B19, B27 and B29 Bonferroni clusters

included in it. In the top panel of Fig. 5.2 we show the F8 cluster of the FDR network.

From Table 5 we note that the F8 cluster has over-expression of investors belonging

to the non-financial corporations, general governmental organizations, non-profit

institutions, and financial and insurance corporations categories, whereas household

investors are under-expressed. The same table shows that the over-expressed co-
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Table 5. Summary statistics of the 30 most populated clusters of the FDR network

detected with Infomap. For each cluster we statistically validate the over-expression

or under-expression of investors belonging to a specific category: non-financial

corporations (C), general governmental organizations (G), foreign organizations (FO),

non-profit institutions (NP), financial and insurance corporations (FI) and households

(H). We also statistically validate the over-expression or under-expression of multi-

links belonging to a specific co-occurrence combination. The list of most frequent

co-occurrence combinations are given in Table 2.

Cluster Investors Over-expr. Under-expr. Over-expr. Under-expr.

investor category Investor category co-occur. comb. co-occur. comb.

F1 3000 H G NP FI C1 C2 C5 C6 C9 C4 C3 C8

F2 1851 H C G C1 C2 C3 C4 C5 C6 C8 C9

F3 931 G C3 C5 C6 C9 C1 C2 C4 C8

F4 639 C1 C4 C9 C2 C3 C5 C6 C8

F5 438 C NP H C4 C8 C1 C2 C3 C5 C6 C9

F6 312 FI C2 C5 C6 C4 C8

F7 223 C3 C5 C6 C1 C2 C4

F8 205 C G FI NP H C4 C1 C2 C3 C5 C6 C8 C9

F9 140 C3 C5 C6 C9 C1 C2 C4

F10 129 C2 C4 C1 C3 C5 C6 C9

F11 127 C3 C5 C6 C9 C1 C2 C4

F12 85 C2 C1 C3 C4 C5 C6

F13 68 C4 C1 C3 C5 C6

F14 54 C3 C5 C6 C1 C2 C4

F15 40 C4 C2 C3 C5

F16 39 C4 C1 C2 C3 C5 C6

F17 39 C4 C2 C3 C5 C6

F18 37 C1

F19 29 C4 C2

F20 26 C2 C1

F21 26 C6 C3

F22 24 C6

F23 22 C4 C8 C1

F24 20 C8 C2

F25 19 C4 C1

F26 19 C2 C1

F27 17

F28 16

F29 16

F30 16



CONTENTS 20

Table 6. Inclusiveness relationships of the 30 most populated Bonferroni clusters.

The relationship is indicated when more than 75% of the elements of a Bonferroni

cluster is present into a single FDR cluster. An asterisk indicates that more than 90%

of the elements are present in the corresponding FDR cluster.

FDR Cluster Bonferroni clusters

F1 B1 (*) B10(*) B11 B23 (*)

F2 B21 (*)

F3 B4 B13 (*)

F4 B5 B6 (*) B17 (*)

F5 B2 (*) B26 (*)

F8 B14 (*) B15 (*) B19 (*) B27 B29 (*)

F10 B8 (*)

F12 B22 (*)

F13 B12 (*)

F15 B25 (*)

F16 B16

F17 B20

occurrence combination is the C4 combination (black links in Fig. 5.2 ) implying the

(ib,jb) and (is,js) co-occurrence. In the bottom panel of the same figure we show the

five clusters B14, B15, B19, B27 and B29 of the Bonferroni network (we show only the

135 elements which are also present in the F8 cluster of the FDR). The links present in

the bottom panel are the links of the Bonferroni network. By comparing the top panel

(FDR cluster) and the bottom panel (Bonferroni clusters), we note that the Bonferroni

clusters describe core regions of the wider FDR clusters, and that the number of multi-

links grows if we move from the Bonferroni to the FDR network. In some cases, links

change nature from C1 and C2 co-occurrence combinations to C4. In fact, by analyzing

Table 4, we see that the over-expressed multi-links of the Bonferroni clusters are C1 for

B14, B19, and B27, and C2 for B15.

Moving from the FDR to the Bonferroni correction, we therefore increase the

specificity of the system characterization and decrease its sensitivity. This aspect is

summarized in Fig. 5.2 where we display the trading activities of investors of cluster

F8 (top panel) and of clusters B14, B15, B19, B27 and B29 (bottom panel). Note that

135 elements (out of a total of 141) of the Bonferroni clusters are present in the FDR

cluster. The order of the investors in both panels is given according to the rank of the

contribution of the single investor to the partitioning of the Infomap algorithm. Highest

contribution is provided by investors located at the left of each region. It is worth noting

that at the Bonferroni level the specificity of the trading action of each cluster is quite

evident and in fact differences among clusters involving trading actions of specific days

can be clearly detected. The FDR cluster provides a less specific characterization but
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Figure 4. Network of investors belonging to the F8 cluster of the FDR network (top

panel) and to B14, B15, B19, B27 and B29 clusters of the Bonferroni network (bottom

panel) that are included in the F8 FDR cluster. The color of vertices is given as

indicated in the caption of Fig. 5.1. The color code of links is provided in Table 2. In

the top panel we show the links of the FDR network whereas in the bottom panel we

show the links of the Bonferroni network. The 5 clusters of the Bonferroni network

are from top in clockwise order B29, B15, B19, B27 and B14. B15 shows a over-

representation of C2 (is,js) links (green links), whereas B14, B19, and B27 clusters

have C1 (ib,jb) (magenta links). In the F8 FDR cluster the over-represented link is C4

(ib,jb) & (is,js) (black links).
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Figure 5. Microarray-like representation of the trading activity of investors of the F8

FDR cluster (top panel) and of the B14, B15, B19, B27 and B29 Bonferroni clusters

(from left to right bottom panel). Vertical light blue lines separate the clusters.
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involves a larger number of investors.

6. Conclusions

By using a database containing information about the trading actions of individual

investors in a real financial market, we have studied how the investors’ different actions

co-occur in the market. In particular, we have studied the trading of Nokia stock for

the period 1998-2003 by associating to each investor for all the days one of the states

buy, sell or buy-sell. Based on the co-occurrence of the trading actions of the investors

over time, we have constructed statistically validated networks of investors. This has

allowed us also to detect the clusters of investors within the networks and to characterize

the observed investors’ clusters by the different categories investors belong to, and the

type of co-occurence of trading actions, or multi-links, connecting the investors. We

have found a very high degree of synchronization in the trading activity of the identified

groups. This synchronization can be due to many different causes, such as the adoption

of similar strategies, the recommendation of the same analysts, or a direct interaction

and exchange of information among the investors.

Our results demonstrate that despite of the investors’ heterogeneity, it is indeed

possible and feasible to make empirical observations and characterizations of the

investors’ actions, to use the concepts and tools of network theory to describe this

activity, and to study the clusters of investors formed in financial markets. The results

presented here represent a starting point for further studies focusing on the empirical

identification of the investment strategies of the agents [21] and on the modeling of the

complex interaction between clusters of agents in a market ecology. We are confident

that the methods and results presented here will be important in the construction of

realistic agent based models of this fascinating complex system.
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